GGP Home Agreements Purpose / Goals Mailing Address / Email List Links
Newsletters Publications / Online Stations Glossary Maps

GGP - Publications on Related Topics

Link to Publications on Superconducting Gravimetry

In sections: A B C D F G H J K L M N O P R S T V W X-Y
Listed alphabetically by first author; the first reference being highlighted. 


Agnew, D. C., 1995. Ocean-load tides at the south pole: a validation of recent ocean-tide models, Geophys. Res. Lett., 22, 3063-3066.

Agnew, D.C., 1996. Some programs for ocean-tide loading, Scripps Institution of Oceanography Reference Series, 96-8.

Aldridge, K. D. and A. Toomre, A, 1969. Axisymmetric inertial oscillations of a fluid in a rotating spherical container, J. Fluid. Mech., 37, 307-323.

Aldridge, K. and Lumb, I., 1987. Inertial waves identified in the Earth's fluid core, Nature, 325, 421-423.

Aldridge, K., Lumb, I. and Henderson, G., 1989. A Poincare model for the Earth's fluid core, Geophys. Astrophys. Fluid Dyn., 48, 5-23.

Anderson, O. B., P. Woodworth, and R. A. Flather, 1995. Intercomparison of recent ocean tide models, J. Geophys. Res., 100 (C12), 25261-25282.

top

Baker, T. F., 1980. Tidal gravity in Britain: tidal loading and the spatial distribution of the marine tide, Geophys. J. R. Astron. Soc., 62, 249-267.

Baker, T. F., 1980. Tidal tilt at Llanrwst, North Wales: tidal loading and Earth structure, Geophys. J. R. Astron. Soc., 62, 269-290.

Baker, T. F., Edge, R. J. and Jeffries, G., 1991. Tidal gravity and ocean tide loading in Europe, Geophys. J. Int., 107, 1-11.

Baker, T. F. and Bos, M. S., 2001. Tidal gravity observations and ocean tide models, J. Geod. Soc. Japan, 47, (1), 76-81.  

Baker, T. F. and Bos, M. S., 2003. Validating Earth and ocean tidal models using tidal gravity measurements, Geophys. J. Int., 152, 468-485.  

Bos, M. S., Baker, T. F., Lyard, F.H., Zürn, W. E. and Rydelek, P.A., 2000. Long-period lunar Earth tides at the geographic South Pole and recent models of ocean tides, Geophys. J. Int., 143, 490-494.

Beauduin, R., P. Lognonne, J.P. Montagner, S. Cacho, J. F. Karczewski, and M. Morand, 1996. The effects of the atmospheric pressure changes on seismic signals or how to improve the quality of a station, Bull. Seis. Soc. Am., 86 (6), 1760-1769.

Beroza, G. and T. Jordan, 1990. Searching for slow and silent earthquakes using free oscillations, J. Geophys. Res., 95, 2485-2510.

Bower, D. R., 1983. Bedrock fracture parameters from the interpretation of well tides, J. Geophys. Res., 88, 5025-5035.

Busse, F. H., 1974. On the free oscillation of the Earth’s inner core, J. Geophys. Res., 79, 753-757.  

top

Calais, E. and B. Minster, 1995. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22 (9), 1045-1048.

Cartwright, D. E. and Tayler, R. J., 1971. New computations of the tide-generating potential, Geophys. J. R. Astr. Soc., 23, 45-74.

Cartwright, D. E. and Edden, A. C., 1973. Corrected tables of tidal harmonics, Geophys. J. R. Astr. Soc., 33, 253-364.

Crossley, D. J., 1975. Core undertones with rotation, Geophys. J. Roy. Astr. Soc., 42,  477-488.

Crossley, D. J., 1984. Oscillatory flow in the liquid core, Phys. Earth Planet. Int., 36, 1-16.

Crossley, D. J., 1989. The excitation of core modes by earthquakes, in Structure and Dynamics of Earth's Deep Interior, Geophysical Monograph 46, IUGG, 1, 41-50, ed. D.E. Smylie and R. Hide, AGU.

Crossley, D. J., 1992. Eigensolutions and seismic excitation of the Slichter mode triplet for a fully rotating Earth model, EOS Trans. AGU, San Francisco, 73, 60.

Crossley, D. J., 1993. The gravity effect of core modes for a rotating Earth, J. Geoomag. and Geoelec., ***

Crossley, D. J. and D. E. Smylie, 1975. Electromagnetic and viscous damping of core oscillations, Geophys. J. Roy. Astr. Soc., 42, 1101-1033.

Crossley, D. J. and M. G. Rochester, 1980. Simple core undertones, Geophys. Roy. Astr. Soc., 60, 129-161.

Crossley, D., J. Hinderer, and H. Legros, 1991. On the excitation, detection and damping of core modes, Phys. Earth Planet. Int., 116, 68-97.

Crossley, D. J. and M. G. Rochester, 1992. The subseismic approximation in core dynamics, Geophys. J. Int., 108, 502-506.

Crossley, D. J., M. G. Rochester, and Z. R. Peng, 1992. Slichter modes and Love numbers, Geophys. Res. Lett., 19, 1679-1682.

Cummins, P. and J. Wahr, 1993. A study of the Earth's core nutation using gravity data, J. Geophys. Res., 98, 2091-2104.

Cummins, P., Wahr, J., Agnew, D. and Tamura, Y., 1991. Constraining core undertones using stacked IDA gravity records, Geophys. J. Int., 106, 189-198.

top

Dahlen, F.A., 1968. The normal modes of a rotating, elliptical Earth, Geophys. J. Roy. Astron. Soc., 16, 329-367.

Dahlen, F.A. and Sailor, R.V., 1979. Rotational and elliptical splitting of the free oscillations of the Earth, Geophys. J. Roy. Astron. Soc., 58, 609-623.  

Dehant, V., 1987. Tidal parameters for an elastic Earth, Phys. Earth Planet. Int., 49, 97-116.

Dehant, V., 1990. Review of the earth tidal models and contribution of Earth tides in geodynamics, J. Geophys. Res., 96, 20235-40.

Dehant, V. and Ducarme, B., 1987. Comparison between the theoretical and observed tidal gravimetric factors, Phys. Earth Planet. Inf., 49, 192-212.

Dehant, V., and Zschau, J., 1989. The effect of mantle inelasticity on tidal gravity, Geophys. J., 97, 549-555.

Dehant, V., Hinderer, J., Legros, H. and Lefftz, M., 1993. Analytical approach to the computations of the Earth, the outer core and the inner core rotational motions, Phys. Earth Planet. Int., 76, 259-282.

Dehant, V., Defraigne, P. and Wahr, J., 1999. Tides for a convective Earth, J. Geophys. Res., 104, 1035– 1058.

de Freitas, S. R. C., Van Ruymbeke, M., Ducarme, B., Somerhausen, A., Mantovani, M. S., and Shukowsky, W., 1995. On gravity measurements related with the November 3, 1994 solar eclipse in Brazil, inb International Union of Geodesy and Geophysics, XXI General Assembly, Boulder, USA, abstract, B32.

Denis, C., Y. Rogister, M. Amalvict, C. Delire, and M. Ibbrahim, 1997. Hydrostatic flattening, core structure, and translational mode of the inner core, Phys. Earth Planet. Int.99; 3-4, 195-206. 

Desai, S. and J. M. Wahr, 1995. Empirical ocean tide models estimated from Topex / Poseidon altimetry, J. Geophys. Res., 100, 25205-25228.

De Vries, D. and Wahr, J., 1991. The effects of the solid inner core and non-hydrostatic structure on the Earth's forced nutations and Earth tides, J. Geophys. Res., 96, B5, 8275-8293.

Dickman, S., 1988, Theoretical investigation of the oceanic inverted barometer hypothesis, J. Geophys. Res., 93, 14941-14946.

Dong, D., Gross, R.S. and Dickey, J.O., 1996, Seasonal variations of the Earth's gravitational field; an analysis of atmospheric pressure, ocean tidal, and surface water excitation, Geophys. Res. Lett., 23, No. 7, 725-728.

Dziewonski, A. M. and Anderson, D. L., 1981. Preliminary reference Earth model (PREM), Phys. Earth Planet. Int., 25, 297-356.

top

Farrel, W. E., 1972. Deformation of the Earth by surface loads, Rev. Geophys. Space Phys., 10, 761-797.

Flechtner, F. V. Zlotnicki, and T. Pekker, 2002. Atmospheric and oceanic gravity field de-aliasing for GRACE, Geophys. Res. Abs. EGS 27 General Assembly, 4, EGS02-A-01557.  

Friedlander, S. amd W. L. Siegmann, 1982. Internal waves in a rotating stratified fluid in an arbitrary gravitational field, Geophs. Astrophys. Fluid Dyn., 19, 267-291.

Friedlander, S. and W. L. Siegmann, 1983. Effects of dissipation on internal waves in a contained rotating stratified fluid, Geophs. Astrophys. Fluid Dyn., 27, 183-{216.

Friedlander, S., 1985. Internal oscillations in the Earth's fluid core, Geophys. J. Roy. Astr. Soc., 80, 345-361.

Friedlander, S, 1985. Stability of the subseismic wave equation for the Earth's fluid core, Geophys. J. Roy. Astr. Soc, 31, 151-167.

Fukao, Y. and Suda, N., 1989. Core modes of the Earth's free oscillations and structure of the inner core, Geophys. Res. Lett., 16, 5, 401-404.

Fukao, Y., S. Watada, K. Nawa, N. Suda, N. Kobayashi, K. Nishida, 1998. Seismic coupling between the solid and fluid Earth., *** 84-185.

top

Gilbert, F., 1970. Excitation of the normal modes of the Earth by earthquake sources, Geophys. J. Roy. Astr. Soc., 22, 223-236.

Gilbert, F. and A. M. Dziewonski, 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra, Phil. Trans. Royal Soc. London, Ser. A 278, 187-269.  

top

Hanada, H., Tsubokawa, T., and Tsuruta, S., 1995. Observations of long term gravity changes with an absolute gravimeter, in International Union of Geodesy and Geophysics, XXI General Assembly, Boulder, USA, abstract, B32.

Hartmann, T. and H.-G. Wenzel, 1994. Catalogue of the Earth tide generating potential due to the planets, Bull. d'Inf. Marees Terr., 119, 8847-8880. 

Hartmann, T. and Wenzel, H.G., 1995, The HW95 tidal potential catalogue, Geophys. Res. Lett., 24, 3553-3556.

Hartmann, T. and H.-G. Wenzel, 1995. Catalogue HW95 on the tide generating potential, Bull. d'Inf. Marees Terr., 123, 9278-9301.

Herring, T., C. Gwinn and I Shapiro, 1986. Geodesy by radio interferometry: studies of the forced nutations of the Earth: 1. data analysis, J. Geophys. Res., 91, 4745-4755.  

Haurwitz, B. and Cowley, A.D., 1973. The diurnal and semi-diurnal barometric oscillations, global distribution and annual variation. Pageoph., 102, 193-222.

Higgins, G. and G. C. Kennedy, 1971. The adiabatic gradient and the melting point gradient in the core of the Earth, J. Geophys. Res., 76, 1870-1878.

Hori, S., Fukao, Y., Kumazawa, M. and Imanishi, Y., 1989. A new method of spectral analysis and its applications to the Earth's free oscillations: algorithm of the Sompi method, J. Geophys. Res., 94, 7535-7553.

Hsu, H. H. and Hoskins, B., 1989, Tidal fluctuations as seen in ECMWF data, Q. J. R. Meteoro. Soc., 115, 247-264.

top

Jackson, B. and Slichter, L., 1974. The residual daily tides at South Pole, J. Geophys. Res., 79, 11, 1711-1715.

Jentzsch, G., P. Malischewsky, M.  Zadro, C. Braitenberg, L. Latynina, E. Bojarsky, T. Verbytzkyy, A.  Tikhomirov, and A. Kurskeev, 2001. Relations between different geodynamic parameters and seismicity in areas of high and low seismic hazards,  J. Geod. Soc. Japan, 47 (1), 82-87. 

Johnson, I. and D. E. Smylie, 1977. A variational approach to whole-Earth dynamics, Geophys. J. Roy. Astr. Soc., 50, 35-54.

top

Kalish, E., G. Arnautov, B. Ducarme, M. Smirnov, Y. Stus, and V. Timofeev-, 2000. Gravity variations at Novosibirsk region and Irkutsk region by GABL-measurements, Cahiers du Centre Europeen de Geodynamique et de Seismologie (ECGS). 17; 187-192. 

Kaminuma, K., 1996. On the possibility of detecting absolute crustal uplift at Syowa Station, Antarctica, in Proceedings of the NIPR Symposium on Antarctic Geosciences, Tokyo, Japan, 9, 16-23, ed K. Moriwaki.

Kanimori, H. and J. Mori, 1992. Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of Mount Pinatubo, Phillipines, Geophys. Res. Lett., 19, 721-724.

Kanamori, H., J. Mori, and D. G. Harkrider, 1994. Excitation of atmospheric oscillations by volcanic eruptions, J. Geophys. Res., 99, 21947-21961.

top

Lambert, A. and Beaumont, C., 1977. Nano variations in gravity due to seasonal ground water movements: implications for the gravitational detection of tectonic movements, J. Geophys. Res., 82, 297-305.

Numerical representation of ocean tides in Canadian waters and its use in the calculation of gravity tides.
AU: Lambert-A; Billyard-A-P; Pagiatakis-S-D
SO: Marees Terrestres. Bulletin d'Informations. 110; Pages 8017-8018. 1991.

Lefèvre, F., Lyard, F., Le Provost, C. and Schrama, E. J. O., and Schrama, E. J. O.,  2002. FES99: a global tide finite element solution assimilating tide gauge and altimetric information, J. Atmos. Oceanic Technol., 19, 1345-1356.

Legros, H. and Hinderer, J., 1991. On some perturbations of tidal waves and related nutations, in: Proc. 11th Int. Symp. Earth Tides, ed. J. Kakkuri, 557-563, Schweitzerbart. Verlag, Stuttgart,

Legros, H. and Hinderer, J., 1991. Dynamique du noyau liquide, in Rapport quadriennal 1987-1990, Comité National Français de Géodésie et de Géophysique, 57-63.

Legros, H., Hinderer, J., Lefftz, M. and Dehant, V., 1993. The influence of the solid inner core on gravity changes and spatial nutations induced by luni-solar tides and surface loading, Phys. Earth Planet. Int., 76, 283-315.

Liu, L., I. S. Sacks and A. Linde, 1995. Spectral analysis of borehole dilatometer data; searching for the Slichter mode from strain records of Bolivia earthquake (June 9, 1994), in International Union of Geodesy and Geophysics, General Assembly. 21, Week B; Pages 382.

Llubes, M., and Mazzega, P., 1996. The ocean tide gravimetric loading reconsidered, Geophys. Res. Lett, 23, 12, 1481-1484.

Llubes, M., and Mazzega, P., 1997. Testing recent global ocean tide models with loading gravimetric data, Prog. Oceanogr. 40, 369-383.

Lognonne, P., Clevede, E. and Kanamori, H., 1998. Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere, Geophys. J. Int., 135, 388-406.

Lumb, L. I., K. A. Aldridge, and G. A. Henderson, 1992. Towards a generalised 'core resonance' phenomenon : inferences from a Poincare core model, Geophysical Monographs * *-*, AGU.

Masters, G.,  1979. Observational constraints on the chemical and thermal structure of the Earth's deep interior, Geophys. J. Roy. Astron. Soc., 57, 507-534.

Matsumoto, K., T. Sato, T. Takanezawa and M. Ooe, 2001. GOTIC2: a program for computation of ocean tidal loading effect, J. Geod. Soc. Japan, 47 (1), 243-248.

top

Mathews, P. M., 2000. Love numbers and gravimetric factor for diurnal tides, J. Geod. Soc., Japan, 47 (1), 231-236.

Mathews, P., M., 2001. Consistent modeling of the effects of the diurnal tidal potential, J. Geod. Soc., Japan, 47 (1), 219-224.

Mathews, P. M., B. A. Buffett, T. A. Herring, and I. I. Shapiro, 1991. Forced nutations of the Earth: influence of inner core dynamics, 1. Theory, J. Geophys. Res., 96, 8219-8242.

Mathews, P. M., B. A. Buffett, and I. I. Shapiro, 1994. Love numbers for a rotating spheroidal Earth: new definitions, and numerical values, Geophys. Res. Lett., 22, 579-582.

Mathews, P. M., B. A. Buffett, and I. I. Shapiro, 1995. Love numbers for diurnal tides: relation to wobble admittances and resonance expansions, J. Geophys. Res., 100, 9935-9948.

Mathews, P. M., T. A. Herrring, and B. A. Buffett, 2000. Modeling of the nutational-precession: new nutation series for nonrigid Earth, and insights into the Earth's interior, J. Geophys. Res. **, *-*.

Matsumoto, K., T. Takanezawa, and M. Ooe, 2000. Ocean tide models developed by assimilating TOPEX/Poseidon altimeter data into hydrodynamical model: A global model and a regional model around Japan, J. Oceanogr., 56, 567–581.

Melchior, P., 1995. A continuing discussion about the correlation of tidal gravity anomalies and heat flow densities, Phys. Earth Planet. Int., 88, 223-256.

Milly, P. C. D. and Shmakin, A. B. 2002. Global modeling of land water and energy balances. Part I: the land dynamics (LaD) model, J. Hydromet., 3, 283-299.

Milly, P. C. D. and Shmakin, A. B., 2002. Global modeling of land water and energy balances, Part II: land characteristic contributions to spatial variability, J. Hydromet., 3, 301-310.  

top

Niebauer, T., Sasagawa, G., Faller, J., Hilt, R., and Klopping, F., 1995. A new generation of  absolute gravimeters, Metrologia, 32, 159-180.

Nishida, K., and Kobayashi, N., 1999. Statistical features of Earth’s continuous free oscillations. J. Geophys. Res. 104, 28741–28750.

Nishida, K., Kobayashi, N., and Fukao, Y., 2000. Resonant oscillations between the solid Earth and the atmosphere. Science, 287, 2244–2246.

Nishida, K., N. Kobayashi, and Y. Fukao, 2002. Origin of Earth’s ground noise from 2 to 20 mHz, Geophys. Res. Lett. 29, 52-1–52-4.

top

Ooe, M., 1974. On the nearly free nutation, Publ. Int. Lat. Obs., Mizusawa, 9, 133-159.

Pekeris, C. L. and Y. Accad, 1972. Dynamics of the liquid core of the Earth, Proc. Roy. Soc. Lond. Series A, 273, 237-260.

Peter, G., Klopping, F., and Sasagawa, G., 1995. Vertical ground motion observations using absolute gavimetry, in International Union of Geodesy and Geophysics, XXI General Assembly, Boulder, USA, abstract, B37.

Peterson, J., 1993. Observations and modelling of seismic background noise, Open-File Report 93-332, U.S. Department of Interior, Geological Survey, Albuquerque, New Mexico.

Pillet, R., Florsch, N., Hinderer, J., and Rouland, D., 1994. Performance of Wielandt-Streckeisen STS-1 seismometers in the tidal domain- preliminary results, Phys. Earth Planet. Inter., 84, 161-178.

Popov, N., 1963. Nutational motion of the Earth's axis, Nature, 193, 1153.

top

Ray, R. D., 1999. A global ocean tide model from TOPEX/Poseidon altimeter: GOT99.2, NASA Tech. Memo., TM-209478, 58 pp.

Rieutord, M., 1991. Linear theory of rotating fluids using spherical  harmonics - Part II, time-periodic flows, Geophys. Astrophys. Fluid Dyn., 59, 185-208.

Rochester, M. G. and Z. R. Peng, 1993. The Slichter modes of the rotating Earth; a test of the subseismic approximation, Geophys. J. Int., 113 (3),  575-585. 

Rochester, M. G. and Z. R. Peng, 1990. The Slichter mode revisited; a test of the subseismic approximation, EOS, Trans. AGU, 71 (43), 1479.

Rodell, M., and Famiglietti, J., 1999. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field, Water resources Res., 35, 9, 2705-2723.

Rogister, Y., 2001. On the diurnal and nearly diurnal free modes of the earth, Geophys. J. Int., 144, 459-470. 

Rogister, Y., 2003. Splitting of seismic free oscillations and of the Slichter triplet using the normal mode theory of a rotating, ellipsoidal earth, Phys. Earth Planet. Int., 120, 169-182.

Roosbeek, F., 1994. Earth's flattening and nutations in obliquity effects on a tide generating potential, Bull. d'Inf. Marees Terr., 120, 9005-9018. 

Roosbeek, F., 1995. A tide generating potential precise to the nanogal level.Bull. d'Inf. Marees Terr., 121, 9032-9035. 

Roosbeek, F and V. Dehant, 1995. New rigid Earth nutation using a torque approach, IUGG General Assembly. 21, Week B; Pages 25. 

Roosbeek, F. and V. Dehant, 1994. Development of the tide generating potential with Mathematica, Bull. d'Inf. Marees Terr. 118, 8753-8765. 

Roosbeek, F. and V. Dehant, 1994. About the pseudo-new periodic waves in the tide generating potential based on an analytical method, Bull. d'Inf. Marees Terr. 120, 9002-9004.

Roosbeek, F., 1996. RATGP95: a harmonic development of the tide-generating potential using an analytical method, Geophys. J. Int., 126, 197-204.

Roosbeek-F, Defraigne-P, Feissel-M, and Dehant-V. 1999. The free core nutation period stays between 431 and 434 sidereal days, Geophys. Res. Lett.26 (1), 131-134.  

Rydelek, P., Zürn, W., and Hinderer, J., 1991. On tidal gravity, heat flow and lateral heterogeneities, Phys. Earth Planet. Int., 68, 215-229.

Rydelek, P., Knopoff, L., and Zürn, W., 1982. Observation of 18.6-year modulation tide at the South pole, J. Geophys. Res., 87, B7, 5535-5537.

Rydelek, P., and Knopoff, L., 1984. Spectral analysis of gapped data: search for the mode 1S1 at the South Pole, J. Geophys. Res., 89, 1899-1902.

top

Sasao, T., Okubo, S. and Saito, M., 1980, A simple theory on dynamical effects of a stratified fluid core upon nutational motion of the Earth. In: Fedorov Ep et al. (eds), Proceedings of the AGU Symposium, No. 78 on Nutation and the Earth's Rotation, Kiew, D. Reidel, Norwell, Mass., pp165-183.

Sasao, T. and J. M. Wahr, 1981. An excitation mechanism for the free 'core nutation', Geophys. J. R. Astr. Soc., 64, 729-746.

Sasao, T., S. Okubo, and M. Saito, 1980. A simple theory on the dynamical effects of a strtified fluid core upon the nutational motion of the Earth, Proc. IAU Symp., 78, 165-183, D. Reidel.

Sasagawa, G., 1995. A two year series of absolute gravity observations at TMGO, in International Union of Geodesy and Geophysics, XXI General Assembly, Boulder, USA, abstract, B37.

Scherneck, H.-G., Solid earth model with liquid core and ocean loading in application to groundwater tides in deep wells, J. Geod. Soc. Japan, 47 (1), 204-212.

Schwiderski, E., 1980. On charting global ocean tides, Rev. Geophys. Space Phys., 18, 243-268.

Simon, D., 2002. Modeling of the field of gravity variations induced by the seasonal air mass warming during 1998- 2000, Bull, d'Inf. Marees Terr., 136, 10821-10836.

Singer, H. A. and P. L. Olson, 1984. Dynamo action in a stably stratified core, Geophys. J. Roy. Astr. Soc., 78, 371-***.

Sinha, B. and Pingree, R. D., 1997. The principal lunar semidiurnal tide and its harmonics: baseline solutions for M2 and M4 constituents on the North-West European continental shelf, Cont. shelf Res., 17, 1321-1365.  

Shirai, T. and T. Fukushima, 2001. Did huge earthquake excite free core nutation?, 20901, J. Geod. Soc. Japan, 47 (1), 198-303.

Slichter, L. B., 1961. The fundamental free mode of the Earth's inner core Proc. Nat. Acad. Sci., USA, 47, 186-190.

Smith, M. L., 1976. Inner-core translational oscillations of a rotating Earth model, EOS, Trans. AGU, 55, (12),  1146. 

Smylie, D. E., 1974. Dynamics of the outer core, Veroff. Zentralinst.Phys. Erde. Akad. Wiss. DDR., 30, 91-104.

Smylie, D. E. and M. G. Rochester, 1981. Compressibility, core dynamics and the subseismic wave equation, Phys. Earth Planet. Int., 24 308-319.

Smylie, D. E., A. M. K. Szeto,and M. G. Rochester, 1984. The dynamics of the Earth's inner and outer cores,  Rep. Prog. Phys., 47, 855-906.

Smylie, D. E. and M. G. Rochester, 1986. Long period core dynamics, in: Earth Rotation : Solved and Unsolved Problems; Proc. NATO Advanced Study Workshop, 297-324, ed. A. Cazanave. D. Reidel.

Smylie, D. E., A. M. K. Szeto, and K. Sato, 1990. Elastic boundary conditions in long-period core oscillations, Geophs. J. Roy. Astr. Soc.. 100, 183-192.

Suda, N., Nawa, K., and Fukao, Y., 1998. Earth's background free oscillations, Science, 279, 2089-2091.

Swenson, S. and  Wahr, J., 2002. Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid, J. Geophys. Res., 107, B9, 2194.

Swenson, S., J. Wahr and P.C.D. Milly, 2002. Large-scale hydrology inferred from GRACE estimates of time-variable gravity, Geophys. Res. Abs. EGS 27 General Assembly, 4, EGS02-A-03671.  

top

Tamura, Y., 1987. A harmonic development of the tide generating potential, Bull. d'Inf. Marées Terr., 99, 6813-6855.

Tanimoto, T., 1999. Excitation of normal modes by atmospheric turbulence: source of long period noise, Geophys.  J.  Int. 136 (2), 395-402. 

Tanimoto, T., 2001. Continuous oscillations; atmosphere-solid Earth coupling, Ann. Rev. Earth Planet. Sci., 29, 563-584. 

Tanimoto, T., and Um, J., 1999. Cause of continuous oscillations of the Earth, J. Geophys. Res., 104, 28723–28739.

Tanimoto, T., Um, J., Nishida, K., and Kobayashi, N., 1998. Earth's continuous oscillations observed on seismically quiet days, Geophys. Res. Lett., 25, 1553-1556.

Toomre, A., 1974. On the 'Nearly Diurnal Free Wobble' of the Earth., Geophys. J. R. Astron. Soc., 38, 335-348.

top

van Dam, T., Wahr, J., Milly, P., Shmakin, A., Blewitt, G., Lavallee, D., and Larson, K., 2001. Crustal displacements due to continental water storage, Geophys. Res. Lett., 28, 4, 651-654.

van Dam, T., Wahr, J., Milly , P., and Francis, O., 2001. Gravity changes due to continental water storage, J. Geod. Soc. Japan, 47 (1), 249-254.

Varga, P., Hajosy, A. and Csapo, G., 1995. Laboratory calibration of LaCoste- Romberg type gravimeters by using a heavy cylindrical ring, Geophys. J. Int., 120, 745-747.

Volland, H., 1988. Atmospheric tidal and planetary waves. Kluwer Academic Publ., Dordrecht, 348 p.

top

Wahr, J., 1981, Body tides of an elliptical, rotating, elastic and oceanless Earth, Geophys. J. R. astr. Soc., 64, 677-704.

Wahr, J., 1985. Deformation induced by polar motion, J. Geophys. Res., 90, B11, 9363-9368.

Wahr, J. M. and T. Sasao, 1981. A diurnal resonance in the ocean tide and Earth's load response due to the resonant free 'core nutation', Geophys. J. R. Astr. Soc., 64, 747-765.

Wahr, J., and Bergen, Z., 1986. The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate, Geophys. J. Astr. Soc., 87, 633-668.

Wahr, J., and De Vries, D., 1989. The possibility of lateral structure inside the core and its implications for certain geodetic observations, Geophys. J., 99, 511-519.

Wahr, J., M. Molenaar, and F. Bryan. 1998. Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103 (B12), 30,205-30,229.

Wang, R., 1991. Tidal deformations on a rotating on a rotating, spherically asymmetric, viscoelastic and lateral heterogeneous Earth, Ph. D. thesis, Peter Lange, Frankfurt am Main.

Wang, R., 1994, Effect of rotation and ellipticity on Earth tides, Geophys. J. Int., 117, 562-565.

Weaver, P. F., P. C. Yuen, G. W. Prolss, and A. S. Furumoto, 1970. Acoustic coupling in the ionosphere from seismic waves of the earthquake at Kurile Islands on August 11, 1969. Nature, 226, 1239-1241.

Westerhaus, M. and W. Zürn, 2001. On the use of Earth tides in geodynamic research, J. Geod. Soc. Japan, 47 (1), 1-9.

Widmer, R. and W. Zurn, 1992. Bichromatic excitation of long-period Rayleigh air waves by the Mount PInatubo and El. Chicon volcanic eruption, Geophys. Res. Lett. 19, 765-768.

Widmer, R.,  G. Masters, and F. Gilbert, 1988, The spherical Earth revisited, EOS, Trans AGU, 69 - 1310.

Wu, W.-J. and M. G. Rochester, 1993. Computing core oscillations eigenperiods for the rotating Earth: a test of the subseismic approximation, Phys Rarth, Planet. Int., **, ***-***

top

Xi Q.-W., 1987. The precision of the development of the tidal generating potential and some explanatory notes, Bull. Inf. Marées Terr. 105, 7396-7404.

Yang, Z., Manabe, S., Yokoyama, K., Yike, T., and Heki, K., 1997. Comprehensive ocean loading parameters of sites in East Asia with spherical harmonic method, in Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia, Tokyo, 117, 9343-350, eds J. Segawa, H. Fujimoto and S. Okubo, Springer, Berlin.

Zhang, X. G. Tao, and H.-T. Hsu, 1995. New atmospheric pressure data acquisition system of SG in Wuhang, 
Cahiers du Centre Europeen de Geodynamique et de Seismologie (ECGS). 11; 197-205.