2011/10/23 15:24:31 38.478 43.243 14.8 4.80 Turkey
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2011/10/23 15:24:31:0 38.48 43.24 14.8 4.8 Turkey Stations used: KO.AGRB KO.BNGB KO.CUKT KO.ERZN KO.PTK KO.SVRC KO.VRTB Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.41e+23 dyne-cm Mw = 4.70 Z = 18 km Plane Strike Dip Rake NP1 120 85 -30 NP2 213 60 -174 Principal Axes: Axis Value Plunge Azimuth T 1.41e+23 17 170 N 0.00e+00 60 291 P -1.41e+23 24 72 Moment Tensor: (dyne-cm) Component Value Mxx 1.15e+23 Mxy -5.56e+22 Mxz -5.49e+22 Myy -1.02e+23 Myz -4.40e+22 Mzz -1.23e+22 ############## ###################### ####################-------- ##################------------ #################----------------- ################-------------------- ----############---------------------- -------########------------------- --- ----------####-------------------- P --- ----------------------------------- ---- -------------####------------------------- ------------########---------------------- -----------############------------------- ---------#################-------------- ---------####################----------- --------########################------ ------#############################- -----############################# ---########################### --############# ########## ############ T ####### ######## ### Global CMT Convention Moment Tensor: R T P -1.23e+22 -5.49e+22 4.40e+22 -5.49e+22 1.15e+23 5.56e+22 4.40e+22 5.56e+22 -1.02e+23 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20111023152431/index.html |
STK = 120 DIP = 85 RAKE = -30 MW = 4.70 HS = 18.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2011/10/23 15:24:31:0 38.48 43.24 14.8 4.8 Turkey Stations used: KO.AGRB KO.BNGB KO.CUKT KO.ERZN KO.PTK KO.SVRC KO.VRTB Filtering commands used: hp c 0.02 n 3 lp c 0.05 n 3 Best Fitting Double Couple Mo = 1.41e+23 dyne-cm Mw = 4.70 Z = 18 km Plane Strike Dip Rake NP1 120 85 -30 NP2 213 60 -174 Principal Axes: Axis Value Plunge Azimuth T 1.41e+23 17 170 N 0.00e+00 60 291 P -1.41e+23 24 72 Moment Tensor: (dyne-cm) Component Value Mxx 1.15e+23 Mxy -5.56e+22 Mxz -5.49e+22 Myy -1.02e+23 Myz -4.40e+22 Mzz -1.23e+22 ############## ###################### ####################-------- ##################------------ #################----------------- ################-------------------- ----############---------------------- -------########------------------- --- ----------####-------------------- P --- ----------------------------------- ---- -------------####------------------------- ------------########---------------------- -----------############------------------- ---------#################-------------- ---------####################----------- --------########################------ ------#############################- -----############################# ---########################### --############# ########## ############ T ####### ######## ### Global CMT Convention Moment Tensor: R T P -1.23e+22 -5.49e+22 4.40e+22 -5.49e+22 1.15e+23 5.56e+22 4.40e+22 5.56e+22 -1.02e+23 Details of the solution is found at http://www.eas.slu.edu/Earthquake_Center/MECH.NA/20111023152431/index.html |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 215 35 30 4.32 0.1690 WVFGRD96 1.0 220 40 45 4.31 0.1822 WVFGRD96 2.0 220 30 40 4.45 0.2194 WVFGRD96 3.0 230 35 60 4.48 0.2574 WVFGRD96 4.0 230 40 60 4.52 0.2789 WVFGRD96 5.0 230 40 60 4.55 0.2801 WVFGRD96 6.0 220 50 35 4.55 0.2675 WVFGRD96 7.0 220 50 30 4.56 0.2578 WVFGRD96 8.0 225 45 45 4.61 0.2629 WVFGRD96 9.0 115 70 -35 4.62 0.2685 WVFGRD96 10.0 110 70 -45 4.63 0.2775 WVFGRD96 11.0 115 75 -40 4.64 0.2948 WVFGRD96 12.0 115 75 -40 4.65 0.3068 WVFGRD96 13.0 115 80 -35 4.65 0.3178 WVFGRD96 14.0 115 80 -35 4.66 0.3230 WVFGRD96 15.0 115 80 -35 4.67 0.3282 WVFGRD96 16.0 300 90 25 4.68 0.3265 WVFGRD96 17.0 300 90 25 4.69 0.3278 WVFGRD96 18.0 120 85 -30 4.70 0.3293 WVFGRD96 19.0 120 90 -25 4.70 0.3269 WVFGRD96 20.0 300 85 20 4.71 0.3242 WVFGRD96 21.0 300 85 20 4.72 0.3224 WVFGRD96 22.0 300 85 30 4.71 0.3181 WVFGRD96 23.0 300 85 30 4.72 0.3163 WVFGRD96 24.0 300 85 30 4.72 0.3129 WVFGRD96 25.0 300 85 30 4.73 0.3087 WVFGRD96 26.0 300 80 30 4.73 0.3053 WVFGRD96 27.0 300 80 30 4.74 0.3005 WVFGRD96 28.0 300 80 30 4.74 0.3009 WVFGRD96 29.0 300 80 30 4.75 0.2949
The best solution is
WVFGRD96 18.0 120 85 -30 4.70 0.3293
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.05 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sun Oct 23 12:23:01 CDT 2011