2012/05/22 00:00:33 42.686 23.009 9.4 5.60 Bulgaria
USGS Felt map for this earthquake
USGS/SLU Moment Tensor Solution ENS 2012/05/22 00:00:33:1 42.69 23.01 9.4 5.6 Bulgaria Stations used: CZ.JAVC CZ.KRUC HT.CHOS HU.BUD KO.GADA KO.KULA MN.AQU MN.DIVS MN.IDI OE.ARSA OE.CONA OE.MOA OE.MYKA OE.OBKA RO.BMR RO.BZS RO.CFR RO.DEV RO.HUMR RO.LOT SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS Filtering commands used: hp c 0.01 n 3 lp c 0.03 n 3 Best Fitting Double Couple Mo = 2.16e+24 dyne-cm Mw = 5.49 Z = 12 km Plane Strike Dip Rake NP1 109 60 -93 NP2 295 30 -85 Principal Axes: Axis Value Plunge Azimuth T 2.16e+24 15 201 N 0.00e+00 2 111 P -2.16e+24 75 11 Moment Tensor: (dyne-cm) Component Value Mxx 1.60e+24 Mxy 6.54e+23 Mxz -1.05e+24 Myy 2.61e+23 Myz -3.07e+23 Mzz -1.87e+24 ############## ###################### ############################ ###-----------------########## ##------------------------######## #----------------------------####### --------------------------------###### #----------------------------------##### #------------------ --------------#### ####---------------- P ---------------#### #####--------------- ----------------### #######--------------------------------### ##########------------------------------## ############---------------------------# ################-----------------------# #####################--------------### #################################### ################################## ####### #################### ###### T ################### ### ################ ############## Global CMT Convention Moment Tensor: R T P -1.87e+24 -1.05e+24 3.07e+23 -1.05e+24 1.60e+24 -6.54e+23 3.07e+23 -6.54e+23 2.61e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120522000033/index.html |
STK = 295 DIP = 30 RAKE = -85 MW = 5.49 HS = 12.0
The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 16228041/-116325328:16322548:01:0 16325328:16322548:01:0 0.00 0.00 0.0 0.0 Stations used: CZ.JAVC CZ.KRUC HT.CHOS HU.BUD KO.GADA KO.KULA MN.AQU MN.DIVS MN.IDI OE.ARSA OE.CONA OE.MOA OE.MYKA OE.OBKA RO.BMR RO.BZS RO.CFR RO.DEV RO.DRGR RO.HUMR RO.LOT RO.MLR SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS Filtering commands used: hp c 0.01 n 3 lp c 0.03 n 3 Best Fitting Double Couple Mo = 2.16e+24 dyne-cm Mw = 5.49 Z = 12 km Plane Strike Dip Rake NP1 108 61 -96 NP2 300 30 -80 Principal Axes: Axis Value Plunge Azimuth T 2.16e+24 15 203 N 0.00e+00 5 111 P -2.16e+24 74 4 Moment Tensor: (dyne-cm) Component Value Mxx 1.55e+24 Mxy 7.05e+23 Mxz -1.08e+24 Myy 2.99e+23 Myz -2.51e+23 Mzz -1.84e+24 ############## ###################### ########----################ ##------------------########## #------------------------######### -----------------------------####### --------------------------------###### ------------------- ------------###### #------------------ P --------------#### ####---------------- ---------------#### #####---------------------------------#### #######--------------------------------### ##########-----------------------------### ############--------------------------## ################-----------------------# #####################-------------###- #################################### ################################## ####### #################### ###### T ################### ### ################ ############## Global CMT Convention Moment Tensor: R T P -1.84e+24 -1.08e+24 2.51e+23 -1.08e+24 1.55e+24 -7.05e+23 2.51e+23 -7.05e+23 2.99e+23 USGS/SLU Moment Tensor Solution ENS 2012/05/22 00:00:33:1 42.69 23.01 9.4 5.6 Bulgaria Stations used: CZ.JAVC CZ.KRUC HT.CHOS HU.BUD KO.GADA KO.KULA MN.AQU MN.DIVS MN.IDI OE.ARSA OE.CONA OE.MOA OE.MYKA OE.OBKA RO.BMR RO.BZS RO.CFR RO.DEV RO.HUMR RO.LOT SL.BOJS SL.CADS SL.CEY SL.CRES SL.CRNS SL.DOBS SL.GBAS SL.GBRS SL.GCIS SL.GORS SL.GROS SL.JAVS SL.KNDS SL.KOGS SL.LJU SL.MOZS Filtering commands used: hp c 0.01 n 3 lp c 0.03 n 3 Best Fitting Double Couple Mo = 2.16e+24 dyne-cm Mw = 5.49 Z = 12 km Plane Strike Dip Rake NP1 109 60 -93 NP2 295 30 -85 Principal Axes: Axis Value Plunge Azimuth T 2.16e+24 15 201 N 0.00e+00 2 111 P -2.16e+24 75 11 Moment Tensor: (dyne-cm) Component Value Mxx 1.60e+24 Mxy 6.54e+23 Mxz -1.05e+24 Myy 2.61e+23 Myz -3.07e+23 Mzz -1.87e+24 ############## ###################### ############################ ###-----------------########## ##------------------------######## #----------------------------####### --------------------------------###### #----------------------------------##### #------------------ --------------#### ####---------------- P ---------------#### #####--------------- ----------------### #######--------------------------------### ##########------------------------------## ############---------------------------# ################-----------------------# #####################--------------### #################################### ################################## ####### #################### ###### T ################### ### ################ ############## Global CMT Convention Moment Tensor: R T P -1.87e+24 -1.05e+24 3.07e+23 -1.05e+24 1.60e+24 -6.54e+23 3.07e+23 -6.54e+23 2.61e+23 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120522000033/index.html |
|
May 22, 2012, BULGARIA, MW=5.6 Howard Koss Meredith Nettles CENTROID-MOMENT-TENSOR SOLUTION GCMT EVENT: C201205220000A DATA: II LD IU DK CU G GE MN IC L.P.BODY WAVES:108S, 179C, T= 40 MANTLE WAVES: 60S, 63C, T=125 SURFACE WAVES: 128S, 266C, T= 50 TIMESTAMP: Q-20120522054611 CENTROID LOCATION: ORIGIN TIME: 00:00:36.6 0.1 LAT:42.55N 0.01;LON: 23.02E 0.01 DEP: 12.0 FIX;TRIANG HDUR: 1.6 MOMENT TENSOR: SCALE 10**24 D-CM RR=-2.890 0.028; TT= 2.130 0.028 PP= 0.762 0.027; RT=-1.770 0.081 RP= 0.415 0.088; TP=-1.650 0.023 PRINCIPAL AXES: 1.(T) VAL= 3.680;PLG=15;AZM=211 2.(N) -0.224; 10; 119 3.(P) -3.454; 72; 355 BEST DBLE.COUPLE:M0= 3.57*10**24 NP1: STRIKE=316;DIP=32;SLIP= -70 NP2: STRIKE=113;DIP=61;SLIP=-102 ########### ################### --------------######### -------------------######## ----------------------####### -------------------------###### #------------- ---------##### ###------------ P ----------##### #####---------- -----------#### #######----------------------#### #########---------------------### ###########------------------## ################-------------## ###########################-- ##### ##################- ### T ################# # ############### ########### |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.01 n 3 lp c 0.03 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 0.5 150 75 -40 5.22 0.3477 WVFGRD96 1.0 145 65 -35 5.22 0.3613 WVFGRD96 2.0 145 65 -35 5.26 0.3884 WVFGRD96 3.0 325 45 -30 5.33 0.4115 WVFGRD96 4.0 320 40 -35 5.37 0.4330 WVFGRD96 5.0 320 40 -40 5.39 0.4495 WVFGRD96 6.0 320 40 -40 5.39 0.4566 WVFGRD96 7.0 315 40 -50 5.41 0.4624 WVFGRD96 8.0 315 35 -50 5.45 0.4849 WVFGRD96 9.0 305 30 -70 5.49 0.4918 WVFGRD96 10.0 300 30 -80 5.50 0.5018 WVFGRD96 11.0 300 30 -80 5.50 0.5093 WVFGRD96 12.0 295 30 -85 5.49 0.5122 WVFGRD96 13.0 295 30 -85 5.49 0.5078 WVFGRD96 14.0 295 35 -85 5.48 0.5006 WVFGRD96 15.0 110 55 -90 5.47 0.4897 WVFGRD96 16.0 110 55 -90 5.46 0.4769 WVFGRD96 17.0 120 60 -80 5.46 0.4629 WVFGRD96 18.0 340 60 5 5.40 0.4498 WVFGRD96 19.0 340 60 10 5.40 0.4490 WVFGRD96 20.0 340 65 10 5.41 0.4487 WVFGRD96 21.0 340 65 10 5.41 0.4454 WVFGRD96 22.0 340 70 20 5.42 0.4438 WVFGRD96 23.0 340 70 20 5.42 0.4424 WVFGRD96 24.0 340 70 15 5.43 0.4391 WVFGRD96 25.0 340 75 20 5.43 0.4368 WVFGRD96 26.0 340 75 20 5.44 0.4327 WVFGRD96 27.0 340 75 20 5.44 0.4286 WVFGRD96 28.0 340 75 20 5.44 0.4252 WVFGRD96 29.0 340 75 15 5.45 0.4204
The best solution is
WVFGRD96 12.0 295 30 -85 5.49 0.5122
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.01 n 3 lp c 0.03 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.
The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
BUR01 RO - amplitudes are too large - gain problem? LOT RO - R and T not used. The R is well fit but the T has Rayleigh on it MLR RO - amplitudes are too large by about a factor of 4 or so DRGR RO - amplitude are too large by about a factor of 4 or so BMR RO - Z and R not used since noisy KULA RO - amplitude are soo large by about a factor of 2 CUC MN - not used since path across Adriatic AQU MN - Z R not used because of Adriatic path - Good shape to Love wave but need slowere model
The following stations did not have a valid response files: