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DIGEST

A multi-channel phase-matched filter is developed for the extraction
of phase velocity dispersion from seismic events recorded on multi-channel
receivers, under conditions of extremely high incoherent noise levels.
Methods of inverting the dispersion for intrinsic earth structure are
thoroughly reviewed, with emphasis on deterfnining earth structure where

little @ prior: knowledge exists.

To test the theory, data were obtained from a refraction survey of
the Saudi Arabian shield, conducted in 1978 by the U.S. Geological Sur-
vey. The data are composed of short period (0.1 - 1.0 sec) fundamental
mode Rayleigh waves, digitally recorded from 20 (2 hz) seismometers,
located between 6 and 45 kilometers from an explosive source. The
multi-channel data were processed, and synthetic seismograms were pro-
duced to compare with the recorded data. High levels of Gaussian noise
were then added to the synthetic seismograms, to demonstrate the viabil-

ity of the multi-channel technique under low signal-to-noise conditions.

Results of the tests show that the multi-channel phase-matched filter
successfully identifies phase-velocity dispersion, even in data sets where
the signal-to-noise ratio is so low that surface waves cannot be dis-
tinguished from background noise levels. In addition, inversion results
indicate that variances predicted by the multi-channel filter map correctly

into intrinsic velocity variances of the earth model.

Two potential applications for the multi-channel phase-matched filter
are the extraction of Stonely wave dispersion in acoustical well logging,

and the identification of shallow structure from Rayleigh-wave ground



roll in seismic reflection exploration.
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CHAPTER 1

INTRODUCTION

1.1 Formulation of the problem

Normal mode surface wave analysis is a well studied branch of
modern seismology, particularly since there are many useful applications
associated with the theory. A small listing of the potential uses would
include earthquake source mechanisms, magnitude estimates of under-
ground explosions, and shear velocity and Q structure in plane layered
media. A significant reason for the value of normal modes is that in the
mathematical exposition, eigenvalues (wavenumbers) of the modes are
directly measurable in terms of observed phase and group velocities on
seismograms. In turn, these eigenvalues can be theoretically related to
structural earth parameters such as compressional velocity, shear velocity,
and density. However, this relationship is implicit, and variational tech-
niques combined with linear inversion theory are required for finding

structural parameters as explicit functions of wavenumber.

This study will concentrate on methods of extracting phase and
group velocity dispersion relations from observed seismograms, and the
general problem of linear inversion of the relations for structural parame-
ters. In particular, attention will be focused dn data sets that are con-
taminated with high levels of noise, either incoherent or due to such fac-
tors as multi-pathing of events. Phase-matched filtering is a suitable
method for processing such events, and it will be shown how matched

filters can be utilized for both single and multi-channel data sets. The



study will focus on single-station long-period teleseismic events, and
multi-channel processing of array data, such as that obtained from refrac-
tion surveys. The section on inversion will have a general exposition of
inversion theory, and will deal in particular with methods of constraints
in the presence of instability. Although linear inversion has been exhaus-
tively studied, little has been published on constraining techniques that
allow for simple, unbiased starting models, useful in regions where there is

little @ prior: knowledge of the intrinsic shear velocity structure.

1.2 Literature review

Sato (1955) was the first author to use Fourier transform techniques
to determine phase velocities of dispersed seismograms. He used two sta-
tions, and took the difference in phase spectra to determine phase velocity
as a function of frequency, assuming a single mode of propagation. Bloch
and Hales (1968) refined the measurement of phase velocities by determin-
ing the difference between phases of narrow band pass filtered seismo-

grams.

Landisman et al. (1969) studied the "moving window" technique to
determine group velocities, and showed how time variable, or frequency
variable band pass filtering could be used to improve the method. Mov-
ing window analysis involves time windowing data at selected velocities
and transforming to the frequency domain to determine the energy con-
tent of frequencies at the selected velocities. Dziewonski et al. (1969)
used a reverse approach. In the "multiple filter" technique, the Fourier
spectrum is narrow-band-pass filtered and then transformed to the time

domain to determine those velocities at which a given frequency has a



maximum energy content. Herrmann (1973) showed the effects of using
different types of filters in multiple filter analysis, and improved the
efficiency of the method by using a Hilbert transform in the frequency

domain to determine time domain envelopes.

Herrin and Goforth (1977) introduced phase matched filtering of
dispersed seismograms to improve estimates of group velocities, by
increasing the signal-to-noise ratio of the seismograms. Using an initial
estimate of the group velocity, the group delay is integrated to approxi-
mate the phase spectrum. This is subtracted from the observed phase, so
the signal is approximately zero phase. The signal is then windowed
about zero lag in the time domain to increase the signal to noise ratio and
remove effects such as multipathing. The phase of the resultant signal is

differentiated to correct the initial group velocity estimate.

In a recent paper, McMechan and Yedlin (1981) show how to use
multichannel array data to determine phase velocities. Essentially, they
use a slant (p-tau) stack of the data which is transformed to the fre-
quency domain. They show that the resultant two-dimensional
frequency-wavenumber plot has maxima where the dispersion relation
exists, or where phase velocity is a function of frequency. It should be
noted that, although the mathematical approach is different, the method
of slant stacking followed by a frequency transformation was also

reported by Dziewonski and Hales (1972, p. 71).

Two widely used methods of inverting surface wave data for earth
structure are direct search techniques and constrained least-squares inver-
sion. Direct searching involves constructing a large set of possible earth

models and sorting through these to find which ones fit the observed



dispersed velocities, via the theoretical forward solution. In this analysis,
only constrained inversion methods will be considered, mainly due to rea-
sons of computational efficiency. For the same reason, the forward solu-
tion will be restricted to the mathematical relation between Rayleigh and
Love wave phase velocities and properties of plane, multilayered media.
Thomson (1950) and Haskell (1953) were the first to derive this relation,
with many subsequent improvements. For a state of the art analysis of

the theoretical mathematics of plane layered media, see Wang (1981).

Constrained least squares inversion for surface waves involves
transforming the non-linear forward problem into a first order matrix
approximation, which is inverted for a perturbation about a starting
model. Jeffreys (1961) introduced variational methods for surface-waves
to find group velocities in terms of phase velocity perturbations. Takeu-
chi and Saito (1972) extended the variational technique to find first order
perturbations of phase velocities in terms of structural earth parameter
perturbations; or, equivalently, phase velocity partial derivatives. Rodi
et al. (1975) developed an accurate numerical method for calculating
group velocity partial derivatives, given phase velocity, phase velocity
partial derivatives, and group velocities. The term "constrained” refers to
the inverse matrix, which is constructed based on criteria formulated by
Backus and Gilbert (1968). They showed that there is an inherent tra-
deoff between the variance of an inverse solution and its resolution.
Inverse matrices can be constrained to produce solutions with small vari-
ances, but individual solution elements will no longer be uniquely
identified; they will represent an average over adjacent elements. Wiggins

(1972) and Jackson (1972) thoroughly studied the properties of con-



strained inversion, utilizing orthogonal decomposition of the matrices
based on the theory of Lanczos (1961). Lawson and Hanson (1974)
showed how to construct stable, efficient orthogonal decompositions of
inversion matrices based on Householder transformations. Twomey
(1977) gave an excellent overview of various techniques for constraining
inversion matrices. Bache et al. (1978), and Russell (1980), used
"differential" constraints to demonstrate the feasibility of surface-wave

inversion based on simple half-space starting models.



CHAPTER 2

VARIATIONAL THEORY

2.1 General theory

Variational analysis offers a method for calculating first order pertur-
bations in the eigenvalues of normal mode equations without resorting to
"brute force" numerical difference techniques. The results can be quite
significant in terms of time saving and accuracy, and it gives a clear for-
mulation for setting up inversion problems. Since the theory is central to
this study, it will be presented in a general form, in which surface wave

analysis can be considered a special case.

Consider the following set of linear differential equations:

L(w,Bn (2))u(w,2)] = nilkj (WM (w,8;(2))[u(w;2)]- (2.1.1)

i=0

The following values are understood:

L ,M= Linear differential operators, either in scalar or matrix format,
allowing the expression to represent coupled differential equations.
They are implicitly functions of w and B. The brackets indicate
that u is operated on.

k= eigenvalue found at w satisfying the equations. The ;j superscript
indicates k raised to the j power.

u= vector of eigenfunctions that solve the coupled differential equations.
It is assumed there is an eigenvalue k associated with each vector
eigenfunction.

B;= vectors of "structural parameters". These can correspond to mass,



density, intrinsic velocity, etc. Notice that for this problem they

are considered as one dimensional functions of the variable .

The above expression can be considered as Fourier transformed wave
equations in a depth-dependent medium. Distance and time are
transformed into wavenumber £ and frequency w. It is not, however, res-
tricted to wave equations; with suitable variable substitutions, for exam-
ple, the general Sturm-Liouville operator (Arfken, 1973) can be con-
sidered a subset. By choosing this relatively abstract format, several pro-
perties of variational analysis can be demonstrated, which may not be

clear in special cases.

Rewrite (2.1.1) in the simplified form

Lu = }k'M;u. (2.1.2)
i

Multiply by the transpose of u and integrate over z, giving

JuTLudz = Yk7 fu™; udz,

z iz
This operation transforms the matrix equations into quadratic scalars,
simplifying the system into one equation. The integral bounds are chosen
so that a linear combination of the eigenfunctions and their derivatives
vanish; this is necessary for the integrals to be self-adjoint, the impor-

tance of which will be made clear below.
Introduce a small perturbation in the structural parameters (8;).
Using the above simplified notation, the perturbed system can be written

as

z J

[(u+6u)Y(L+8L)(u+bu)dz = Y(k+6k)’ f(u+6u)T(Mj +6M; )(u+6u)dz.



Keeping only first-order terms and rearranging gives

J(u+8u) (Lu—3 k" M;u)dz (2.1.3)
Z J
+ [uT(Léu—Y k' M, bu)dz
E j
+ fuT(éLu—-Ekjbl\/Ij u)dz
z i

= 6k3 k77 [uT™ udz.
i 2
From (2.1.2), the first integral in (2.1.3) vanishes identically. At this
point, the power of variational methods can be shown: if the second
integral vanishes identically, perturbations to the eigenvalue (6k) will not
require a recalculation of the eigenfunctions (u), since all first order per-
turbations of the eigenfunctions (éu) have vanished. This will be true if

the system is self-adjoint, which is defined as follows. Given any two

functions u; and u, (not necessarily solutions to (2.1.2)), if

f uTl(Lu2—ijMj uy)dz = [ uT2(Lu1—ij M;u,)dz, (2.1.4)
z J z J

then the system (2.1.2) is considered self-adjoint (Butkov, 1968, p. 341).

If this is valid, then the second integral of (2.1.3) can be written as

[6uT(Lu—3 k' M;u)dz
z J

which vanishes identically by (2.1.2).

Finally, to solve for 6k, define

W = k"7 fu™; udz
J z

Solving (2.1.3) for 6k gives

6k = —;V—fuT((SLu—Ekj oM u)dz. (2.1.5)
z i



This expression can be further simplified if it is possible to factor out the
structural parameter perturbations from the differential operators 6L and
M. If so, (2.1.5) can be written as a sum of Fredholm integrals of the
first kind (Twomey, 1977). Recalling the explicit parameter dependence
in (2.1.1), the result is

Sk(w) = 3 [A;(w,2)88,(2)dz (2.1.6)

j=02z
where the A; are kernel functions calculated from contributions of L and

M.. The transition may seem obscure at this point, but it will be

j-
clarified in practical examples. Equation (2.1.6) forms the basis for linear

inversion theory, which will be studied in chapter 5.

2.2 Applications to surface wave theory

The equations of motion for Rayleigh and Love waves can be simply
generated for a depth-dependent elastic medium by equating stress and
strain relations for plane waves in cartesian coordinates (Takeuchi and
Saito (1972). Aki and Richards (1980) give a straightforward derivation

of these equations, the result of which is presented below.

For Rayleigh waves:

" 0 —k 0 L

P ] B L 2N ) e R R V577 R L

2 |rs| T | k%o 0 0 —kX+2u7 |73 (2.2.1)
4 0 —w?p k 0 ra

where

¢ =dp+p] / 24

A\ = Lame constants
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p = density

w = angular frequency k = wavenumber (considered an eigenvalue)
r; = radial displacement eigenfunction

ro = vertical displacement eigenfunction

r3 = radial stress eigenfunction

ry = vertical stress eigenfunction.

r; through r4 are functions of w , k¥ and z; p, X\, and u are functions of z,

and the wavenumber & is only a function of the frequency w.

For Love waves:

d 1] _ 0 p
)=l 5l 222
where k, w, and g are the same as above,

I, = horizontal displacement eigenfunction

l, = horizontal stress eigenfunction.

Boundary conditions for both Rayleigh and Love waves are that the dis-
placement eigenfunctions vanish when z=c0, and the stress eigenfunctions

vanish at the free surface #=0.

It should be noted that (2.2.1) has a reverse sign in wavenumber (k)
from that found in Aki and Richards (1980). This is due to a reverse
convention in defining wavenumber and frequency in Fourier transforms;
the sign used here is consistent with equivalent expressions for the equa-
tions, such as found in Herrmann (1973) and Wang (1981). Aki and
Richards define Fourier transforms between distance and wavenumber as

I

Fk) = [ f(z) e ™ dz,

-0
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whereas the convention used here is
o

Fk) = [ f(z)e™ do |

—0

The procedure for finding variational integrals of Love and Rayleigh
waves can be simplified if (2.2.1) and (2.2.2) are rearranged into forms
explicitly dependent on displacement eigenfunctions only. For Love

waves, do the following steps. Multiply the first row of (2.2.2) by u and

dl
differentiate with respect to z. Substitute —d2 of the first row into the
Z

second row. The resulting equation is

dr " dr

d [u e ] = (K2u—u?p)l; . (2.2.3)

In Appendix I, this equation is shown to be self-adjoint over the depth
interval 0 and oo. Therefore, the results of the previous section apply,

and a variational integral for 6k can be found. Define the following:
L=—(ﬂ—) ,ou=ly, M= _w‘.’p , M;=0, M,y=p.

Equation (2.2.3) is in the same form as (2.1.2), so the variational integral

can immediately be written in the form (2.1.5):

[o o]
W =35k [u™ udz = 2kl %dz (2.2.4)
) z 0
17 a4, dl
6k = — [ 1,2 (6u—L 2801, — k28ul,2 Wz, 2.2.5
k W{{lldz(’udz)_*_w (431 Mig” (az ( )

This equation can be transformed into a Fredholm integral of the first

kind by integrating the first term by parts:
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ofoz dz((su__)z_z ﬁ —f[dll]édz

0 dzo

The first term on the right vanishes by using the boundary conditions for

stress and displacement at the free surface and co. Equation (2.2.5) can

2
diy
K

Relations for shear velocity and phase velocity are

therefore be written

S+ w?l4%6p (d }

100
‘5’“=W{{“

=Lt

c =<
P k

}

and first order perturbations of these variables follows for fixed w:

b _ 00 b b __ ok
c

g ok

Substituting these values into the above integral gives a final relation

between perturbations of phase velocity, intrinsic shear velocity, and den-

sity:
_ ¢ T 2 dly 6B
2 _ diy ] bp
f[ uk pw2]ll+ [dz , dz (2.2.6)

The analysis for Rayleigh waves is similar, but more involved, since
it requires coupled differential equations between the radial and vertical
displacement eigenfunctions. To set up the equations of motion, solve the

first and second rows of (2.2.1) for the stress eigenfunctions r3 and ry, giv-

ing
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d?‘l
rg = H—d; + kﬂ?‘g

dr
ry = ()\+2u)——d;2— — k\ry .

Substitute these values into the third and fourth rows for

d drl _ dr2 9
—d—z—[ﬂ—gz—— + kury] = kx? + [(M+2u) k2 — Pp]ry
d

dr dr
E[(H'Qﬂ)d—; — kXry] = k“_d;l— + [uk® — Pp)ry .

These coupled equations can be put into a single matrix format by

defining the following matrices:

S R T L B (2 e )

Substitution of the above gives

-;—z(Aid;i + kBr) = kBT‘fi—: + KCr — oPpr . (2.2.7)

By comparing the term in parentheses on the left side to the matrix func-
tion (2.2.1), it can be seen that the term corresponds to the stress eigen-
functions r; and r,. Equivalent forms of (2.2.7) are found in Keilis-Borok
et al. (1965), and Kennett (1983). Appendix I shows that (2.2.7) is self-
adjoint over the interval O to oo, so the variational principles of the previ-

ous section apply. To show that the equation is equivalent to (2.1.2), let

d d o2 T d dB
=% A% = M, = (BT & — 42
L dzAdz’MO o 1= dz dz

), My=C. (2:2.8)
Substitution of these values into (2.2.7) gives an exactly equivalent form
to (2.1.2), so that the integral (2.1.5) is a valid expression for eigenvalue

perturbation. Substituting (2.2.8) into the integral gives
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o
5lcf(rTBT-(2—r— —rT d(]13r + 2krTCr)dz =
0 z

o
f{ T j ——(6A— ((iir) + rfrufép — krT(5BT%§- — —d—%) — k% T6Cr]dz.
0

Some of the terms in the integrals involve differentiation of structural
parameters 6A and 6B. To remedy this, integrate those terms by parts
(the first and fourth terms on the right, and include the second term on

the left side):

o[ (2 "BTLE 24T Cr)dz —
0 Z

[o0]
T(&Ad— + kéBr + 5chr)J (2.2.9)

(o]
e dr® SA ST + rTrw?ép — 2krToBT 2 dr — k% T6Cr|dz .
0 dz dz dz

The term evaluated at 0 and oo vanishes due to boundary conditions on
the eigenfunctions; the displacement r is 0 at z=oco, and the term in
parenthesis is a first order stress perturbation (see (2.2.7)), which vanishes

at the free surface.

Expanding (2.2.9) term by term gives:

[e o]

drq
= 2kf[(>\+2,u')7‘12+ﬂr2 dz + 2[(,“7'2—(1—— — >\Tl d )dz (2.2.10)

W bk =

[o0]

W? [8p(r(® + roP)dz —

0

o0
k2 [ (8+2u)r 2+oury¥ dz —
0
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= dry dry

2k1{4 ——6>\
{(W‘z 1z Tld

—)dz —
dr2 ’ J
| 1%

This can be further simplified to

o]

J

0

dr2
S | —% A2
u[dz]+5(+u)

ok = —fw2 ri2+rof)opds —

d?‘l dr2
kr g+ —— — 1 . 2.
1o+ 7 ]Z+4kr1 m ]u}dz (2.2.11)

f { [krl———] N+2u) +

Relationships for compressional, shear and phase velocities are

ol = (A +2um) 2 =K

c =2
P p’ k

and first order perturbations in the parameters are related by

A2 _ 00 S ou _,08 &  Sc __ &k

- ?

(A+2p) a p 7 B p c k

Substituting these values into (2.2.11) gives perturbations of phase veloci-

ties in terms of structural velocity variations and density:

2
d
krl—-’—%] (>\+2u)%dz +

o]
Sc = S
‘ IcW[ dz

ooF
dry r 60
c 2
v - = dz
ka.[er-f-d r+4k1d ]z 5 +

2
d
2 ] ()\—I—Qu)ép’?—dz +

k
" dz

c ef dr1 dT2 6p
—f brot—— + dhr —= —;—dz . (2.2.12)
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2.3 Summary

Equations (2.2.6) for Love waves and (2.2.12) for Rayleigh waves are
Fredholm integrals of the first kind, which relate perturbations in intrin-
sic shear velocity, compressional velocity, and density to observed phase
velocities at the free surface. By assuming a starting earth model of
intrinsic velocities and densities, perturbations in phase velocities (6c) can
be found by subtracting the theoretical phase velocities (determined from
the eigenvalues of the solution to (2.1.6)), from observed phase velocities.
By inverting the above integral equations for 88, éx, and bp, estimates for

earth structure can be determined as functions of éc.

Subsequent chapters in this study will concentrate on methods of
measuring observed velocities, and then finding stable methods of inver-

sion for the intrinsic earth structure.



CHAPTER 3

MULTI-CHANNEL DISPERSION MEASUREMENTS

3.1 General

Measurements of phase and group velocity dispersion on observed
seismograms usually assume that the wavetrains can be decomposed into
a sum of monochromatic, or plane waves. If so, an individual wave can

be represented by the Fourier spectrum of the seismogram

u(z,t) = A(wz)e' @t = k«)e) (3.1.1)
where
A = amplitude spectrum,
w = angular frequency,

k(w) = wavenumber,
z = distance from source,

t = time.

Dziewonski and Hales (1972) define phase velocity as the instantaneous

velocity of the plane waves at a given frequency:

clw) =22 = _¥_ (3.1.2)

uM=%=——. (3.1.3)

The assumption of using plane waves as a basis for measuring sur-
face waves on seismograms is generally valid for large distances (several

wavelengths) from the source (Aki and Richards, 1980, p. 306). However,

- 17 «
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it is incorrect to assume that the phase velocity can be determined
directly from the phase component of the Fourier transform of the signal,
as (3.1.1) implies, unless it is assumed that only a single mode is pro-
pagating. In general, there can be an infinite number of discrete
wavenumber (k) solutions, or modes, to the surface wave problem (2.2.1)
and (2.2.2). Assuming vertical heterogeneity only, the complete normal

mode solution can be written as (Aki and Richards, 1980, p. 316))

f@t) == [ A, (wz)e' @~ ) gy, (3.1.4)
2T o m
where
e~ Im (w)z
A (@) = T(@)S ()R () S (3.0.5)
z
and
m = mode number,
I(w) = instrument response (complex),

8, (W) = source spectrum (complex),
R,,(w) = path response (real),

Ym (W) = attenuation coeficient (real).

It should be understood that any constant phase term in (3.1.4) is to be
considered as part of the phase of S,, (w). Equation (3.1.4) shows that the
Fourier spectrum of the seismogram consists of a complex sum of normal
modes, and as a result, the phase spectrum will be a complicated function
of individual modes, and cannot be wused directly to measure the
wavenumbers k,, (w). Other factors that can distort the phase spectrum
are multipathing, where the seismogram consists of the original signal

plus reflections; multiple events, where signals from different sources
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overlap; and ambient site noise levels. In addition, the phase response of
A, (wz) must either be known or removable, or it will bias the "pure"
phase spectrum, defined as the exponent in (3.1.4). The following methods
will attempt to isolate, under suitable conditions, individual normal
modes of propagation, assuming that (3.1.4) is a valid representation of

‘'wave motion.
3.2 P-w stacking

3.2.1 Theory

P-tau (slant) stacking involves searching multi-channel data sets for
phase velocities that will produce constructive interference of mono-
chromatic waves at a given frequency. A direct sum of many recordings at
a given frequency will not, in general, constructively interfere, due to
phase differences at different stations. However, if it is assumed that
(3.1.4) is valid, the phase offset between any two stations will be equal to
k,, (w)Az, where Az is the interstation distance. If k,,(w) is picked
correctly, the phases of a propagating mode m can be aligned for con-

structive interference. From (3.1.2),

K, (w) = cm(CU) = me(w)

where p,, =1/c,, = wave slowness. Therefore, either &, p, or ¢ can be
treated as independent variables , and they can be varied for the value (or
values) where the phase adjusted sum of the recordings reaches a max-
imum. This value will determine the phase velocity of a mode at a given

frequency.
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This technique was presented by Dziewonski and Hales (1972) as "the
method of sums and differences.”" McMechan and Yedlin (1981) derived
the method in the context of a Fourier transformed wave slowness - fre-
quency (p-w) plot, with the assumption of continuous spatial sampling.
The analysis below follows McMechan and Yedlin, but discrete spatial
sampling will be assumed, and the effect of attenuation will be investi-
gated. The frequency domain analysis will be referred to as a p-w stack,

to distinguish it from the time domain slant stack.

Let n spatially separated stations lie along the same azimuth as a
seismic source. Assuming that (3.1.4) describes the wave motion, perform

the following slant stack:

o0
5 o) 5 T 5 a7 =) g
n —o00
1% :
= 5/ TS Ay (W) e/ @P T B g (3.2.1)
e -

If it assumed that geometrical spreading (\/-a_:-) has been removed prior to

stacking, then, from (3.1.5)
A (wz,) = A, (w) e~ W5 (3.2.2)

Taking the Fourier transform of (3.2.1) results in

Flup) =3 A, (w) | Ye™ @ giole — (@) |

n

where wp,, (w) = k,,(w). Let W, be the function within the brackets.

Then,

F(w,p) =>4, (w) Wy (p—pPm (0.))) . (3'2'3)

m
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When p = p,, (w), the resolving function W, should reach a maximum
value due to constructive interference of the waveforms. In addition, if
the amplitude of W,, quickly diminishes to zero when p moves away
from p,(w), there will be little interference from adjacent modes.
Remembering that F'(w,p) is a complex function, and assuming that W,

is an impulsive function of p, the modulus can be expressed as:

|F(w,p)| = IE A (w) Wm(p—pm(w))l

=3 lAn@ | [Wo(p—pn(@)] . (3-24)

Notice that the phase term of A, (w) has disappeared from the sum in
(3.2.4); the common source and instrument phase are effectively removed
from the calculation. Plotting (3.2.4) as a two dimensional function of p
and w and picking the maxima should give the phase velocity of indivi-
dual modes as a function of frequency, assuming that W, is sufficiently
impulsive and that the modes are sufficiently separated to make (3.2.4) a

valid statement.

To clarify the above, rewrite the modulus of the resolving function

W,

[ W, | =[S e™ "], (3.2.5)
n

where
Em = — fym(w) + ’iu)(p - pm(W))
Consider the following special case: let there be an array of IV stations,

equally spaced at an interval of Az, with the first station a distance of z,

from the source. Then (3.2.5) can be written as
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N—-1
|W,, | =™ oS3 gamn Az (3.2.6)

n =0

The sum in (3.2.6) is a geometric series which can be expressed as

ez,,,NAz__l

-1

| W, | = e () (3.2.7)

2m Dz
| e

The modulus of (3.2.7) can be found explicitly as follows: first factor
(3.2.7) for

IWm | = e—'vm(w):co €

Then use relations from Churchill (1974, p. 58) for the modulus of the

complex sine function to get

W, | =
1
sin? [w[p —p (W) Nas ] + sinh? [fym(w) N Az ] 2
™ W)X , (3.2.8)
sin? [w[p —pm(w»—ﬁi] + sinh? [vm(w)%]
where
X =z, + (N—1)—A§£ .

There are several interesting features about the resolving function (3.2.8)
or the equivalent (3.2.7). First, it is a periodic function, with periodicity

defined by:

: (3.2.9)
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where
2wf = w, n =1,2,3...
This can be verified by direct substitution into either (3.2.7) or (3.2.8).

The periodicity can be also defined in terms of upper and lower bounds

on phase velocity about the m’th mode:

Crm

Cpor = —— (3.2.10)

Second, the resolving function has a maximum when p = p,, (w).
This can be shown by differentiating (3.2.8) with respect to p and setting
the result to zero, which will occur when p = p,,(w). The importance of
this is that attenuation will have no effect on the position of the max-
imum. Notice that when «,, (w)=0, (3.2.8) reduces to the modulus of the

Fourier-series kernel (Papoulis, 1977, p. 72):

NAz
2

sin [W[p ~Pm (W)

|w,, | = (3.2.11)

sin [w[p —pm(w)}%””-]

This has 2 maximum when p = p,, (w) and the value of the maximum is
N, which can be shown by a first order expansion of (3.2.11).

Third, the width of the major lobe of (3.2.8) is a function of fre-
quency, attenuation, and the total width of the array (VAz). When
Ym (W) = 0, the width can be found by finding the first zero away from

the maximum of (3.2.11). This will occur when

NAz
2

w(p —p,, (W) =47 (3.2.12)



-924 -

or equivalently,

2

width = 2[p —p,,, (W)] = TNAT

(3.2.13)

This can be expressed in terms of velocity bounds about the maximum as
c
=" (3.2.14)

Cm
1+ INAz

Clim

There is no simple solution to the problem of defining the width of the
major lobe when attenuation becomes significant. The derivative of
(3.2.8) must be searched numerically for a minimum in the vicinity of
(3.2.12). However, if it is assumed that N is large, v,,(w) is small, and
Y (W) << N Az, the following first order approximation can substitute for

the value under the square root in (3.2.8):

IWm|=

e~ Mm@ (3.2.15)

This assumes that p is close to the value found by (3.2.12).
Differentiating (3.2.15) with respect to p and setting to zero will result in

the following perturbation to (3.2.13):

2

width = TNAz

1+ (3.2.16)

Vm (W)N Az :

2m '
This shows that there is an almost negligible first order contribution from
attenuation to the width of the resolving function (3.2.8). However, care

must be taken with making approximations to the hyperbolic sine term in
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the numerator of (3.2.8). If either ,,(w) or the total array width is large
enough, the exponential nature of the hyperbolic sine term will dominate
the expression, and the major lobe of the function will no longer be a rea-
sonable measure of the width of the resolving function. In this case, an
appropriate measure for the width of the resolving function will be the
half-power point of the envelope function. Ignoring the sine term in the
numerator of (3.2.8), and equating the square of the function with half

the maximum value, gives the result

vm(w)—%x—] = 2 sinh? [wm(w)i‘zf-] -

sin? [w[p ——pm(w)}%] + sinh?
Solving for the width gives

2
7f Az

width = sin™! [sinh(’ym (w)—%?—)] . (3.2.17)

If it assumed that the attenuation across the entire array is substantial,
but that there are enough stations to insure that -, (w)Az <<1, then

(3.2.17) reduces to

width = 2™ (3.2.18)

7f
The definition of attenuation in terms of spatial @ (Aki and Richards,

1980, p. 298) is

mf

Cm Qm

Tm =

Substituting this into (3.2.18) leads to the rather elegant result:

1

mTm

width = (3.2.19)

c

In terms of phase velocity limits for the width, this is
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Cm

Clim = ————— (3.2.20)
1+
2Qn

Figure 3.1 illustrates the effect of attenuation on a representative resolv-
ing function | Wm | It should be emphasized that when regions of high
attenuation and frequencies are investigated (such as found in very shal-
low crustal structure: @,, <30 and f >1 hz), the approximations leading

to (3.2.19) can be quite valid.

3.2.2 Attenuation measurement and velocity errors

P-w stacking has the distinct theoretical advantage that high resolu-
tion of multiple surface wave modes is possible, given enough channels
and small inter-channel spacing. This is clear from the periodicity condi-
tion (3.2.9) and the resolving function width (3.2.13). However, the effect
of attenuation limits the maximum resolution obtainable. If the total
array width is large enough, or the attenuation is high enough, the resolv-
ing function width approaches a minimum limit given by (3.2.19), which
is independent of the number of channels or channel separation. In add'}-
tion, a fundamental assumption in stacking is that the phase velocity is
constant for a given frequency and mode, which is true only if the propa-
gation medium is laterally homogeneous. Therefore, it is expected that
velocity error will increase as a function of the total array width when
actual data are considered. This will be reflected in the stack as a devia-
tion from the theoretically expected shape of the resolving function
(3.2.8). Random changes in velocity structure across a seismic array can
cause the resolving function defined in the previous section to "blur",.

degenerating into incoherent noise if the variations are severe. Another



Figure 3.1 P-w stacking kernel with attenuation. (a) No attenuation. (b)
r=2. (c) v=a8.
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possibility is the splitting of the resolving function into two or more
coherent impulses, due to simple velocity contrasts across the array (nor-
mal or reverse faulting could be a typical cause of this). The following
analysis will attempt to remove such effects, under the assumption that
there is enough coherency in the stack to allow modal separation, and
that the envelope maximum of the resolving function defines the average
modal wave slowness (p,, (w)) across the array. The result will be a meas-
ure of the error in wave slowness about the maximum, and an estimate of
the wave attenuation at a given frequency and mode. In addition, within
certain resolution constraints, an estimate for lateral phase velocity varia-

tions across the array can be found.

The basic method is to center a Gaussian window about the max-
imum of the complex resolving function, followed by a Fourier transform
over wavenumber. Asymmetries in the resolving function will result in
deviations from zero phase in the spatial domain. The phase errors,
evaluated at each station location, can be used as correction factors in the
stack. Unfortunately, the presence of significant attenuation will cause
these phase errors to be evaluated incorrectly. The analysis will show
how analytic continuation of the stack in terms of the attenuation vari-
able v, (w) (Buland and Gilbert, 1978) can correct both phase errors and
attenuation distortions, resulting in a stacked waveform close to the ideal

Fourier kernel (3.2.11).

Assuming an isolated mode m, define the complex p-w stack (3.2.3)

in terms of wavenumber (at a constant frequency) as:

F(k) = Ay, e~ n()n gthen o 106 (3.2.24)
n
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where £ = w(p — p,,). The wavenumber is defined such that the max-
imum of the stacked signal occurs at zero lag (k =0). The term &9,
signifies phase errors recorded at each station due to lateral changes in
phase velocity across the array. For convenience, let the constant source
phase associated with A,, be included with 6¢,, making A,, a real con-
stant. Window the stack with a Gaussian expoﬁential function and
Fourier transform the function over wavenumber:

k:
g(z) = f ¢ —ak? A, Ne” V(@)an ke (860 |, —iks dke

—k, n

It is assumed that the integral contribution is negligible outside the limits
|k |>k,. Rearranging gives

k
g(2) = Ay e g™ mln [ gmakiekm=a) g (3.9 95)
n

—k,
The integral can be rewritten as

2
_ 1 Y] kc —_ k —_ _1_ . ]
(=) ) [ oA —2) W

—k,

I=c¢e

If the contribution outside the limits is negligible, then (Herrmann, 1973):

1
I = [l] : e_ Zlg(z”—z)z

04

Substitute into (3.2.25) for

1
2

1 2

. _ - —{(z, — z)
A, 26'6¢n e~ (@t , 4o _

o n

g(z) = [Zr—

Algebraic manipulation results in
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% (a2 %) i8¢ _L[z"—(zn—zw"’)]z
AL S AMAT I (3.2.26)

m

n

To interpert (3.2.26), first assume -y, = 0. Since the terms outside the
sum are real, the phase calculated at z will be a weighted average of the
phases (6¢,) recorded at adjacent station locations. When ~,, s 0, the
same interpretation is valid, except that the phase function has been
shifted to a position of decreasing # by an amount —2ary,,. This can be

represented as
g(a) = lg(a) o' ~2am) | (3.2.27)

where 8¢ is the smoothed estimate of phase at the position indicated in
parentheses. Notice that as a function of attenuation, the entire process
outlined above need only be calculated once. For different values of
attenuation, the phase estimate is merely shifted along the z axis by the

amount indicated.

This leads to an algorithm for determining the attenuation of the
m’th mode at a given frequency. The original stack (3.2.24) can be

analytically continued by multiplying each element in the sum by

o 1% e—i&tbnh)

where

b, () = 69z, + 201 .

In this equation <y is considered an independent variable. The phase esti-
mate is found as follows: first calculate the smoothed estimate using the
Fourier transform over k. Then, for successive values of 7y, pick the phase
at the position z,+2a7. Notice that when v =y, the phase will no

longer be influenced by attenuation. Multiplying (3.2.24) by the above
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gives:

Fkn) = Ay 3 e 07 7mm (il =000 (3.9 9g)

n

When v = 1,,, distortions due to attenuation and phase error should be
minimized, and the stack should approach the theoretical sum (3.2.11),
assuming equally spaced stations. Therefore, the correct attenuation can
be found by searching for the value of -y that minimizes the residual

between the observed and theoretical stack.

Once the correct attenuation has been found, the estimated phases
can be re-evaluated to determine the spatial distribution of wavenumber
error. First, a phase unwrapping algorithm must be employed to remove
27 discontinuities from the phase estimate 5&. Methods of phase unwrap-
ping will be discussed in detail in a later chapter. This is necessary to

define the interstation wavenumber error:

_ d&p
dx

Sk, (3.2.29)

This is a differential approximation to the assumption that phase error

across the array is a cumulative function of the wavenumber error:
z
op(z) = [Ok(z)dz
0

Equation (3.2.29) involves numerical differentiation, which can tend
to be a noisy process, but this should not be a problem in this case since
the phase estimates (&%) have been smoothed by a Gaussian filter. The
interstation wavenumber errors can either be used to correct the original
wave slowness estimates (wp,, ) as a function of distance across the array,

or they can provide an estimate of standard error in wave slowness:
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1
1 Eﬁk,f 2
P = N

Papoulis (1965, p. 151) shows how to translate (3.2.20) into an approxi-

(3.2.30)

mate phase velocity error:

¢,y = %5pm =¢,20p,, . (3.2.31)
m

It is interesting to note that the velocity error is proportional to the

square of the measured phase velocity.

3.2.3 Discussion

In order to give dimensional perspective to the above analysis, a con-
venient unit of measure is the bandwidth of the major lobe of the ideal

p-w stack (3.2.13). In terms of wavenumber this will be:
B =—, L =NAz . (3.2.32)

L will approximate the total width of the array ([V—1]Az) when N is
large. In the £ domain, the width of the Gaussian window in (3.2.25) is
defined as 2k,, enclosing the total area between the cutoff limits. A meas-

ure of the limit £, is

e ak?

—e "R 04 . 3.2.33
(3.2.33)

Let N, be the number of fundamental bandwidths (3.2.32) equal to the

width of the Gaussian window:
Ny == =2k, . (3.2.34)

Substituting (3.2.34) into (3.2.33) gives



or.

o (3.2.35)

B 47TN52

The resolution width of the Gaussian filter in the spatial domain (3.2.26)

can be defined as the width of the approximate half-amplitude points:

=e * . (3.2.36)

Solving for R = 2z in (3.2.36) and using (3.2.25) gives the filter resolu-

tion width:

L
R == 2.
N, (3.2.37)

It the interstation wavenumber error (3.2.29) is used for spatial
corrections to the phase velocity dispersion, (3.2.37) gives the finest reso-
lution possible for the correction. As an example, if the array length is 50
kilometers long, and 2 bandwidths are used to construct the Gaussian
window in the ¥ domain, it is pointless to look for spatial detail finer
than 25 kilometers in width. Notice that the periodicity condition (3.1.14)
limits the maximum number of bandwidths to N/2, where NV is the total
number of stations. If multiple modes are present , this number may

have to be considerably reduced to avoid modal interference.

Finally, if the Gaussian filter is only used for wavenumber errors,
and attenuation measurements are not desired, the analytic continuation
search for correct attenuation (3.2.28) may not be necessary. In terms of

resolution, the distance error in spatial calculations of phase from (3.2.27)
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is, (3.2.35), and (3.2.37):

R%y,,
2T

Toppor = 2007, = (3.2.38)

If an upper bound for -y, is estimated in (3.2.28), and if the calculated
distance error is well within the resolution estimate R, the error produced

by attenuation can be ignored since it cannot be resolved.

3.3 Summary

Theoretically, p-w stacking is the most direct way of determining the
dispersive characteristics of a wave field. It involves a direct reconstruc-
tion of the dispersed wave in the frequency-wavenumber domain which is
uncontaminated by source phase effects. It was shown above that
attenuation and lateral variations in wavenumber can also be found.
However, p-w stacking is subject to the same problems of aliasing as
discrete Fourier transforms, since it constructs the wavefield as a sum of
wavenumber harmonics (McMechan and Yedlin, 1981). Insufficient sam-
pling in the spatial domain and unevenly spaced sampling locations can
cause gross errors in the stack. In addition, large ambient noise levels can
cause spurious peaks in the wavenumber-frequency domain, making deter-
mination of maximum wavenumber values difficult or impossible. Stan-
dard error analysis is possible (equation 3.2.30), but this requires estimat-
ing the center location of the wavenumber peak, which may be difficult in
cases of low signal-to-noise ratios.

To overcome such difficulties, the approach of phase-matched filter-
ing will be discussed, first in the context of a single-station method, and

then generalized to multi-channel processing.



CHAPTER 4

PHASE-MATCHED FILTERING
4.1 Single channel phase-matched filtering

4.1.1 Theory

Phase-matched filtering (Herrin and Goforth, 1977) is'a method of
compressing, in the time domain, the energy of a particular mode of
interest in a seismogram. This is done by removing the phase of a desired
mode, resulting in a zero-phase signal with energy concentrated abéut
zero-lag in the time domain. By time windowing this isolated mode, the
effects of incoherent noise/ (random) and coherent noise (multi-pathing,
higher modes, extraneous signals) can be removed from the spectrum. A
necessary assumption for the matched filter is that the desired mode has a
frequency bandwidth broad enough to result in a narrow time-domain sig-

nal.

Herrin and Goforth (1977) refer to the zero-phase time-domain signal
as the "pseudo-autocorrelation function." Assuming that the seismogram
is composed of propagating normal modes (3.1.4), the phase-matched

filter can be expressed as
() = Elgf (%) 4, i@ k) gy (4.1.1)

where it is understood that A,,, k,, and éj are functions of frequency.
For the present, assume that both source and instrument have been
removed from A,,, making it a real function. The term in brackets is the

phase-matched filter, and lgj is an estimate of wavenumber dispersion of

-35-
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the j'th mode of interest. At this point, the filter need only approximate
the j'th mode; it will be shown how this estimate can be iteratively
improved. ;(t) is the time-domain pseudo-autocorrelation function. It

can be rewritten as

bi(t) = al?fA]-e"(’“f"’“f)" e "% g (4.1.2)
+ 17 w4, @)y,
2T oo me#

If IEJ- =~ k; the first integral will be approximately zero-phase and should
be concentrated about zero-lag (provided it has sufficient bandwidth).
Time windowing the first integral with a symmetric, zero-phase window
w(t) will remove the effects of other modes and noise, provided they are

spatially separated from the mode of interest:

i (Ow(t) = w(t) o= [ Ajei = o=t gy, (4.1.3)
where
Sk =k; —k; . (4.1.4)

Taking the Fourier transform of the windowed pseudo-autocorrelation
function will result in

=]

Aje'* 7 = [ (t) w(t)e " dt. (4.1.5)

Equation (4.1.5) is now the isolated amplitude spectrum of the desired
mode. Notice that there may be a residual phase error ( 8k z ), depend-
ing on the accuracy of the initial estimate of the wavenumber dispersion.

A new estimate can be found using (4.1.4):
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ki = k; — ok (4.1.6)

The new value (4.1.6) can be substituted into (4.1.2) and the process
repeated, resulting in a new estimate of the isolated spectrum (4.1.5).

This can be continued until there is no further decrease in the residual

phase (4.1.4).

In this manner a precise estimate of the wavenumber spectrum can
be found, assuming that the original estimate ( IE]- ) is reasonably close to
the true mode. The amplitude spectrum ( A; ) may be biased, however,
due to the distorting effects of the particular window used. The effect of
window bias on both phase and amplitude will be discussed in detail in

section 4.1.3.

4.1.2 Multiple filter analysis

In order to find an initial estimate of wavenumber, Herrin and
Goforth (1977) used the multiple filter technique (MFT). This method
determines group velocities (3.1.3) in dispersed wavetrains, and only a sin-
gle receiver is necessary for the analysis. Complete descriptions are given
by Dziewonski etal (1969) and Herrmann (1973), and briefly reviewed

here.

Given a seismogram composed of a sum of normal modes, let the
complete spectrum be windowed at frequency w, by a narrow Gaussian
function and then Fourier transformed to the time domain to give a com-

plex time signal ¢(t) :

w0+w:
g(t)= [ H(w—wy) 34,,(w) ¢ (Wt —kn(w)z) dw,

where
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" exp(—ow’ /W) |w] < @,
H(w) =
0 lw| > w,

Herrmann (1973) showed that the modulus of ¢g(t) is approximately

1 2

“o  m\g o

8] = (L A, (w —— |t
Ig()l 27{_(0‘) %; m (W) exp vy

T
Uoj

21, (4.1.7)

where Uy, is the group velocity of the j'th mode at frequency wj, .

Assuming sufficient modal separation, maxima of |g(#)| will occur when

A
t; = .
J Uoj

Since the distance from the source z is known, group velocities can be cal-

culated as a function of frequency wj .

Let the phase of the j’th mode be

¢; =kj . (4.1.8)
Differentiating (4.1.8) gives
ol il (4.1.9)

This demonstrates that differentiating the phase spectrum of an isolated
mode gives the group delay ( t; ) of that mode, which can be calculated

directly from MFT (4.1.7). Reversing the process results in
¢; =t dw. (4.1.10)
0

Equation (4.1.8) can then be used to calculate the initial estimate of
wavenumber for use in the phase-matched filter. In practice, the integral

(4.1.10) can have an additive constant without affecting the derivative
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group delay. It is therefore quite possible for the initial wavenumber (IEJ)
to be in error by a large constant value. Fortunately, the next section
will show that the windowed pseudo-autocorrelation function is not
biased by constant phase errors. The residual phase in (4.1.5) can there-
fore be used to accurately compensate for this error. However, notice that
the correction will only be valid to the nearest multiple of 27 . Equation

(4.1.5) gives an infinity of possible wavenumbers, since
exp(¢6k z) =exp(16k = £ i2nm), n=0,1,2,..... :

This is a fundamental ambiguity which is due to spatial sampling by a
single station, and requires @ prior: knowledge of the location of the
wavenumber at least at one frequency. This can be resolved with multi-

channel processing, which will be discussed in a later section.

4.1.3 Window bias

In the process of calculating the Fourier transform from (4.1.3) to
(4.1.5), it is assumed that the window w(¢) does not distort the spectrum
of the j'th mode. This is not true in practice, and the purpose of this sec-
tion is to approximately calculate the bias in the frequency domain due to
time domain windowing. The analysis is similar to Jenkins and Watts
(1968, p. 247). Define the "pure" pseudo-autocorrelation function as the

the single mode signal uncontaminated by noise:
1 oo
P;(t) = ?—f etk gmiwt gy, (4.1.11)
-0

The bias in the frequency domain will be the transformed difference
between the windowed pseudo-autocorrelation function and (4.1.11):
o0

B(w)= [ (w(t)—1)p;(t)e "“ dt. (4.1.12)

—00
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At this point it is necessary to define the particular window desired.
Harris (1978) reviews a broad class of spectral windows and their charac-
teristics. One measure of window performance is the maximum sidelobe
level. For a given window in the time domain, construct the Fourier
transform and measure the amplitude of the maximum sidelobe. This
gives an indication of the "smoothness" or convolutional rippling effect in
the frequency domain. Windows with high sidelobes can cause distor-
tional rippling in the frequency domain when there is a significant trunca-
tion of signal (or noise) in the time domain by the window. The rec-
tangular window is the worst case, with a maximum sidelobe -13 dB
below (almost 1/2) the main lobe. However, Jenkins and Watts (1968)
show that windows that tend toward the rectangular have the least signal
bias, under the condition that there is no significant truncation of the sig-

nal in the time domain.

Two windows are examined for bias: the Parzen (also called de la

Valle - Poisson), and cosine windows. The cosine window is defined as:

cos (mt [2M) |t |[<M
w, () = (4.1.13)
0 [t |>M
where M is the one-sided width of the cosine window. The maximum

sidelobe level for the cosine window is -23 dB (7 percent) of the main lobe.

The Parzen window is defined as:

1—6(¢/MP+e(ltl/MP | |<my2
w, () =] 201 — |t |/M)? M/2< |t |<M (4.1.14)
0 |t |>M

where M is the one-sided width of the Parzen window. The maximum
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sidelobe level for the Parzen window is -53 dB (.2 percent) of the main
lobe. For a given width M, the Parzen window is a much smoother con-

volutional filter in the frequency domain due to low sidelobes.

To calculate the approximate bias, substitute the windows into
(4.1.12) and keep terms only on the order of 1/M? or more. For the

cosine window,

B,(w) = 8;;2 jfo —t2 ;(t) e~ dt + O(1/M%)

and the Parzen window,
6 °p -
By (w) = Wf —t2;(t) e7 dt + O(1/M?).
—00

Notice that the infinite limits are kept for the integrals. This is with the
assumption that M is wide enough to insure that there is insignificant
truncation of the pseudo-autocorrelation function, so there is negligible
signal outside the limits +M, —M . Making use of Fourier transform

properties of differentiation gives (Papoulis, 1962, p. 16):

B,(w) = SWMQ v () (4.1.15)
B, (w) = % V' (w) (4.1.16)

where the double primes indicate the second derivative with respect to
angular frequency of the pseudo-autocorrelation spectrum. Taking the
ratio of (4.1.16) to (4.1.15) shows that the Parzen window has almost five
times the bias of the cosine window, which appears to indicate that it
may be a poor choice of a windowing function. However, further investi-

gation of the spectral second derivative yields interesting results.
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Define the spectrum from (4.1.11) as
Vi(w) = A;e'%® = qeil (4.1.17)

The terms o and 0 are chosen for notational convenience. If multiple-
filter analysis is used to derive an initial estimate of phase (4.1.10), the
first and second derivatives of ( 0k-z ) should be small since the first
derivative of k; is equal to the residual group delay. However, 6k itself
can be iarge due to the additive constant in integrating the group delay.
Therefore, let 6 be indeterminate, let @' be small, and let §' also be
small. Calculate the second derivative of the pseudo-autocorrelation spec-

trum for:
V'iw) =[a" —o0" e’ + [ +2a'0']e!0+1/2) (4.1.18)

Using vector analysis to calculate the bias in amplitude and phase, and
keeping only first order terms in 6' and ¢’ results in the following

expressions for the Parzen window. The amplitude bias is

Bpo =~ (4.1.19)
and the phase bias is
! ! !
B,y = Sl +200) (4.1.20)
M?a + 6
Similar expressions for the cosine window are, for amplitude bias:
7‘(2 {1
Bea =21 @ (4.1.21)
and for phase bias:
! i !
B = m(of_+200) (4.1.22)

SM2q + m2a’
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Equations (4.1.20) and (4.1.22) show that the bias in phase is
independent of constant phase values, and that if the first and second
derivatives are small, the bias will also be small. Therefore, it is advis-
able to use smooth (low sidelobe) windows such as the Parzen for calcu-
lating residual phases in the matched filtering process. However, it should
be clear that spectral amplitudes may be quite biased when there is
significant curvature in the amplitude spectrum, for example, a narrow
band spectrum or in the vicinity of sharply changing band edges. The
fact that phase-matched filtering is an iterative process can remove resi-
dual bias in phase, but this will not help the bias in the amplitude spec-

trum, since it is independent of phase.
4.2 Multi-channel phased-matched filtering

4.2.1 Introduction

The analysis presented in the following section represents the heart
of this dissertation. The concepts of p-w stacking and single channel
phase-matched filtering will be combined to form a new method of multi-
channel processing, which will exploit salient features of the above tech-
niques. In addition, statistical parameters from bivariate spectral analysis
will be utilized to improve signal-to-noise measurements across the chan-

nels.

In section 3.2, it was shown how p-w stacking, followed by frequency
transformations and Gaussian filtering, could be used to determine phase
velocity errors (3.2.30). However, this requires a determination of the
mean phase velocity from an inspection of the maxima of a frequency -

wave slowness plot, which can be inaccurate in the presence of large
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ambient noise levels. It will be shown that multi-channel matched filter-
ing can give both mean phase velocity and error estimates in the presence
of extremely high incoherent noise levels, which can be quite useful when

short array lengths or a small number of channels are used.

This is not to say that multi-channel phase-matched filtering is a
replacement for p-w stacking. The multi-channel method is excellent for
identifying incoherent noise, but it cannot be used for mode identification.
It suffers from the problem of single channel phase-matched filters, in that
an initial estimate of the mode of interest must be supplied, in order for a
pseudo-autocorrelation function to be constructed in the time domain.
P-w stacking can complement the multi-channel filter by delineating
which modes are present in a signal, and by providing a starting estimate

of the mode of interest to the filter.

4.2.2 General theory

Assume a linear array of N seismic stations, with unequal spacing
possible between channels. Let the complex frequency response of each

channel to a source function be

X;(w), where j =1,23.N .

The interstation Green’s function between any two channels is

defined as:

Xj(w) _ IXj(w) e~ i k(w)(z; — %)

=X %W 42.1)

Hi (w)

H;;(w) represents the response at station j to an impulse at station ¢,
assuming a linear medium of propagation. This is for the noise-free case,

where it is assumed that the signals X (w) are single modes propagating
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according to (3.1.1). For all combinations of the stations, the following

Green’s function matrix can be constructed:

Hll H12 s HIN
Hy Hy,

G = | . . | (4.2.2)
Hyy o Hyp |

This matrix has several interesting features. The diagonal elements are
zero-phase with amplitudes identically equal to one, representing Dirac
impulses in the time domain. Each row represents the medium response to
impulse sources at each channel location. On each row, the terms to the
right of the diagonal are the Green’s function medium response to the
impulse on the diagonal. The terms to the left of the diagonal have only
a mathematical meaning, in that they represent non-causal contributions
to the diagonal in negative time. Notice that the true source has been
totally removed by the Green’s function operator (4.2.1). It simply divides
out, being common to all signals X;(w). By the same reasoning, matched
instrument responses are renioved by the Green’s function. Therefore, the
elements of (4.2.2) represent true interstation transfer functions for each

pair of channels.
In terms of the distance z; as an independent variable, the phase

response along the i’th row can be defined from (4.2.1) as
85(@) = bz — ) - (4.23)
For a given frequency, (4.2.3) defines a straight line in terms of z;, with

the wavenumber k(w) equal to the negative slope of the line. Notice that

the slope remains the same for each row of (4.2.2); only the intercept
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changes. Therefore, in the noise-free case, the phase velocity across the
array can be solved for by first finding the wavenumber as a function of

frequency for any of the rows of (4.2.2), and then using (3.1.2):

w
c(w) = W .

In the presence of noise, the most general method of processing the
signals X;(w) is multivariate spectral analysis (Jenkins and Watts, 1968,
p. 458). The Green’s function matrix (4.2.2) is the frequency domain
equivalent of the impulse response matrix defined by Jenkins and Watts
(1968, p. 469), and can be processed directly for gain and phase estimates
using multivariate techniques. However, the number of calculations
involved in multivariate processing can grow unacceptably large for even
moderately sized seismic arrays, so an alternate method is preferable.
Fortunately, the seismic phase response is controlled by a simple linear
model (4.2.3) across the array, and by taking advantage of this assump-
tion, it will be shown that the multivariate analysis can be reduced to a
sequence of bivariate (two channel) processes followed by linear regression.
In addition, by utilizing phase-matched filtering across the array, it is
possible to isolate modes of interest from conflicting coherent signals, such

as multipathing and higher modes.

4.2.3 Matched filtering and bivariate statistics

Assume that the signals Xj(w) are contaniinated by both random
noise and interfering coherent signals. Assume also that an initial esti-
mate ¢(w) of the phase velocity of a mode of interest is given, either
from average group velocities across the array, or from p-w stacking. The

interstation phase estimate of the mode can then be defined as
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$ii(w) = 5‘("; o —a) (4.2.4)

Notice that ¢(w) is not spatially dependent, implying lateral homogeneity

across the dimensions of the array. As will be shown, lateral variations

will be incorporated as standard errors about the mean velocity.

Define the interstation cross-correlation function as

Xj(w) = X; " (w) X;(w) .

The star ( * ) superscript indicates taking the complex conjugate of X .
The interstation pseudo-autocorrelation function can then be defined as in

single channel processing (4.1.1):

i (t) f {10} X, (w)e' duw

where a’ij (w) is defined by (4.2.4), and the term in brackets is the phase-
matched filter. To isolate the mode of interest, window the pseudo-
autocorrelation function, transform back to the frequency domain, and

reset the phase:

= {¢™ Pl f (t)by; (t)e~"“tdt . (4.2.5)

This defines the interstation phase-matched cross-correlation function.
The bar indicates smoothing by the time window w(¢) and the super-

script P indicates phase-matched filtering.
Define the interstation auto-correlation function as:
¥
Xi(w) = X; " (w) X;(w) .

The smoothed interstation auto-correlation function is calculated by win-

dowing X; in the time domain with w(t), and then transforming back to



the frequency domain.

Balt) = 2 [ Kot d
X;(w) = _ofo w(t) Py (t) e "tdt . (4.2.6)

Notice that no matched filtering is necessary for the auto-correlation func-

tion since it is by definition a zero-phase signal.

Using (4.2.5) and (4.2.6), the phase-matched interstation Green’s
function is defined by
_ %, ()
P
Hij (CU) =

- (4.2.7)

Equation (4.2.7) is similar to the smoothed frequency response defined by
Jenkins and Watts (1968, p. 432). It differs in that phase-matched filter-
ing is incorporated into the above response. It should be noted that Jen-
kins and Watts (1968, p. 399) define a rudimentary form of a phase-
matched filter, which they refer to as "phase alignment", calculated by a
linear phase shift of the peak of the cross-correlation function in the time
domain to zero lag. They use phase alignment to reduce the bias (4.1.20)
in phase measurements of the windowed cross-correlation function. The
present analysis extends this alignment to a complete phase-matched

filter, in order to isolate surface wave normal modes.

Equation (4.2.7) can now be processed as in the noise-free case, using
(4.2.1) through (4.2.3). In addition, statistics associated with bivariate
processing can be used to weight the regression algorithm for each row of

(4.2.2). The fundamental parameter for distinguishing between signal and



- 49 -

noise in bivariate analysis is the smoothed coherency spectrum, defined as

_ X:--P W 2
If,-]-Q(CU)— l ] ()I

" X (X, @) :29)

The coherency spectrum varies between zero and one for any frequency w,
with maximum coherency (or noise-free signal) existing when K-J-Z(w)

equals one.

Windowing with w(t) in (4.2.5) and (4.2.6) plays an essential role in
the ability of the coherency spectrum to distinguish between signal and
noise. If the window is infinitely wide (or not used), implying no smooth-
ing, it can be seen by inspection that (4.2.8) will identically equal one for
all frequencies, which implies that time-domain windowing helps isolate
signal from noise. Notice also that the phase-matched cross-correlation
operator (4.2.5) selects only modes of interest to be windowed at zero-
phase, while the auto-correlation function (4.2.6) sets the entire record to
zero-phase. Therefore, unless the original record contains only the single
mode of interest, the denominator of (4.2.8) will tend to have more energy

than the numerator, causing the coherency to be less than one.

Utilizing the coherency spectrum, a 95% confidence interval can be

calculated for the interstation phase spectrum (Jenkins and Watts, 1968,

p. 435):
— 1
1 —K;;%(w) |2
s —1 2 4
(W) = 95) —— " Y : 4.2.9
Cij(w) sin y— fz,u—2( ) K{jg(w) ( )

Where v is the number of degrees of freedom for the windowed cross-

correlation function (4.2.5). For a Parzen window v is defined as
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T
=3.71— , 4.2.10
v=3n1-L (4.2.10)

where T is the total length of the record and M is the one-sided width of
the Parzen window. Degrees of freedom for other window types are
defined in Jenkins and Watts (1968, p. 252). The f term is the Fischer
Fy v distribution evaluated for 2, v—2 degrees of freedom at a 95 %

probability point (Jenkins and Watts, 1968, p. 84).
To calculate standard deviations for phase, Berger et al. (1979, p.
278) used the following approximation with excellent results:

Cz’j (UJ)
1.96

o (W) = (4.2.11)

The same method is used here, except when the coherency is quite low.
As the coherency becomes small it is possible for the term in brackets in
(4.2.9) to be greater than one, making it impossible to calculate the
inverse sine function. A more robust, but less accurate estimate of the

phase standard deviation is (Jenkins and Watts, 1968, p. 379):

_ 1
aM 1 —K;¥w) |2
2T _[{‘.J.z(w)

(4.2.12)

Oiy (0.)) ~

The constant « is determined by the type of window used. In this case it
is calculated by insuring continuity between (4.2.11) and (4.2.12) when
the term in brackets in (4.2.9) is equal to one. The term M /T has the

same meaning as in (4.2.10).

4.2.4 Regression analysis

Given the successful modal isolation of a signal by the phase-

matched interstation Green's function (4.2.7), it is now possible to treat
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the phase across the array in terms of a linear regression problem, as in
the noise-free case (4.2.3). Prior regression variances can be provided by
the coherency estimates (4.2.11) and (4.2.12). Using (4.2.3), the regression
parameters are set up as follows:

bi; = ky z; + by (4.2.13)
where

$;; = the measured interstation phase from (4.2.5)

k; = the wavenumber across the i’th row of (4.2.2)
T;j = ¥; — &;, the interstation distance
b; = constant phase term across array, due to possible

initial phase offsets in ;.

All terms except for z;; in (4.2.13) should be considered as functions of
frequency (w). The specific details of measuring ¢,-j at a given frequency
will be discussed in the section below on phase unwrapping. Equation
(4.2.13) defines, for each row of (4.2.2), a linear equation of ¢;; and =z,
with k; being the slope. It can be weighted by the variances (4.2.11,

4.2.12) as follows: let

Wer = e

1
i

J

The weighted linear regression equation can be written as
wij i = wy kizy + wib (4.2.14)

On the i’th row of (4.2.2), summing over all values of j gives the follow-

ing regression sums (Lindeman et al., 1980, p. 9):
(E wz'jz Zy§ )2
j
2w
7

Sz(:cl) — E wi‘? m‘.? —
J
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(E wi]z ¢ij)2
S&) =3 wi ¢ — —
J Z wijz'
J

> wi @y 3w ¢y
J

; J
sz((;) =3 wff' 2 by — -
J E wz’j
J

The least-squares regression estimate of the wavenumber along the i'th

row is

(4.2.15)

and the wavenumber variance estimate from the least squares covariance

matrix is

o = —_ | (4.2.16)

The "scaling variance”" ( o2 ) should approximately equal one if the

interstation standard deviations (4.2.11, 4.2.}2) are close to equaling the
residuals between observed and computed phases in (4.2.13) (Wiggins,
1972, p. 258). However, the interstation standard deviations are highly
dependent on the coherency spectrum (4.2.8), which in turn is a function
of the window width used in smoothing the time domain cross-correlation
operators. For instance, if a very wide window is used, the coherency
spectrum will be close to one, causing the interstation standard deviations
to be small. This will cause the covariance matrix term 1/ng) to be
small, resulting in low variance estimates for the wavenumber k;. But,

when dealing with noisy data, using wide windows can lead to large resi-



-53-

duals in the regression equation (4.2.13).

If narrow windows are used in calculating the coherency spectrum,
the reverse situation can happen: the coherency spectrum approaches
zero, resulting in a large covariance matrix. However, the narrow time
domain windows lead to very smooth (and biased) phase estimates, and

the result is low residuals in (4.2.13).

Considering the above, a suitable scaling for the covariance matrix is:

(i)2
59 - 2
9
ok =1+ N3 , (4.2.17)

where NV is the number of stations. The term to the right of the plus sign
is the calculated standard variance due to the residuals in (4.2.14) (Linde-
man et al. , 1980, p. 14). The above scaling variance compensates for
wide windows by the dominance of the residual standard variance, while

for narrow windows it will reduce to a minimum value of one, not zero.

Equations (4.2.15) and (4.2.16) represent wavenumber and associated
errors (at a given frequency) along the i’th row of the Green’s function
matrix (4.2.2). In the noise-free case, or when random errors are equally
distributed for all stations, the above estimates should be equal for all
rows of (4.2.2). However, in the presence of lateral inhomogeneities or
local site effects ( such as dead receivers), the estimates will vary. There-
fore, to calculate the overall wavenumber and variance, the following

weighted mean values are constructed. From (4.2.16), let

g
Il
3~

The weighted mean wavenumber across the rows is
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E ’LU,~2 ]Cz'

!

[ -
E wi2
;

The corresponding total variance is

no

— o252
=0f0° ,

o2

with the weighted mean variance equal to
E wi2 032

H
> w? > w?
'

52_

The scaling variance ( 02 ) in this case is defined as

o2 O Sk
2 N-—-1
where
(E wi2 kz' )2
Sy = w? k2 — —
k E‘J ik, SR
;
and
& %2 = median(c?)

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)

The term on the right of the plus sign in (4.2.21) is the standard variance

calculated from the weighted residuals between observed and computed

wavenumbers. The term to the left rescales the wavenumber variance to

the median value found along the rows of (4.2.2).

The choice of scaling the variance in terms of the median is not

necessary, but it will give a more robust estimate when some of the sta-

tions exhibit very low coherence ( such as dead channels). In cases where
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 the variance is more uniform across the rows of (4.2.2), the ratio of

median to weighted mean variance in (4.2.21) can be set equal to one.

Finally, to determine mean phase velocities and standard errors, the
following expressions from Papoulis (1965, p. 152) are useful. Let
y = f(z)
be a function of the random variable z, where 7 is the mean of z and or_,?

is the variance. Then the mean and variance of y can be approximated

by
I 0-2
y=fm+ 1" - (4.2.22)
and
oy =" (M o? . (4.2.23)

From (3.1.2), (4.2.18), (4.2.19) and (4.2.22), the mean phase velocity at a

given frequency is:

2
— w w %
c(w) = = + = 4.2.24
) k(w) k3w 2 ( )
and using (4.2.23), the variance in phase velocity is:
02 = |—2 1202 | 4.2.25
‘ [k 2(w) } ¢ (4.2.25)

Notice that the dependence on frequency is now being stated explicitly.

Equations (4.2.24) and (4.2.25) are the final result for the multi-
channel phase-matched filter, and are in a suitable form for surface wave
inversion, which will be discussed in the next chapter. At this point, it is
also possible to set up an iterative algorithm for the phase velocities, as

was done for the single-station method. The phase velocities (4.2.24) can
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be substituted into (4.2.4) as refined initial estimates for the multi-
channel matched filter, and the entire process repeated. This is useful in
cases where the original estimate is quite imaccurate. As an example,
when the fundamental-mode surface wave dominates the waveform and
there is little conflicting signal energy, a first estimate for phase velocity
can be found from the time domain lag of the peak in the interstation
cross-correlation function X;;(w). This gives a constant phase velocity for
the estimate, which can lead to large residual first and second derivatives
in phase. The result will be a bias in phase, as shown by (4.1.20). By
iterating the multi-channel matched filter several times, the bias can be
significantly reduced. This will be demonstrated in chapter 6, where tests

on real and synthetic data will be performed.

4.2.5 Phase unwrapping

A further problem requiring analysis in phase-matched filtering is
that of phase unwrapping. By definition, the phase spectrum is equal to
the inverse tangent of the imaginary divided by the real complex spec-
trum. However, inverse tangents are computed as modulo 27 functions,
resulting in discontinuities at multiples of 2m. In order to calculate
wavenumbers and phase velocities, the phase must be translated into a
continuous, or "unwrapped" spectrum. Techniques for accomplishing this
will be discussed below, with emphasis on a new method for multi-
channel processing.

In the section on single-station phase-matched filtering, equation

(4.1.5) gives the frequency-domain expression for the pseudo-

autocorrelation function, with the residual phase error (4.1.4) being due to
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approximations in the original wavenumber estimate. To find the phase
error, the phase spectrum of the pseudo-autocorrelation spectrum must be
unwrapped to prevent 27 discontinuities in the residual. Stoffa et al.
(1974) present a useful method for unwrapping which depends on numeri-

cally differentiating and integrating the complex spectrum. Let
$(w) = 6k z = tan~Y(2)
U

be the residual phase of the pseudo-autocorrelation spectrum, where u is
the real and v is the imaginary part of the complex spectrum.

Differentiating the inverse tangent function gives the group delay (4.1.9):

b0 du

do dw dw

ty(w) = T = 5 o
u“ 4+

This expression requires the numerical differentiation of the real and ima-
ginary parts of the spectrum. Numerically integrating tg
w

d(w) = [t,(w)dw (4.2.26)
0

brings back the original phase spectrum, but now in an unwrapped form.
This method is useful where the sampling interval is sufficiently dense to
insure small numerical errors, and where iteration of the matched-filtering
process will reduce any residual numerical errors. However, as was
pointed out in the chapter on single station filtering, there is an ambi-
guity due to the integration constant for group delay. If the initial phase
determined at the start of integration in (4.2.26) is incorrect, all subse-
quent phase values will be off by a constant. In practice, this error will be

a multiple of 27 after the matched-filter process converges. Unfor-
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tunately, this is a fundamental ambiguity in processing which cannot be
resolved by the single station spectrum. Multiplying the spectrum by
exp(= 12n ) will have no effect on the time-domain transform. The only
way to solve this problem is to have a prior: knowledge of the
wavenumber at least at one frequency, or to resort to multi-channel pro-

cessing, which separates the above periodicity into wider phase intervals.

A more subtle and difficult problem found in phase unwrapping is
that of " 7 - discontinuities," distinguished from the above " 27 " discon-
tinuities. This is caused by both the real and imaginary components of
the complex spectrum changing sign simultaneously. It occurs only when
the amplitude of the signal is close to zero, and can be due.either to noise
at this level, or "spectral nulls," caused by eigenfunction zero-crossings of
earthquake source mechanisms (Aki and Richards, 1980, p. 318). When
the real and imaginary components change sign, a 7 - discontinuity occurs
in the phase spectrum. Such shifts can be easily identified by the group
delay (4.1.9), which will be a Dirac delta function at the discontinuity,

since the derivative of a step function is impulsive.

There is an ambiguity in unwrapping 7 - discontinuities, caused by
the direction of the 7 phase shift. Either adding or subtracting 7 from
the phase will result in the same modulo 27 location, as can be seen by
inspection of a phasor plot of the complex spectrum (Figure 4.1a). There
is no fundamentally preferred direction to the shift, since either addition
or subtraction of 7 will result in the same time-domain transform. The
above method of numerically differentiating the phase spectrum will
automatically choose a direction for the phase shift based on values calcu-

lated by the numerical derivative. However, this is inconclusive since the



imag

~+r

L

7’ real

-7

Figure 4.1a Phasor plot showing that adding +x to the phase results in the
same phasor location.
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Figure 4.1b Phasor plot showing quadrant location where there is a +2r
discontinuity.
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direction can change with slight changes in noise levels. Again, for
single-station processing, this problem can only be solved by a prior:

knowledge of phase velocity values at selected periods.

With multi-station processing, it is possible to completely solve the
unwrapping problem, even in cases of high noise levels. As a foundation
for this, another single-station method is introduced, which takes advan-

tage of windowing in phased-matched filtering.

Using the Discrete Fourier Transform (DFT), a simple recursive for-
mula for unwrapping the phase of the pseudo-autocorrelation function

can be constructed. Let

OF = 1 + 6F (4.2.27)

The subscripts indicate the discrete frequency in the DFT. The super-
seript "p" distinguishes (4.2.27) from the phase of the cross-correlation
function (4.2.5), which has the initial phase estimate added back in. The
phase increment is deﬁned from

56 = tan~(—1) — tan—1(—=L) (4.2.28)

Y U1

where v and v are the real and imaginary part of the complex spectrum.
To avoid modulo 27 discontinuities, the quadrant position of the {’th
phase with respect to the (/—1)'th phase must be identified, as shown in

Figure 4.1b.

Since phase-matched filtering is being used, the width of the time
window used to isolate the mode can be used to calculate the maximum
phase increment in (4.2.28). The relationship between frequency sampling

and time sampling in the DFT is (Brigham, 1974)
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2m
&U:——— slie
— (4.2.29)

where dw is the frequency sampling interval, 6t is the time sampling inter-
val, and n is the number of samples. From (4.1.9) the group delay can

be approximated by
— . (4.2.30)

Since there is no energy outside the time window of the pseudo-

autocorrelation function, the maximum continuous group delay is
by < M 6 (4.2.31)

where m is the number of samples in the one-sided width of the time win-
dow. Substituting (4.2.31) into (4.2.30) and solving for the phase incre-

ment gives
0Pl Smbtbw=2Tm/n |, (4.2.32)

where (4.2.29) is substituted for éw. For example, if m is equal to one-
fourth the total array width n, the maximum phase increment will be less
than or equal to 7/2. As long as 6¢f satisfies the inequality in (4.2.32),
the recursive formula (4.2.27) will be adequate for unwrapping single

spectrum phases.

Phase increments which are greater than the maximum in (4.2.32)
define 7 - discontinuities in the phase spectrum. At these points, there
will be an ambiguity in the sign of §¢?, since either adding or subtracting
7 in the recursion formula (4.2.27) will give the same phasor location (see
Figure 4.1a). As a result, the phase spectrum will be divided into con-

tinuous segments, with boundaries defined at frequency points where the
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7 discontinuities occur.

Multi-channel techniques can now be utilized to adjust the segments
to the correct modulo 27 locations. Assuming an array of IV stations,

construct the interstation Green’s function matrix (4.2.2). Let
$h, | =12..n (4.2.33)

be the discrete phase spectrum of the pseudo-autocorrelation function

corresponding to each Green’s function H;., where [ is the discrete fre-

i
quency location and n is the number of points in the DFT. For each H;;,

unwrap the phase spectrum according to (4.2.27)
bl = df 11 + 0B . (4.2.34)

At locations where the phase increment in (4.2.34) is greater than the

maximum allowed by (4.2.32), construct the following "jump table:
Jy(I) s T =12,.N (4.2.35)

where V;; is the total number of 7 - discontinuities found in the pseudo-
autocorrelation function. The jump table defines frequency locations for

the boundaries of continuous segments in each phase spectrum ¢>,~j.

To set up corrections to the segments, define the following terms:

¢;; = cross-correlation phase corresponding to (4.2.5),

O

;i = Phase standard deviation calculated from (4.2.11) and (4.2.12),

/3, = multi-channel wavenumber estimate at frequency [,
J1 = J;;(I) = lower bound for the I'th segment,

J2 = J;;(I+1) — 1 = upper bound for the I'th segment.

Notice that the superscript is now removed from the phase spectrum,
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indicating that it is the complete phase spectrum for the interstation
Green’s function, not the residual spectrum of the pseudo-autocorrelation

function. From (4.2.3) it is related to the wavenumber estimate by
big =k z; +2nr (4.2.36)

The integer n() indicates that the phase can be incorrect by a multiple of
2m. The superscript (I) indicates that the multiple can change value at
different frequency locations, due to 7 - discontinuities. Construct the
weighted minimization function

J2

M = E (¢z’jl - k;l Ti; + O(I) )2 wi]zl
I=J1

where w;; =1/0,;, and z;; is the interstation distance. ¢ is an unk-
nown constant over the frequency interval between J1 and J2, represent-
ing the difference between the unwrapped spectrum and the "true" phase
estimate lela:,-j. The phase estimate does not have to be exact, but £
should be within 47 of the true wavenumber. This will be discussed in
detail below. Least-squares analysis on (4.2.36) in terms of the constant

over the I'th segment yields

J2 .
o) = )y wijzl (bip — kymy) | D, (4.2.37)
1=J1
where
2,
D = 3 wj
I=J1

From (4.2.36), the constant should be a multiple of 27, so define
on) g ~ )

where n{!) is the nearest 27 multiple to C). The phase for the I'th
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segment can now be corrected with
by =d +2nD ., J1<I1<J2. (4.2.38)

The procedure is repeated for all segments in all the interstation Green’s

functions.

To calculate the wavenumber estimate IEZ, stacking methods must be
used, such as defined in chapter 3. For example, if a p —w stack is initially
used to calculate the initial interstation phase estimate (4.2.4), it can also
be used to define the above wavenumber estimate k. However, when
noise levels are extremely high, the side-lobes generated by the Fourier
kernel (3.2.11) may significantly interfere with the true location of the

wavenumber. In this case, a more robust stacking procedure can be used.

At a given frequency [, define the following double sum

N-1 N
Fi(k) = 33 Y cos(k T — Piqt) s (4.2.39)
t=1 j=i+1
where
$;y = cross-correlation phase spectrum from (4.2.36),
z;; = interstation spacing,

k = wavenumber variable.

Referring to the Green’s function matrix (4.2.2), the above sum is over all
interstation combinations above the diagonal. This insures that all
interstation phases will contribute to determining the wavenumber esti-
mate. Substituting the wavenumber estimate (4.2.36) for the phase in
(4.2.39) gives

N-1 N A
Fi(k) = > 3 cos[(k — kl)xij] ' (4.2.40)
t=1 j=i+1
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The 27 multiple term now disappears since the cosine function is invari-

ant to modulo 27 additions.

The stack defined by (4.2.39) has several features which make it use-
ful for calculating wavenumber estimates under noisy conditions. First, it
will reach a maximum when k& = £. This is clear from (4.2.40), since the
individual cosine elements are maximized when k& = £. Second, the esti-
mates for 13, will be more stable than those determined in a p —w stack,
since the unwrapped phase spectra used in (4.2.39) are determined from
phase-matched interstation cross-correlation functions (4.2.5). The stabil-
ity comes from the improvement in signal to noise by time windowing the
pseudo-autocorrelation function in (4.2.5). Third, local maxima caused by
sidelobes in (4.2.39) are smaller than the p-w stack, and the width of the
major lobe is narrower. This can be demonstrated for the special case of
equally spaced stations. Under this condition, it can be shown (see

Appendix II) that (4.2.40) reduces to a Fejer kernel (Papoulis, 1977, p. 72)

| _sin®[ (N)(k—k)8z/2] N
Al = Ry 2 (4.241)

where 0z is the interstation spacing. The equivalent Fourier-series kernel
( assuming negligible attenuation ) for the p —w stack is given by (3.2.11).
Figure 4.2 is a plot of the two kernels, which clearly confirms the third
assertion.

It should be emphasized that the purpose of the cosine stack (4.2.39)
is to give robust wavenumber estimates after phase-matched filtering. It
is most useful in cases where noise levels are so high that coherent energy
is not discernible from p —w plots. This will be demonstrated below in

the section on multi-channel surface-wave applications.



Figure 4.2 P-w stacking kernels. (a) Fourier kernel. (b) Fejer kernel.
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4.2.6 Summary

The above method for analyzing multi-channel phase velocity disper-
sion can be condensed into the following algorithm for reference. It is
assumed for convenience that discrete frequencies are used, with sub-
scripts given by "I", as in the section on phase unwrapping.

Step 1. Calculate the interstation cross-correlation function (4.2.5) and
unwrap the corresponding pseudo-autocorrelation phase ¢,§-l , as in
(4.2.34).

Step 2. At frequency points where there are 7 - discontinuities, construct
the jump table (4.2.35).

Step 3. Calculate the phase for the interstation cross-correlation func-
tion (4.2.5) using the unwrapped pseudo-autocorrelation phase and the

original phase estimate used in the matched filter (4.2.4):

~

bin = 0k — iy
Step 4. Adjust the cross-correlation phase to the nearest correct 27 loca-
tion (4.2.38) on each continuous segment defined by the jump table in
step 2. This may involve constructing the cosine stack (4.2.39) for stable
wavenumber estimates.
Step 5. Determine phase standard deviations (4.2.11) and (4.2.12) using
interstation coherency measurements.
Step 6. Perform weighted regression analysis on the interstation phase
estimates (4.2.14) , to find wavenumber estimates (4.2.15) and standard
deviations (4.2.16) for the i’th row of the Green’s function matrix (4.2.2).
Step 7. Find the weighted mean wavenumber across all rows (4.2.18)
and the associated variance (4.2.19).

Step 8. Transform the mean wavenumber and variance into phase
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velocity and velocity variance using (4.2.24) and (4.2.25).

This completes the technique for multi-channel phase velocity pro-
cessing. In chapter 6, applications will be made to real and synthetic

data sets, in order to test the method in a variety of noisy environments.



CHAPTER 5

LINEAR INVERSION THEORY
5.1 General theory

5.1.1 Introduction

Many geophysical problems can be modeled as a Fredholm integral

of the first kind (Twomey, 1977, p. 5):

y(t)= [ A(t,r) z(r) dr (5.1.1)
where

t,r = coordinate systems for data space and model space, respectively,
z(r) = model parameters desired, such as density, velocity, or Q,
(t) = observational measurements,

Y
A(t,r) = integral kernel relating model parameters to observations.

In the context of equation (5.1.1), the purpose of linear inversion is to find
physically acceptable solutions to the model z(r), which will in some

sense satisfy the observational data y(t) .

Backus and Gilbert (1967, 1968) pointed out that although geophysi-
cal models can generally be regarded as continuous functions of r, "obser-
vational measurements" usually imply a discrete set of data points. In this

case, (5.1.1) must be modified to

y = [ Ai(r) z(r) dr ;i =12.m (5.1.2)

where m is the total number of observations. There are a variety of ways

-69_



-70 -

of inverting (5.1.2) for z, given known data y;. Three well known tech-
niques are the Backus-Gilbert method, series expansion, and discrete

modeling. These will be briefly outlined below.

5.1.2 Backus-Gilbert method

The Backus-Gilbert method (Backus and Gilbert, 1967, 1968) is in a
sense the most general solution possible for (5.1.2), in that it requires no
a priors parameterization of the model z(r). The solution is continuous,
and is constrained only by the maximum resolution obtainable by the

particular Fredholm integral used.

The model is constructed at any continuous point 7’ as a linear com-
bination of all the data points y;. Specifically, both sides of equation

(5.1.2) are summed as follows:

éhi(r’) g = f}lh,.(r')fA,.(r) o(r) dr | (5.1.3)

r

where h;(r') is a set of as yet unknown constants evaluated at point ’.

Equation (5.1.3) can be written as
M oh(r')y; = [R(r'r)z(r)dr, (5.1.4)
r
where
m
R(r',r) = Y] hi(r') Ay(r) . (5.1.5)
{=1

The essence of the Backus-Gilbert method is to find a set of A;(r') that

will allow equation (5.1.5) to approximate a Dirac delta function:

R(r' ) = SO (') Ai(r) = 6(' —1). (5.1.6)

$=1
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Substitute (5.1.6) into (5.1.4) for

[R(" 1) z(r)dr =~ fé(r’ —r)a(r)dr = &(r"), (5.1.7)
T r
which gives the model estimate as a linear combination of the data
m
g(r')= > h(r") y; . (5.1.8)
t=1

Equation (5.1.5) is the "resolution kernel" for the model estimate (5.1.8).
The estimate will be a weighted average of possible models about position

r!, as shown by equation (5.1.7).

Applying the Backus-Gilbert method requires constructing a least-
squares minimization function in terms of the residuals between the reso-
lution kernel and the Dirac delta function in (5.1.6). For each point 7', a
set of h;(r') is found which will minimize the sum of the squares of the
residuals. Additional constraints to control the variance of the solution
can be incorporated into the minimization function, leading to a "tra-
deoff" between resolution and variance. This procedure is discussed in

detail by Backus and Gilbert (1967, 1968).

An advantage of the Backus-Gilbert method is that the form of the
solution depends only on the original equation (5.1.2). No parameteriza-
tion of the model is required, such as "block modeling" or discrete model-
ing. A disadvantage is that the inversion coefficients h;(r’) must be
reconstructed in a least-squares system of equations for every point r/ .
When the number of observations becomes large, the time to find a solu-

~ tion for many points in model space can become unacceptably long.

The other methods discussed below can be computationally more

efficient than Backus-Gilbert, but at the expense of parameterizing the
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form of the model.

5.1.3 Series expansion

For particular cases, it may be possible to parameterize the model in

terms of a truncated series of linearly independent basis functions:
n
Z b; [(r) (5.1.9)

where

/i(r) = basis function,
b; = basis function coefficient,

n = total number of coefficients.

For example, Woodhouse and Dziewonski (1984) took advantage of the
sphericity of 'the earth and modeled the three-dimensional velocity distri-

bution as a set of spherical harmonic basis functions.

Substituting (5.1.9) into (5.1.2) gives
n
Yy =fA,-(r) > b; fj(r) dr
r Jj=1
which can be rearranged as
n
= 3 { JAi(r)/;(r)dr } b, . (5.1.10)
J=1 r

Considering the integral in brackets as elements of a matrix, (5.1.10) can

be written in the simple form
v = >, Ay bj . (5.1.11)

Equation (5.1.11) can be inverted for b; by standard least-squares
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algorithms. Once the coeflicients have been found, they can be substi-

tuted into equation (5.1.9) to form a continuous solution.

5.1.4 Discrete modeling

This method is applicable in cases where the model can be approxi-
mated by discrete, or piece-wise constant values over the model space.
With no loss of generality, equation (5.1.2) can be written as a sum of

integrals over subregions of the model space:
n
Z [ A;(r) 2(r) dr . (5.1.12)
=ty

The subscript r; represents the integral boundaries on the j’th subregion.
If z(r) is constant within each subregion, it can be factored from the

integrals in (5.1.12) for

= S { [ A4 dr}a, (5.1.13)
j=1 .

Ty
where z; is the constant value of z(r) in the subregion. This can be

simplified to
n
= 3 4; g, (5.1.14)
J=1

where A;; represents the integral in brackets.

Discrete modeling is frequently used for tomography problems
(McMechan, 1983), where the velocity structure is subdivided into a large
number of blocks, with a constant velocity assumed in each block. The
forward problem (5.1.12) is the observed travel time as an integral func-

tion of wave slowness across the structure. The method is also used for
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problems that assume a spherical or plane-layered earth structure.
"Plane-layered structure" is defined as a medium which is laterally homo-
geneous, with a piece-wise constant depth variation. It is particularly
applicable for plane-layered surface wave analysis, since the integral in
(5.1.13) can be analytically evaluated. This will be discussed below, in

the section on surface wave inversion.

All the above methods result in matrix equations similar to (5.1.14).
Further analysis requires finding an inverse solution to (5.1.14) in terms
of z;. This can be complicated by instability in the system, occurring
when small errors in y; are magnified into large errors in ;. The

mathematical procedure of finding stable solutions to (5.1.14) will be dis-

cussed below in terms of orthogonal decompositions.

5.1.5 Least-squares analysis and singular value decomposition

Equation (5.1.14) assumes that the observed data will exactly equal
the theoretical values, which is not true in practice. To compensate for

errors, a residual term is added to (5.1.14):
y=3 Ay 3 + € (5.1.15)

It is convenient at this point to write (5.1.15) in vector-matrix form, so

the entire set of observed data can be represented in one equation. Let
y = Ax + €, (5.1.16)

where

y = m x 1 vector of observations,

x = n x 1 vector of unknown parameters,
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€ = m x 1 vector of residuals,

A = m x n kernel matrix.

The convention used is that any bold-faced entry indicates a vector or

matrix, while all other variables are scalar.

The principle of least-squares states that a valid set of model param-
eters (x) is one which minimizes the sum of the squares of the residuals

(€). The minimization function can be represented mathematically as
m
Mix) = efe = |e|? = 3] ¢ . (5.1.17)
=1

The terms on the right are the same, being three different Ways of
expressing the squared norm of the residuals. The superscript "7T'" indi-
cates the transpose of €, and the bars "| |" indicate the root mean square
norm of €.

Finding a minimum for M is simplified by the singular value decom-
position (SVD), an orthogonal transformation of the A matrix. Lawson
and Hanson (1974, p. 107) show that any arbitrary matrix can be

transformed into

A =UAVT (5.1.18)
where
U = m x m orthogonal matrix,

V = n x n orthogonal matrix,

A = m x n upper left diagonal matrix.

"Orthogonal" means that the transpose of the matrix is also the inverse,

and "upper left diagonal” means that A can be written as
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(5.1.19)

where
A, = k x k diagonal matrix.

The terms along the diagonal are the singular values of the A matrix, and
the rank of the A matrix is &, the number of non-zero singular values.

From (5.1.19), the rank of the matrix obeys the inequality
k< min(n,m). (5.1.20)

Equations (5.1.18), (5.1.19), and (5.1.20) lead to a general classification for

arbitrary matrices (Lawson and Hanson, 1974, p. 3). If

n > m the matrix is overdetermined,

n < m the matrix is underdetermined,
n =m the matrix is even determined,

k = min(n,m) the matrix has full rank,

k < min(n,m) the matrix is rank deficient, or underconstrained.

The matrix may have full rank, but one or more of the singular values
may be much less than the maximum. Given \; as any singular value of
A, if \; << Ap.x ; the matrix is poorly constrained. This condition is
common in geophysical problems.

To transform the least-squares problem, substitute (5.1.18) into
(5.1.16) for

y = UAVTx + €.

Multiply both sides by UT, the inverse of U for
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Uly = AVTx + UTe.
Make the following variable substitutions
g=UTy, p=VTix, e=UTe (5.1.21)
for
g = Ap + e. (5.1.22)

Equation (5.1.22) is equivalent to the original least-squares problem since

the minimization function for (5.1.22) is the same as (5.1.17):
M(p) = efe = TUUTe = €Te. (5.1.23)

This demonstrates that the least-squares problem is invariant to multipli-

cation by orthogonal matrices.

To find the least-squares solution, partition (5.1.22) according to the

8k Ay Of |ps ey
[gm—k] B l:() 0] [pn—k] + [em—k] ' (5.1.24)

The subscripts indicate the dimensions of the vectors and matrix. From

rank of A:

(5.1.23) and (5.1.24), the minimization function is
Mp) = lel* = legI* + leny [*,
which from (5.1.24) is
M) = lgp —Aypi 12 + gy 17 (5.1.25)

The minimum of (5.1.25) corresponds to the vector p; which sets the first

norm to zero, and this can be found immediately from

pr = Afle (5.1.26)
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From (5.1.26), (5.1.24), and (5.1.21), the solution to the least-squares
problem is

[pk ]
= , = Vp. 5.1.27
P Pn—k X P ( )

Equation (5.1.25) is remarkable in that the least-squares solution can
be found from algebraic considerations alone, without resorting to
differential calculus. The solution is completely general; no restrictions
are made on the dimensions or rank of A. Another feature of (5.1.25) is
that the minimum residual can be determined directly from g,,_;.
Notice that for full rank underdetermined problems, m =k and from
(5.1.25), the minimum residual is zero.

Unless the problem is full rank and overdetermined (n = k), the
solution will be non-unique. Only p; is necessary to minimize the resi-
dual in (5.1.25), and inspection of (5.1.24) shows that p,_; is arbitrary.
Therefore, there are an infinite number of possible values for p in (5.1.27).
This leads to the concept of the "minimum length" solution for under-
determined (or underconstrained) problems. If p,_, is arbitrarily set to

zero, a valid least-squares solution is, from (5.1.27)

P
X = V[O ] (5.1.28)

Substituting (5.1.26) into the minimum length solution (5.1.28), and

transforming back to the original variables in (5.1.21) gives
x = VA1UTy (5.1.29)

where

B A 0]
A7 =16 ol
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The dimensions of A™! are n x m. This leads to the definition of the
generalized inverse (Penrose, 1955):

H, = VA lUT . (5.1.30)

For full rank problems, there are two equivalent forms to the gen-

eralized inverse. If the problem is overdetermined, the inverse can be-

written

H, = (ATA)1AT (5.1.31)
and for underdeteymined problems, the inverse is

H, = AT(AAT) 1. (5.1.32)

These can be verified by substituting the singular value decomposition
(5.1.18) into (5.1.31) and (5.1.32). Under the stated constraints (full rank,
over or underdetermined), multiplying out the matrices shows that the
two forms are exactly equal to the generalized inverse (5.1.30). For even

determined systems, (5.1.31) and (5.1.32) are equivalent.

Another way of expressing the generalized inverse is in terms of a
vector sum. Letting each column of U and V represent orthogonal vec-

tors u; and v;, matrix manipulation of (5.1.29) leads directly to the sum

k u]-Ty
X = '21 >\j v (5.1.33)
]=

This gives the solution vector as a sum of k£ orthogonal vectors v;. For
poorly constrained problems, at least one of the singular values (X\;) will
be small, and this can lead to excessive magnification of the corresponding
vector v;. This defines an unstable least squares problem, and the next

section will discuss inverse solutions which control the instability.
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5.1.86 Stochastic inversion

Generalized inversion gives solutions to rank deficient least squares
problems, but it does not address poorly constrained problems, where
singular values approach, but do not exactly equal zero. One method of
dealing with small singular values is to set them equal to zero, reducing
the rank of the problem. This is the "sharp cutoff" technique (Wiggins,
1972). In (5.1.33), only v; vectors with relatively large singular values
are included in the sum, in order to produce physically reasonable solu-
tions. In practice, however, this method sometimes leads to unwanted
"ripples” or oscillations in the solution, due to the abrupt truncation of
the vector sum (5.1.33). The effect is similar to the problem of using ideal

low-pass filters in Fourier analysis.

Another approach to instability is to constrain the norm of the solu-
tion vector. In (5.1.33), small singular values can produce solutions with
large magnitudes. To control this, the Levenburg-Marquardt damped
least-squares method (Levenburg, 1944; Marquardt, 1963) includes the
norm of the solution vector as a part of the least-squares minimization
function. This is implemented by appending a scaled identity matrix to

the original least-squares problem:

ol b

The scalar variable v is undetermined at this point. If it is set equal to

€

€y

x + (56.1.34)

zero, (5.1.34) reduces to the original least-squares problem. The minimi-

zation function is

M(x) = le[* + e[
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which from (5.1.34) is
Mkx) = ly—Ax|* + #x[|*. (5.1.35)

As the value of 42 increases, more weight is put on minimizing the solu-
tion norm, and less on the least-squares residual. This insures stable solu-
tion vectors, but at the expense of larger least-squares residuals.

No matter what the rank and dimension of the original problem,
equation (5.1.34) is overdetermined and full rank. This is obvious since
the scaled identity matrix is even determined and full rank. It can be

expressed as an independent least-squares problem
¥ = Ax + ¢,
where the new variables are equivalent to the partitioned ones in (5.1.34).

Since this problem is full rank and overdetermined, equation (5.1.31) is a

valid inverse:
x = (ATA1AT y
Substituting back the original variables in (5.1.34) and multiplying out

the partitioned matrices yields

x = (ATA++1) 1Al y .
This defines the Levenburg-Marquardt damped least-squares inverse

H, = (ATA++) 1 AT (5.1.36)
For non-zero <y, H, is completely general in that no restrictions on rank
or dimensions are necessary for the A matrix. If v =0, (5.1.36) reduces

to (5.1.31), and the inverse exists only if A is full rank and overdeter-

mined.
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The orthogonal equivalent of (5.1.34) is found by substituting the
singular value decomposition (5.1.18) into (5.1.34) and multiplying both

sides by the partitioned orthogonal matrix

Ul o
o v}~

Using the variable substitutions in (5.1.21), the orthogonally transformed

o

This is equivalent to (5.1.34) since the minimization function is invariant

system is written

e

P+ |, (5.1.37)

g

to multiplication by orthogonal matrices (see (5.1.23)). Considering
(5.1.37) as an independent least-squares problem, it is full rank and over-
determined, so (5.1.31) is a valid inverse. Following the same steps as the

Levenburg-Marquardt inverse results in a solution
p = (ATA +y0) 1Al g

The inverse matrices are diagonal, so multiplying out the terms gives

- Al o
p = Ag = o ol&: (5.1.38)

where A has the same form as in the generalized inverse (5.1.29), but the

individual singular values on the diagonal are modified as
- A2
;

Substituting back the original variables in (5.1.21) gives

x = VA lUTy (5.1.40)



- 83 -

which leads to the definition of the stochastic inverse
H, = VA™'UT . (5.1.41)

It has exactly the same form as the generalized inverse, except that the
singular values are modified as in (5.1.39). The effect on the solution can

be seen by modifying the equivalent solution vector sum (5.1.33)

(5.1.42)

k u]-Ty
X =

< V; -
i=t (T N)

This stabilizes poorly constrained problems by increasing the size of small
singular values. The value of 4* can be varied by trial and error in

(5.1.42) to produce reasonable physical models.

The drawback of (5.1.42) is increased minimum residuals for the ori-

ginal least-squares problem. From (5.1.38)

-1
Pr = Ay g

Putting this in the original least-squares minimization function (5.1.25)

gives
M) = lgp — MAT'g 2+ gy 12

Writing this in summation form and rearranging terms results in

—_ )2 2 2 2
M(p) = 9;° + 9 . 5.1.43

The first norm will be zero when -~y is zero, leaving the original least-

squares residual. As 7y increases, the total residual also increases.

The term "stochastic" comes from an independent formulation of the
inverse problem based on the statistics of the data and model covariance

matrices (Jordan and Franklin, 1971; Aki and Richards, 1980, p.695). A
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special case of this inverse is
H, = AT(AAT +~21)71. (5.1.44)

Substituting the singular value decomposition (5.1.18) into (5.1.44), and
multiplying out the matrices shows that (5.1.44) is equal to the orthogo-
nal inverse (5.1.41). As long as v is not zero, the A matrix in (5.1.44) can

be any rank and dimension.

Although the development is different for the above inverses, it
should be emphasized that mathematically, (5.1.34), (5.1.41) and (5.1.44)
are exactly equivalent for non-zero ~y. Therefore, it is convenient to label
all of them as "stochastic", unless there is a specific reason to differentiate

between the methods.

5.1.7 Filtered inversion

The Levenberg-Marquardt method of appending to the original least

squares problem can be generalized to the following form:
y —
ol =

F = n x n arbitrary matrix.

A
~F

€
X -+

c, (5.1.45)

where

The matrix can be constructed to constrain individual elements of x in
any desired manner. This differs from the stochastic inverse, which from
(5.1.34) gives equal weight to each element of x. If F has an inverse,
(5.1.45) can be transformed into a stochastic problem by the following

operation:



- 85 -

A

~F [ X T

AF—I
(FF)x = [fyl ]Fx.

~F

Make the variable substitutions

% = Fx, A = AF! (5.1.46)

)- b

This is an equivalent stochastic problem, operating on a "filtered" set of

for

€

x + | (5.1.47)

g

the unknowns, X. From the previous section, define the stochastic solu-
tion of the filtered model as

¥ =Hy.
Transform back to the original variables (5.1.46) for

x = FlHy. (5.1.48)
From (5.1.18) and (5.1.46) let

A A

AF! = A = UAVT |

Substituting into (5.1.48) the stochastic inverses (5.1.36), (5.1.41), and

(5.1.44) gives equivalent explicit forms for the filtered inverse

H;y = F1ATA +1)1AT (5.1.49)
H,, = F1AT(AAT + 1) (5.1.50)
H;,, = F1VA107 (5.1.51)

The filtered inverse is useful in problems where a direct minimization of
the solution vector norm is inappropriate. Instead, it puts constraints on

the norm of a linear transform of the solution vector (%). The next
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section will discuss a specific example of this, which is useful in one-

dimensional problems.

5.1.8 Differential inversion

In one-dimensional problems involving gradients, such as the velocity
distribution in plane-layered media, a natural constraint is on the norm
of the solution gradient, instead of the solution magnitude. This can be

realized by a first-order difference filter operating on the solution vector.

Let
X, == Fd X,
where
1 —1 0 O 0
0O 1 -1 0 0
0 O 1 —1 0
Fy = 0 (5.1.52)
0
. 1 —1
O 0 0 0O0O0O00O0 1

If z is the one-dimensional coordinate, then x' is the approximate
differential of x at z. The inverse to F exists, being an integration

operator defined by the upper triangular matrix

===
O O M o
QO =
ok

Fil =
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Equation (5.1.52) defines a linear transform of x, so the filtered
inverse of the previous section applies. From (5.1.46) and (5.1.47), the

least-squares minimization function is

M) = Iy = Ax ]2+t J2
The constraint for stabilizing the least-squares problem is now in terms of
the differential x’. The solution vector can be found by the appropriate

inverse in (5.1.49-5.1.51). Examples of differential inversion will be given

in the section on surface wave inversion.

5.1.9 Data and model covariance

In order to completely describe observed data, it is necessary to know
the error associated with each data point. This is accomplished by treat-
ing the observations as random variables, with known means and covari-
ances. The model can also be treated as a set of random variables, with
means and covariances determined as functions of the observations and

the inverse operators.

Jenkins and Watts (1968, p. 72) define means and covariances in

terms of expected values. Given a random variable z, the mean is
o0
<z> = [ z [(z) dz, (5.1.53))
—Q0

where f(z) is the probability density function of z. For two random

variables z; and z,, the covariance between them is defined as

f f (21 — <z1>)(@g — <T9>) f19(2y, 20)dzdTy (5.1.54)

~—Q00=-00



- 88 -

where f 19(2, 2o) is the joint probability density function. The variance

of a random variable is a special case of (5.1.54):
oo
<(z —<z>)P> = [ (z —<z>)? f(z) ds . (5.1.55)
-0

By definition, if the variables are independent, the joint probability
density function is a multiple of the individual probability density func-

tions:

[1a(z1, 20) = [1(zy) folzy) .

In this case , substituting into (5.1.54) and manipulating the integral

gives
<($1 - <$1>)($2 - <Q72>)> = <171 - <ﬂ71>><372 -_ <$2>> = 0.
For a set of observations defined by the vector y, the vector mean is

defined as the mean of each element:

<y> = (<¥i1> <¥o>, -+ . <Yp>)T (5.1.56)
The transpose indicates that y is a column vector. The covariance is
defined as the matrix

D =< (y—<y>)y—<y>) > . (5.1.57)

It is understood that the expected value operates on each element of the
matrix, as in (5.1.56). An important feature of the covariance matrix is

symmetry:

D = DT . (5.1.58)

A feature of the expected value is linearity. Given two constant

matrices A and B,
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<Ay +By> = A<y> + B <y> . (5.1.59)
This can be verified from (5.1.53) and (5.1.56).

To find the covariance matrix for the model, first assume that a

least-squares inverse matrix has been found relating x to y :
x = Hy . (5.1.60)
If x and y are considered to be random variables, the mean of (5.1.60) is

<x> = <Hy> = H<y> . (5.1.61)
From (5.1.57), define the model covariance as

C = < (x—<x>)(x—<x>)T > . (5.1.62)
Substitute (5.1.60) and (5.1.61) into (5.1.62)
C = < (Hy —H<y>)Hy — H<y>)T >
Factor out the inverse matrix
C = <Hy —<y>)y —<y>)THT >
Use the linearity of the expected value operator for
C =H<(y—<y>)y—<y>)T>HT,
and substitute in (5.1.57) for the final result
C = HDHT . (5.1.63)
As a special case, assume that the data are independent random vari-

ables, and that the variance for all the observations are equal. Under

these conditions,
D =o0%1, (5.1.64)

where o 2 is the data variance, and I is an identity matrix. Substituting
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into (5.1.63) gives

C = *HHT . (5.1.65)

It must be emphasized at this point that (5.1.63) is an intermediate
result, valid only for the special case (5.1.65). For the general data
covariance matrix, the least-squares minimization function should be
modified to give more weight to observations with small variances, and
less weight to large variances. This results in "maximum likelihood"

inversion (Menke, 1984, p. 79), which is discussed in the next section.

5.1.10 Maximum likelihood inversion

Maximum likelihood is a statistical method for estimating parame-
ters of a given probability density function, based on samples of random

variables. Let

P(y) = /(y,0)

be an assumed joint probability density function of y, where 0 represents
known parameters of the function, such as the variance or mean. If y, is
a sample of the random variable y, the likelihood function is defined as

(Jenkins and Watts, 1968, p. 116):
L(O) = [(vo 9).

The likelihood function differs from the probability density function in
that the parameters (0) are now assumed to be unknown, and the sam-
pled values of the random variable are fixed. The maximum likelihood

estimate is defined from

L(0) = max[ f (yo, 0)] (5.1.66)
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The estimate 0 is defined at the point which maximizes the probability of

the sampled data y,.

To determine the mean of sampled observations, the maximum likeli-

hood estimate is written

L(<y>) = max| [ (yo <y>)] - (5.1.67)

Assuming that the data is related to the model by (5.1.16)

y = Ax+e€,
the mean value is
<y> = A<x> + <€>
If it is also assumed that
<€> =0 (5.1.68)

then A<x> is an unbiased estimate of the mean <y>. Substituting into

(5.1.67) gives the maximum likelihood estimate in terms of the model
L(<%x>) = max| [ (yq, A<x>)] . (5.1.69)

Equation (5.1.69) is the basis for maximum likelihood inversion. While
least-squares inversion finds a model by minimizing residuals, maximum
likelihood determines the model by maximizing the probability of sampled

data.

For many geophysical problems, a reasonable probability density
function for observed data is the multivariate normal distribution

(Menke, 1984, p. 30):

1
(2m)m/? D |12

fly) = exp| --—;—(y — <y>) DYy —<y>)]  (5.1.70)
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where m is the number of observations, and D is the data covariance
matrix. Assuming that the model gives an unbiased estimate to the data
(5.1.68), and that y, is the sampled data, the maximum likelihood esti-

mate of the model (5.1.69) is found from
L(<k>) = max{exp[ —%(yo — A<x>)TD Yy, — A<x>)] } . (5.1.71)

Since the argument of the exponent is negative, (5.1.71) will have a max-
imum when the argument is minimized. This leads to the definition of

the generalized least squares minimization function:
Mx) = (y —Ax)’D Yy — Ax) = D e, (56.1.72)
where y now represents the sampled data, and x is the model mean.

Equation (5.1.72) can be transformed into a standard minimization
function by modifying the original least-squares problem (5.1.16). Since
D is symmetric (5.1.58), D~! is symmetric, and a matrix E can be found

such that
D! = ETE . (5.1.73)

This can be verified by writing D in terms of a symmetric singular value

decomposition (Jackson, 1972)
D = VAVT | D1 = vA~IvT | (5.1.74)
Define E as
E = A1/2vT (5.1.75)
Then

ETE = VA~1/2 A-12vT = D1 |
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and (5.1.73) is proved. To transform the original least-squares problem,

multiply both sides of (5.1.16) by E:
Ey = EAx + Ee. ' (5.1.76)
This defines a new least-squares problem
¥ = Ax + €, (5.1.77)
with a minimization function given by
M(x) = €€ = ¢TETEe = D¢, (5.1.78)
which is equivalent to (5.1.72).

The above shows that a least-squares problem can be transformed
into 2 maximum likelihood problem by modifying the equations according
to (5.1.76). Since this defines a new least-squares problem, the inverse
matrices (5.1.34), (5.1.41), (5.1.44), or (5.1.49-5.1.51) can be used to find

the model estimate:
x = HY. (5.1.79)

The bar above the inverse indicates that it is constructed for the
transformed system (5.1.77). The model covariance matrix can be found

from (5.1.63)
C=HDHT, (5.1.80)

where D is the transformed data covariance matrix, defined from (5.1.57)

as
D=<F-—<ym)F—<v)T > .
Going back to the original coordinates gives

D = < (Ey — E<y>)Ey —E<y>)T > .
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Factoring out E results in
D =E <y —<y>)y —<y>)I>ET |,

which from (5.1.57) is

| D = EDET . (5.1.81)
From (5.1.74) and (5.1.75), the matrix in (5.1.81) can be written

EDET = A-1/2VvT VAVT VA-1/2 = A-12AA-12 = 1 |
and (5.1.81) reduces to an identity matrix
D =1I. (5.1.82)

Substituting (5.1.82) into (5.1.80) gives the final form for the maximum

likelihood model covariance matrix:

C = HHT . (5.1.83)

It should be noted that for the special case (5.1.64) of a diagonal data
covariance matrix with equal variances, (5.1.83) is equal to the least-

squares model covariance matrix (5.1.65).

In terms of the filtered inverses (5.1.49-5.1.51), the maximum likeli-
hood model covariance can be found by substituting into (5.1.83).
Assume that the original problem has been transformed to a maximum

likelihood problem by (5.1.76), defining the new least-squares problem
y = Ax + € .
Let

APl = A = UAVT

The covariance matrices for (5.1.49-5.1.51) are
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Cry = FLATA+ 1)1 ATA (ATA 4+ 42 1(F1)T (5.1.84)
C;e = FLAT(AAT + 4 Y(AAT + 21 L A (F )T (5.1.85)

F1VA2VT 73T (5.1.86)

Q
Py
fl

A™? = nxn diagonal matrix with k¥ non-zero elements defined by

A7? = NG+ 72

J

For non-zero <, all these forms are equivalent. If F is an identity matrix,

(5.1.84-5.1.86) reduce to equivalent stochastic covariance matrices.

5.1.11 Model resolution

The Backus-Gilbert method, outlined in equations (5.1.3-5.1.8), can
also be applied to discrete matrix problems (Menke, 1984, p. 61; Twomey,

1977, p. 169). Assume the problem can be written as
Yy = Ax .

Multiply both sides by H, an unknown inverse matrix

Hy = HAx .
This can be written as |
Hy = Rx , ' (5.1.87)
where
R =HA (5.1.88)

is the resolving kernel of the system. If the elements of the H matrix can
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be found such that
Rx = Ix = %, (5.1.89)

then substituting into (5.1.87) gives the solution

A

X = Hy .

From (5.1.89), the resolving kernel constructs the estimate % as an aver-

age over the solution space x.

The Backus-Gilbert method differs from least-squares and maximum
likelihood inversion in that the inverse is found independently of the data.
The elements of H are constructed by minimizing the difference, subject
to variance constraints, between the resolving kernel and an identity
maftrix, instead of between observed and theoretical data. However, max-
imum likelihood and least-squares inverses can be used to define the
resolving kernel (5.1.88). The meaning is the same as in (5.1.89), except
that the concept of resolution is not directly addressed in constructing the

inverse matrices.

Assume that the original problem has been transformed to a max-

imum likelihood problem by (5.1.76), defining a new least-squares problem
¥y = Ax+¢€.
From (5.1.88), the resolving kernel of the transformed system is
R =HA . (5.1.90)
For filtered inverses, let
AF! = A = UAVT

Substituting (5.1.49-5.1.51) into (5.1.90) gives the resolving kernels:
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Ry = F1(ATA + )1 ATAF (5.1.91)
R;, = FTATAAT 4+ 41)1AF (5.1.92)
R;,, = FIVEVIF (5.1.93)
where
5= nxn diagonal matrix with £ non-zero elements defined by

£ = S .

As in the case of the covariance matrices, (5.1.91-5.1.93) are equivalent for

non-zero 7.
5.2 Surface-wave inversion

5.2.1 Integral forms

In chapter 2, variational methods were used to find first-order phase
velocity perturbations to Love and Rayleigh waves. These were in terms
of perturbations to density (p), shear velocity (8), and in the case of Ray-
leigh waves, compressional velocity («). The integral form for Love waves
is given by (2.2.6), and for Rayleigh waves by (2.2.12). Given phase velo-
city as a measured quantity, the integral equations can be directly set up
for inversion, as shown in section 5.1. However, the unknowns «, 3, and
p are not independent of each other, as the integrals imply. Compres-
sional and shear velocity are related by Poisson’s ratio r,, according to

?
(Bullen and Bolt, 1985):

1
ki 1—2r, |2
o |2=2r, |
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In addition, compressional velocities can be empirically related to density
in the upper crust by the Nafe-Drake relation (Talwani et al., 1959), and
at depth by Birch’s law (Birch, 1964). Der and Landisman (1972) pointed
out that attempting to invert for all the unknowns simultaneously
significantly degrades their resolution. However, they also showed that
changes to phase velocities are dominated by shear velocity perturbations,
with relatively small contributions coming from density and compres-

sional velocity perturbations.

Since the integrals are only accurate to first order, several inversion
iterations may be required to converge to a solution. An alternate scheme
to simultaneously inverting all parameters is to use the dominance of
shear velocity perturbations. Holding compressional velocity and density
fixed, the integral equations can be inverted for shear velocity alone. The
solution can be used to update compressional velocity using Poisson’s
ratio, and then density using the Nafe-Drake relation and Birch’s law.
The integrals can be recalculated in terms of the updated quantities, and

the procedure repeated until convergence is achieved.

The Love wave equation (2.2.6) in terms of shear velocity perturba-

tions alone is

de(w) = °f° Ap(wz) 08(z) dz (5.2.1)
0
where
diy |?
Ap(w,z) = ﬂllﬁ’V k2, + Tzl_] ] , (5.2.2)

and
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0]
W=rkfu? ds . (5.2.3)
0

It is understood that all terms except 4 in (5.2.2) and (5.2.3) are fre-

quency dependent. The Rayleigh wave equation (2.2.12) can be written as

be(w) = [ Ap(w,z) 68(2) dz (5.2.4)
0
where
dr 2 dr
Ap(w,z) B kro + = + 4krq pp ] , (5.2.5)
and
> o dr dr
W =kf[\+2u)rd +urdlde + [(ury— — Ari—2)dz . (5.2.6)
0 0 dz dz

Again, all terms in (5.2.5) and (5.2.6) are frequency dependent, except X\

and u.

5.2.2 Discrete modeling

Equations (5.2.1) and (5.2.4) are in the form of a Fredholm integral
of the first kind, which is suitable for linear inversion. If measured phase
velocities are sampled at discrete points, the equations can be expressed as
(6.1.2):

bo; = [ Ai(z) 88(z) dz, i =1,2,..m (5.2.7)
0

where m is the number of frequency observations and the kernel A;(z)
corresponds to either A; or Ap. If the velocity structure is assumed to be

plane layered, (5.2.7) can be partitioned as in (5.1.13):
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n
be; = E At'j 5:81' ) J=12,.n (5'2'8)
j=1

where n is the number of shear velocity layers and

Zj+1

Ay = [ Ai(z) dz (5.2.9)

To set up (5.2.8) as an iterative problem, let 5/ (j=1,n) be an initial
guess to the shear velocity structure. Let ¢ be the corresponding theoret-
ical phase velocity, and let ¢/” be the measured phase velocity at the i’th

frequency. Then, if

the problem is to find the perturbations 5,8]- that minimizes the residuals
in
n
beg = >3 Ay B + € . (5.2.10)
j=1
The residual term is added since the first-order sum may not exactly
equal Oc;, the phase velocity perturbation. This is now a standard least-

squares problem, and can be put in vector-matrix form as (5.1.16):
be=Adf+¢€, (5.2.11)

where the dimensions are the same as for (5.1.16). Once 88 is found, the

original estimate can be updated as
B =p + 38

The updated shear velocities can now be used to recalculate the matrix A,

and the process repeated.
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5.2.3 Partial derivatives and group velocities

Another way of setting up the perturbation problem (5.2.8) is to con-

sider phase velocity as a function of discrete shear velocities:
¢f" = ¢ (ﬁ) +¢€

where the subscript represents the i’th frequency and the residual compen-
sates for errors between the observed and theoretical phase velocity. This

can be expanded in a Taylor series about about an initial model B° as
= ¢;(f°) + Z 3,8 5,6’ +€ . (5.2.12)

Equating (5.2.12) with (5.2.10) shows that the partial derivatives are for-

mally equivalent to the integral (5.2.9):

8 4+
A;(z) dz . 5.2.13
g = | A (52.13)

A possible approach to the perturbation problem would be to simply cal-
culate the partial derivatives in (5.2.12) numerically. However, using a
method developed by D. G. Harkrider, Wang (1981, p. 80) showed that
integrals such as (5.2.13) can be solved analytically. This results in enor-

mous improvements in efficiency and stability over numerical methods.

Aki and Richards (1980, p. 291) calculated theoretical group veloci-
ties using variational methods. Group velocity measurements can be
found using methods such as the multiple-filter technique (4.1.7). Thus, a
similar expression to (5.2.12) can be found by expanding group velocity in

a Taylor series about a starting model 8°:

n
U = Z 5ﬁJ +¢ . (5.2.14)
‘=1 90;



- 102 -

Unfortunately, it is not possible to analytically define group velocity par-
tial derivatives. However, using central differences, Rodi et al. (1975)

gave a stable approximation in terms of phase velocity partial derivatives:

Bﬁj B 'Bﬂj ! (9,@]- 8ﬂj -
where
po U
¢y ¢y
and
Q = vi (5.2.16)
Y ¢? ' o

In (5.2.18), b is the discrete frequency sampling interval, and w; is the
i'th frequency. Equation (5.2.14) can now be put into matrix form and

inversion theory can be used to find shear velocity structure.

If group velocities give additional independent information to that
found from phase velocities, equation (5.2.14) can be combined with
(5.2.10) for a simultaneous inversion. Der and Landisman (1972) advo-
cated this, stating that group velocity inversion improves structural reso-
lution, under the condition that group velocity variances are similar in

size to phase velocity variances.

To put this in perspective, construct a measured phase velocity data
set over many equally spaced frequency intervals (h), such as found from

phase matched filtering. Define the following matrix:
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[0 0 o0 o 0
—Q Py @y O 0
O —QS P3 Qs 0
G = 0 . (5.2.17)
. 0
_Qm——l Pm—l Qm—l
| O 0 0O 0 0 0 0 0
Transform the phase velocity equation (5.2.11) by
Géie=GAP+Ge . (5.2.18)
This is equivalent to (5.2.14), with
(@A) =27
Ly aﬁj
defined by (5.2.15), and
(G bc); = U™ — U(B°) . (6.2.19)

This transformation makes it possible to interpret group velocity inver-
sion in terms of phase velocities. The least-squares minimization function

for (5.2.18) is
M@B) =€ef GTG e . (5.2.20)

Since G is not an orthogonal matrix, the minimization function (5.2.20)
will not be the same as for phase velocities, which means that a different
least-squares solution is possible for group velocities. This implies that
for a simultaneous inversion, group velocities can contribute independent
information, under the condition that the statistics for both sets of data

are similar.

To determine the joint statistics, rewrite (5.2.19) as
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8U; = Pibe; + Q; (Sc;yy — bc;y) . (5.2.21)

Let 6U and éc be random variables with statistics described by the meas-

ured values. Define the variances as
o = VAR (U™ , of = VAR (¢") .

Since the group velocity is a linear combination of the phase velocities in
(5.2.21), it can be shown that the group variance is (Jenkins and Watts,
1968, p. 73)

0’.‘“ = Pz'Q Uz'c + Qz’Q(Uz'c—l + o-z'c+1) - 2Qi2 COV(Ciﬂll’ c'mi'l)

+P,' Q,’ COV(C,'m, C,'ril) —_ P,’ Qi COV(C{m, C,’ﬂ_Ll) . (5.2.22)

where "COV" represents the covariance between the enclosed variables.
Now, for a small value of ~ in (5.2.16), the phase velocities at adjacent
frequency points will be quite close. This implies that for locally station-
ary statistics, the covariances in (5.2.22) will be almost identical, and the

same for the variances. Under this condition, (5.2.22) reduces to
ot = Plof + 2Q7 [of — COV (™), ¢/hy)] . (5.2.23)

The correlation coefficient of adjacent phase velocities is defined as (Jen-

kins and Watts, 1968, p. 149)

cove”,,cn
p;(2h) = (e/1,0%1) (5.2.24)

c
gy

The value "2 " indicates the spacing between adjacent phase velocities. If
(5.2.24) is equal to one, the phase velocities are completely correlated,
implying that any change in the first velocity will correspond to an equal
change in the second. This is not unreasonable for smoothly varying

phase velocities, when the value of A is small. If (5.2.24) is equal to zero,
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the phase velocities are totally uncorrelated, implying that the phase velo-
city signal is equivalent to "white" noise. Substituting (5.2.24) into

(5.2.23) gives
o} = Plof + 2Q2 of[1 — p;(2h)] . (5.2.25)
For highly correlated phase velocitiés, (5.2.24) will reduce to
ot =P?2of,

and both group and phase velocities will be on the same order of magni-
tude. However, due to the presence of the A term in the denominator of
Q;, even low levels of noise in the phase velocity will result in unaccept-
ably high variances in group velocity. This is intuitively obvious from
the numerical approximation (5.2.18), which amplifies uncorrelated noise

through the process of numerical differentiation.

The above analysis has the following implications. If coherent group
velocity measurements are available with reasonable variances, the minim-
ization function (5.2.19) indicates that group velocities will contribute
independent information to the inversion problem. However, equation
(5.2.25) implies that under noisy conditions, such as found with short
array lengths in multi-channel processing, the use of phase velocities alone

is preferable.

The next section will test the concepts presented in the last two
chapters on real and synthetic data sets. Particular attention will be paid

to subjecting multi-channel data sets to very high incoherent noise levels.



CHAPTER 6

SURFACE-WAVE APPLICATIONS

6.1 Differential inversion

Surface wave inversion is a poorly conditioned inversion problem
when many thin layers are used to model the velocity medium. Typi-
cally, for a twenty layer medium, less than ten of the eigenvalues will be
effectively non-zero, with the rest being five orders of magnitude smaller
(or less) than the maximum. This requires strong constraints on the

inversion, resulting in decreased resolution in the model.

Section 5.1.8 discussed the use of a first-order difference filter Fy to
constrain the gradient of the solution vector x in linear inversion. In
terms of a plane-layered medium, this is equivalent to constraining the
difference, between adjacent layers in the medium. This is an excellent
constraint for surface-wave applications, since it allows simple, unbiased
starting models for inversion, and the ability to include sharp layer

discontinuities where a¢ prior: information exists on their location.

As defined by (5.1.52), Fy is not a true differential operator, since the
bottom row is not identically zero, but has a one in the last column of the
row. This is required to keep the matrix from becoming singular, but it
has the effect in surface wave modeling of putting a direct constraint on
the bottom layer (half-space), rather than the difference between the bot-
tom layer and the one above. For highly constrained problems, this can
result in the velocity for the half-space remaining close to the initial

model.
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To insure that the initial model does not bias the inversion, and to
allow sharp discontinuities between selected layers, the following

modification to the differential filter F4 is made. Let
Fdw = WFd (6.1.1)

where W is a diagonal weighting matrix of the form

O O O -
O O a ©
QO = O O
- O O O
a O O O O O O

0 0 0O0O00O0

The value of ¢ is a small, but non-zero number placed on rows
corresponding to selected discontinuities, where little constraint in the
inversion is desired. The reason for making € non-zero is to keep Fyg,,
from becoming singular. Fg, can now be used in the context of a filtered

inversion, with the inversion matrices being given by (5.1.49-5.1.51).

It has been suggested that differential inversion results in "smoother"
models than stochastic inversion, since the constraint is on layer
differences, instead of the layers themselves (Claerbout, 1976, p. 120).
This is not strictly correct, since "smoothness" is directly a function of the
damping factor 7y, not on the type of constraint used. For instance, if for
a given 7, the differential inversion results in a smoother model than the
stochastic inversion, the value of v can be made smaller to bring out more
detail in the differential inversion. In addition, the use of a weighting
scheme such as (6.1.1) can result in sharp detail at selected discontinui-

ties, although this must be considered as a priori information, not as a
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consequence of the inversion.

6.2 Single-station group velocity inversion

To test differential inversion on surface waves, a set of group veloci-
ties were averaged, corresponding to a teleseismic path crossing Saudi
Arabia, from an earthquake source in the Gulf of Aden to WWSSN sta-
tion Tabriz, in northwestern Iran (group velocity data courtesy of Hafidh

A. A. Ghalib). The distance across the path is 2662 km.

Figure 6.1 is a plot of the observed and inverted group velocity using
differential inversion. In this run, no discontinuity weighting was applied.
However, the half-space was allowed to freely move by setting € = 0.2.
Figure 6.2 gives the shear velocity results and corresponding resolving ker-
nels. The starting model was a sedimentary layer over a 5.2 km /sec shear
velocity half space. Even with the low resolution expected on a
fundamental-mode Rayleigh wave inversion, the Conrad discontinuity at
13 km, and the Moho at approximately 37 km, are discernible in the form
of gradients. It should be noted that if the half-space was not weighted
at 100 km, the approximately constant velocity between 50 and 100 km
would appear to be an increasing gradient with depth, due to the half-

space being constrained near the starting model of 5.2 km/sec.

Using the apparent gradients as a guide, another inversion was per-
formed, with weights (¢ = 0.1) applied at 13 and 40 km. Figure 6.3 gives
the group velocity results, showing no discernible change from Figure 6.1.
This emphasizes the non-uniqueness of the surface-wave solution, and the
fact that there is not enough information in the data to resolve sharp

discontinuities. Figure 6.4 gives the shear velocity model with resolving



"Bunyy3rom £3InUI3UOISIp OU - woIsIBAUL 99e[d UrIGRIY 1pNEG
91 10] sanopA dnoi3 pojreaur pue poalesqo Jo uostredwop [°9 einij

(334S) d0Id3d
og

1 ai 8 9
| 1 1 1 1 1 1 1 L1 1 1 002
JAVA HIITIAVH

G2 O
b
05z 2
3
-Gl ‘e <
i
- 00°E O
()
-GZ ‘L
—
<

-0G °E
=
-Gl X
TU>LUMJ° e y
pejusaur ... F00°hm
O
o

- G2 *h

0S*h

- 109 -



33 HLd3T

“UOISIAAUI S1Y} UO paziseyduwd Jou 219M SILJINUIPUOISI(] *UOISIPA UL
9re[d uelqely Ipneg 9y} IOJ S[UIsY SUIAJOSII pUR SAI}ID0[dA IBdYS 7'g 9InS1 ]

00! 00t
D4- T - 04
8- - 08
DA- T - 04
0s- 1 a0
DS 1 - 0S
D4 - Oh
O£+ - 0
D2- - 02
Dl- - 0T

0 T T 7 ¥ 0

0°4% 0°59 0°€S S°Zh S°2E 0°hZ 0°9F 0°I1 0°4 S
A3ZITYHUON
STANH3M INIATOS3Y

£°¢ 8°0

0*? 0°'S O°*h 0°‘c 0°‘2C 0°t

(Fas/%4) ALIJ0T3A Y¥V3HS

Y) Hld3ad

- 110 -



00t

‘BuryySom £ynurjuoostp Yjim uotsioaul oyerd urlqery pneg
Y3 0] sanoopea dnoid pajiaAul pue partesqo jo uoistredwio)) g9 oInSiyg

(33S) d0Iy3ad
og

dAVA HIITIAVH

10>Lumao ¢

pajuaaur —. 00

-Ge‘F

-0S°E

- G4 °E

(33S/WM) ALIOO

-GZ *h

0S*h

- 111 -



Y] HLd3T

'syjdap wy QO pue g1 e
sa8ueyo £y100[oA dIeys o1) 901JON] 'SII}INUIJUOISIP UO siseydwd Ym UOISIAUL
ae[d welqEIY IpNEg 9y} 10 S[oUIIY SUIA[OSal pUE SIPVO[dA 18IS F°g 21n31y

00t : 00t
D4- . - 04
D8- - 08
D2 - 02
09 - 09
DS - 0
D%+ - Oh
DL - | - 02
A - 02
DI+ - 01
0 0°24 0°S9 0°¢S S°2h S*2C 0*h@ 0°9F 0°I1 D0°4 &°h &°¢ 8°0 ' ' ' ' 0
A3ZITVHYON D*9? 0°'G O°h O°‘E 0°2 0°T

STANU3M ONIATOS3U (eas/%) ALIJ0T3IA UV3HS

Y] Hld3a

- 112 -



SHEAR VELOCITY (km/cec)

SHEAR VELODCITY Ckm/sec)

1.0 267 4¢3 6.0 1.0 267 4e 3 6.0
0 1 1 0 1 1
25 - 23 A
2 3
2 2
T 50 - - 50 o
= =
[+ O
L L
(=] (=]
7S 75 -
iterl iter2
100 100
SHEAR VELOCITY (km/sec) SHEAR VELDCITY Ckm/sec)
1,0 27 be 3 6.0 1.0 207 4,3 6.0
0 . 1 0 1 ]
235 1 25 4
[gn] [gn]
T 50 b - 50 -
= =
[« B
] Lut
(=1 (=]
75 75 -
iterd T tter?
100 100

Figure 6.5 Intermediate steps in the Saudi Arabian plate inversion with
discontinuity weighting. The iteration number is shown in the lower left
corner of each plot.
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kernels, with distinct breaks now obvious at 13 and 40 km. The gra-

dients forced by the smooth solution in Figure 6.2 have disappeared.

It should be noted that initial model for the second run was the same
as the first; no discontinuities were present, except for a sedimentary layer
at the surface. Figure 6.5 shows the intermediate steps in the inversion.
The character of the gross velocity structure is established by the second
iteration, and subsequent iterations only bring out minor improvements

in the detail of the solution.

6.3 Multi-channel data processing

In 1978, the U.S. Geological Survey conducted a deep seismic refrac-
tion survey transversing the Saudi Arabian shield (Healy, et al., 1982).
Twenty-second analog recordings of the explosion events were made on

standard 2 hz geophones, which were subsequently digitized.

Some of the record sections exhibit pronounced fundamental-mode
Rayleigh waves in the frequency range between 1 and 10 hz, to distances
beyond 50 km from the sources. One of these, corresponding to shot
point 3 northeast (Healy, et al., 1982), was selected for testing the
multi-channel phase-matched filter developed in chapter 4. Figure 6.6 is a
plot of the raw data of the record section‘, clearly showing the pronounced
fundamental-mode Rayleigh waves. All data traces were normalized to
the same amplitude. To accentuate the Rayleigh waves, the data were
passed through a 9 hz, low-pass, zero-phase, seven-pole Butterworth filter.

The result is shown in Figure 6.7.

Using the multi-channel phase-matched filter, phase velocities were

picked between 0.17 and 0.81 seconds, as shown on Figure 6.8. For an
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initial guess of the phase-matched filter, the peaks of the -cross-
correlations between waveforms were used to align the correlations at
zero-lag for time-domain windowing (Jenkins and Watts, 1968, p. 399).
Subsequent iterations used the phase velocities found by the multi-
channel process for an initial guess. The theoretical phase velocities found
from inverting a ten-layer shear velocity model (starting from a half-space
at 3.5 km/sec), are also shown on Figure 6.8. Figure 6.9 gives the final
shear velocity model and corresponding resolving kernels. The inversion
was run twice; first to identify the discontinuity at 0.2 km depth, and

then with a discontinuity weighting of € = 0.1 at 0.2 km.

Since the shear velocity model is quite simple, it was reparameterized
as two layers over a half-space, and the inversion repeated. No con-
straints were necessary (¥ =0). A record section of fundamental-mode
synthetic seismograms was then generated, using a program developed by
Dr. Robert B. Herrmann (program ADDMOD; personal communication,
R. B. Herrmann, 1985). Values of Q@p for the three layer model were
found by trial and error using ADDMOD. The synthetic seismograms
were significantly changed only by @ g in the top layer; it was found to
have a best fit value of 30. The explosion source was modeled as a Dirac
impulse in displacement, corresponding to a source expansion followed by
immediate collapse. It was found that attempting to model the source as
a step function in displacement resulted in synthetic seismograms with
long period energy far in excess of the actual data; no values of Q g would

compensate for this.

The synthetic seismogram record section is shown in Figure 6.10. It

is so close to the actual record section (Figure 6.8), that an overlay was
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made of the two sections in Figure 6.11. This clearly demonstrates the

effectiveness of the multi-channel filter.

6.4 Multi-channel noise study

To more rigorously test the multi-channel phase-matched filter, a
noise study was made on the synthetic seismograms developed in the pre-
vious section. This was done for two reasons: to test the limit of the
multi-channel filter's ability to distinguish signal from noise, and to
insure that phase velocity standard deviations calculated by the filter
would map over into correct standard deviations found for surface wave

inversion models.

Uncorrelated (white) Gaussian noise was added to each trace in the
record section. The noise level was calculated in terms of the peak ampli-
tude of the traces. For instance, a 10% noise level would mean that one
standard deviation of the Gaussian noise corresponds to 10% of the peak
amplitude of the traces. Four increasing levels of noise were used: 10%,
20%, 50%, and 100%. The multi-channel filter was applied to each of
these levels for phase velocities and corresponding standard deviations,
and then surface wave inversion was performed, to see how much the cal-
culated models would differ from the theoretical one used to generate the

original synthetics.

Figures 6.12 through 6.15 show the synthetics with the noise levels
added. Notice that at the 100% level, the signal cannot be distinguished
from the background noise. Figures 6.16 through 6.19 show the multi-
channel filter results. The symbols with the error bars indicate the phase

velocities found by the multi-channel filter. The solid line is the theoreti-
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cal phase velocity for the three-layer model used to generate the synthet-
ics. The small, closely spaced symbols indicate the phase velocities found

by inverting the filter results.

On all the traces, phase velocities found by the multi-channel filter
correlate well with the theoretical values up to 0.6 seconds. Beyond that
the signal deteriorates, but the filter compensates correctly with large
standard deviations. The most unexpected result is at the 100%% noise
level. Even though the traces are indistinguishable from the noise, the
multi-channel filter picks phase velocities which closely follow the theoret-
ical trend. This is surprising, since the initial phase velocity estimates for
the phase-matched filter are simply constant velocities picked from the

lags of the cross-correlation functions.

It should be noted that the cosine stack (4.2.39), corresponding to
the Fejer kernel (4.2.42), was used for the above analysis. A simpler
stack corresponding to the Fourier kernel (3.2.11) was also tested, but the
results failed to converge to theoretical phase velocities at high noise lev-

els.

Figures 6.20 and 6.21 are the inversion results for the noise study.
Since the model was parameterized as two layers over a half space, no
damping was necessary in the inversions (7 =0). The important result
here is that actual deviations of the inverted models correspond closely to

predicted standard deviations of the model.

As a final test, ten of the traces were completely replaced with Gaus-
sian noise, as shown in Figure 6.22. This was done to simulate "dead"
channels, or severe site effects. The locations of the channels were selected

randomly from the data set. Figure 6.23 shows the results of the multi-
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channel phase-matched filter. The close correlation of the predicted phase
velocities to the theoretical values, and the low standard deviations, indi-
cate that the filter effectively ignored the noisy channels. This indicates

robust filter performance under severe field conditions.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The central purpose of this study was to develop a multi-channel
process for measuring phase velocities under adverse conditions, and then
to invert these data for earth structure where little a prior: information
exists. The analysis was successful, even under circumstances where sig-

nals were barely discernible in noise.

The work was initially conceived as a method of stripping off the
shallow crustal structure (weathered layer) in exploration reflection
seismology. Typically, many geophones are spread out at even intervals
from a source, and the resultant record sections often display predom-
inant fundamental and higher-mode Rayleigh waves (ground roll). If the
dispersive effects of the ground roll can be recovered, they can be inverted

for shallow structure.

For use in reflection seismology, an "average" shallow structure across
the dimensions of the array is insufficient. The method must be able to
account for lateral inhomogeneities. In chapter 3, this was done theoreti-
cally by windowing wavenumber kernels with Gaussian windows and
transforming to the spatial domain. However, this method is computa-
tionally intensive, and requires much interaction from the analyst to
properly construct the wavenumber windows on the p-w stack. Another
alternative is to find the homogeneous structure across overlapping seg-
ments of the array, and then to combine the results for a laterally chang-

ing structure. This is conceptually simpler than the method presented in
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chapter 3, an‘d is easier to automate, but it has the major drawback of
making the dispersive analysis highly sensitive to ambient noise levels.
This is intuitively obvious, since as the array segments decrease, the
amount of observable dispersion across the dimensions of the array seg-
ments also decrease. In addition, fewer instruments are available for

measuring dispersion in each segment.

To compensate for this, the multi-channel phase-velocity filter was
developed, which uses coherency as a method of distinguishing signal from
noise, followed by regression analysis on measured phases at each station.
Much of the effort in design was concentrated on statistical weighting,
phase unwrapping, and wavenumber stacking methods which are robust
at high noise levels. The results, which are demonstrated in chapter 6,

indicate that this is a viable method for use in exploration seismology.

Another potential use of the multi-channel filter is in acoustical well
logging, where Stonely waves propagate along the cylindrical boundaries
of boreholes. The variational equations for relating Stonely waves to
structural parameters were not developed here, but follow a similar

analysis to that of chapter 2.

Two areas of further research in multi-channel filtering are group
velocity analysis and Q determination. At the end of chapter 5, equation
(5.2.25) indicates that unless phase velocity correlation is almost one,
group velocity variances will be unacceptably high, making them unsuit-
able for inversion. However, under quiet conditions the group velocity
could significantly improve the resolution in surface wave inversion, so an
actual measure of the group velocity variance could be useful. This may

be accomplished by taking advantage of the dense spectral spacing in
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discrete Fourier transforms, used in the multi-channel phase-matched
filter. If the statistics across the spectrum are assumed to be locally sta-
tionary, a simple average about a given frequency could be used to esti-

mate the correlation coeficient defined by (5.2.24):

-~

+r
(ei-1 — tim)(Cis1 — Bigr)
{=l—r

,0,-(2h) ~

o~

+r ’
(ci — )2

i=l—r
where | is the discrete frequency, 2r is the range of frequencies in which
stationarity is assumed, c; is the measured phase velocity, and y; is the
local phase velocity mean value. The latter can be found from the
theoretical phase velocities determined in surface wave inversion. The
correlation estimate is substituted into (5.2.25) to determine group velo-
city variances, and a combined phase/group velocity inversion can then
be accomplished, using (5.2.19) as a numerical estimate of group velocity

perturbations.

It may be possible to develop a method similar to the multi-channel
phase-matched filter for attenuation measurements, or Q values. Jenkins
and Watts (1968, p. 435) define an estimate for 95% confidence intervals
in bivariate spectral amplitudes, using the coherency spectrum, similar to
the phase spectrum. By using logarithms of the amplitudes, a set of
regression equations similar to that in chapter 4 can be constructed for
determining attenuation values, which can then be inverted for intrinsic Q
structure. However, as pointed out in chapter 3, more care must be taken
in constructing the phase-matched filter for amplitude measurements,

since the amplitude spectrum is more susceptible to bias than the phase
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spectrum (see pp. 42-43).



APPENDIX 1
SELF-ADJOINT LOVE AND RAYLEIGH WAVE EQUATIONS

A-I-1 General theory

Let D define a linear differential operator, which has a vector solution

y to the equation
Dy =0. (A-1-1)
D is defined as self-adjoint if the following condition holds (Butkov, 1968,

p. 341):

[T (Dg)dz = [T (Df) dz . (A-I-2)

z

The vector functions f and g do not have to be solutions to (A-I-1), but
they are required to satisy appropriate boundary conditions on (A-I-1).
Another way of expressing the self-adjoint condition is to define the

operator

Vfg) = [ f(Dg) dz . (A-I-3)

z

From (A-I-2), D is self-adjoint if
V(t,g) = ¥(gf) .

A-I-2 Love waves

From chapter 2, the Love wave equation is

d dll _ 2,
E[u—dz—]_(k p—ePp)ly .

Define the operator (A-I-3) as
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Y(f,9) = { [f % u%]—(”u—wzp)f g ]dz : (A-I-4)

The displacement and stress boundary conditions for Love waves are

dg
=0 s —-=O
f dz

at z = oo and z =0, respectively. Integrate the left side of A-I-4 under

the integral by parts and apply the boundary conditions for

S A e I
Y(f,g) = { e (KPu=ofp) [ g dz (A-1-5)

From (A-I-5) it is obvious by inspection that

V(f,9)=Y(g,f) .

A-I-3 Rayleigh waves

From chapter 2, the equation of motion for Rayleigh waves is
d dr Tdr 9
—(A—— + kBr) = kB'=—— + k2Cr — «?
dz( dz + kBr) dz + r o

where

NN S O e =2X

Define the operator (A-I-3) as

V(fg) =

(o)

[ | T4 (A%E 4 kBg) — k fTBTYE _ 42 £TCg + o2 £Tg |dz . (A-16)
0 dz"  dz dz

The displacement and stress boundary conditions for Rayleigh waves are

f=0, AY® {tBg=0
dz
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at 2z =00 and z =0, respectively. The stress term is equivalent to the
radial and vertical stress eigenfunctions, and can be identified by substitu-
tion into the displacement-stress matrix (2.2.1). Integrate the left side of

(A-I-6) under the integral by parts and apply the boundary conditions for

U(fg) =
* T T

| A8 | 4 gy keTRTIE | Tog _ WpfTg lds . (A-LT)
o | dz dz dz dz

Multiplying out the matrix terms will demonstrate that (A-I-7) is a scalar

integral. Therefore, since the transpose of a scalar is equal to itself,

v (f,g) = ¥(f,g) . (A-I-8)
The transpose of (A-I-7) is
vi(tg) =
TlagT, dt |, dg® df
~[|=—A% + k28 _Bf 4 kgTBTEL + k2% TCf — wpe™t |dz . (A-1-9)
o | dz dz dz dz

The two terms with B and BT have switched position for clarity. Com-

paring (A-I-9) with (A-I-7) shows that

vT(tg) = Ygf) . (A-I-10)
Equating (A-I-10) with (A-I-8) gives the final result:

Y(te) = Yed) ,

which proves that the Rayleigh wave equation is self-adjoint.



APPENDIX IT

FEJER KERNEL CALCULATIONS

The cosine stack defined in chapter 5 for multi-channel processing is

N-1 N .
Fi(k) = 3 3 cos[(k —k)zy]
t=1 f=i+1
where [ refers to the frequency, and z;; is the interstation spacing
between channels : and [/, and N is the total number of stations. For
equally spaced stations, this can be written as
N=1 N .
Filk) = > 3 cos[k(j—¢)éz] (A-II-1)
{=1 j=1+1 ‘
where k = k—k;, and &z is the interstation spacing. This section will

show that the double sum is equal to a Fejer kernel (Papoulis, 1977, p.

72), in the specific form

Fik) =

sin’[ Nk 6z/2] N (A-T-2)
2

2 sin?[ k 6z /2 |
By expanding (A-II-1) term by term, it can be shown that the double
sum in (A-II-1) is equivalent to

N-—

Fi(k) = g}l 1r cos(k r oz) . (A-11-3)

5=
Since the sum over s does not appear inside the cosine term, the double
sum can be condensed to the single sum
Fi) = S (N =) cos(k r ) | (A-IL-4)
r=1
Factoring NV from the sum gives

FK) =N S (- T cosllc 7 ) (A-T1-5)

r=1l
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Papoulis defines the Fejer kernel as

B L e _ )

. (A-II-6
AN 2N+1 (2N+1) sin?[ k 8z /2 | ( )

By changing the limits of the sum from 2N to N-1, equation (A-II-6)

will have the form

r=(N~-1 . in2
(z: ) (1 _ I;{I) etkrés sin [];[kém/2] ) (A—H—7)
r=—(N—1) N sin“[ k 6z /2]

The complex exponential in (A-II-7) can be expressed as
e’ 7% = cos(k r 6z) + i sin(k r 6z) ,

and by using the even and odd properties of the cosine and sine functions,

(A-II-7) can be written as

N1 r sin?[ N k 62 /2 ]
142 1——)costk r 6z) = A-II-8
r§1 ( N) ( ) N sin?[ k 62 /2 ] ( )
Rearranging terms gives
N1 r sinfff Nkéx/2] N
N 1 —-—)cosk r dz) = - — . (A-II-9
r§1 ( N) ( ) 2 sin?[ k 6z /2 ] 2 ( )

The sum in (A-II-9) is equal to the left side of (A-II-5), so that by equat-

ing the two,

Fy(k) = (A-11-10)

sinf Nk d&/2] N
2 sin?[ k éz /2 | 2

and (A-1I-2) is proved.
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