The Relation between m_{bLg} and M_w and between $m_{Lg}(f)$ and M_w Using Recent US Earthquakes and Random Vibration Theory C. Rigsby, Saint Louis University, crigsby@slu.edu; R. B. Herrmann, Saint Louis University, rbh@eas.slu.edu

Background

- The Lg phase is a superposition of higher-mode surface waves with a group velocity between 3.2 and 3.6 s and with a period between 0.7 and 1.3 s.
- Nuttli (1973) developed the m_{bLa} magnitude scale to quantify the size of an earthquake from 1-second-period Lg waves on WWSSN short-period vertical seismograms
- Nuttli (1986) reformulated the original m_{bl a} formula in terms of ground motion at 10 km and accounted for different coefficients of anelastic attenuation
- Herrmann and Kijko (1983) modified the $m_{bl,a}$ scale to account for the frequency of the observed Lg waves
- In this study, 2 methods are employed for each calculation of m_{bLa} and $m_{La}(f)$. The poster presents only the SLU Method, the method that attempts to replicate the USGS procedure for calculating $m_{bl,q}$.

all stations that recorded ground motion (red dots)

• Derive relationship between $m_{hl,q}$ and M_{w} from earthquake data and RVT • Derive relationship between $m_{\mu}(f)$ and M_{μ} from earthquake data and RVT Address whether a single y is appropriate for the central and eastern United States

Objectives

Conclusions

The regression analysis and modeling support a linear relationship between m_{bl a} and M_w and between $m_{I_{0}}(f)$ and M_{W} for $3.0 < M_{W} < 4.2$.

• The lack of data for larger events prevents confident predictions for larger $m_{hl,q}$ or

• We have confidence in using $m_{bl,a}$ and $m_{l,a}(f)$ to estimate M_{w} for smaller events. • A single y is probably not appropriate for the central and eastern United States.

The 10 earthquakes with the most observations have y ranging from 0.00007 to 0.00061.

Date	Mw	y (km-1)
15 January 2010	3.81	0.00061
27 February 2010	4.15	0.00023
13 October 2010	4.33	0.00026
20 November 2010	3.87	0.00030
24 November 2010	3.93	0.00020
18 February 2011	4.07	0.00016
28 February 2011	4.65	0.00010
5 November 2011	4.70	0.00007
6 November 2011	5.59	0.00031
8 November 2011	4.83	0.00042