SYSTEMATIC DETERMINATION OF MOMENT TENSOR OF THE APRIL 6, 2009 L'AQUILA EARTHQUAKE SEQUENCE Poster: **U23A-0029** R. B. Herrmann, Saint Louis University, rbh@eas.slu.edu and L. Malagnini, Istituto Nazionale di Geofisica e Vulcanologia, luca.malagnini@ingv.it

Objective

Although the 2009 L'Aquila, Italy, and 2008 Wells, Nevada, earthquakes have similar moment magnitudes, the L'Aquila sequence had over 230 events with ML \geq 3.0. In addition the L'Aquila events were within a dense broadband seismic network that was augmented immediately after the mainshock. As soon as events were automatically located, digital data were available through the Italian Seismological Instrumental and parametric Data-basE – ISIDE. Because of the rapid availability of waveforms, we focused on developing procedures for rapid source parameter estimation, usually within 1-hour because of remote access.

- This poster addresses
- The development of a regional velocity model
- Moment tensor inversion of 169 events with $3 \le ML \le 6.13$
- •A special investigation of the mainshock through a finite fault simulation

Derivation of Velocity Model

Initial waveform QC for the inversion showed the presence of well dispersed surface waves. We developed the CIA model using 1200 group velocity measurements from paths to stations in the map and then created the ACI model by adding receiver function data from the MedNet station AQU.

Observed dispersion compared to predictions from the CIA and ACI models developed here, the Bagh model based on body-wave tomography and the model used for RTMT inversions at INGV. The ACI model predictions (red) are plotted on top of the observed RFTNs (black). The reverberations in the RFTNs are controlled in part by the low velocity gradient in the upper 10 km of the model; such ringing makes determination of depth to the Moho very difficult, showing the importance of a joint inversion of dispersion and RFTNs with crustal sounding constraints.

Model Comparison

We computed Green's functions for the CIA and ACI models and found them to be very similar in the 0.02 – 0.10 Hz band used for inversion. For reasons of computational speed, we precomputed Green's functions at 1 km increments in distance and depth. The CIA model is essentially a smoothed version of the ACI model. Waveform fits for M=3 are superb with the CIA model.

Inversion Data Set

We examined waveforms of all events with $ML \ge 3$ for source inversion, and missed smaller events only in the first 24 hours because of enhanced background noise due to the mainshock coda.

symbols indicate events with ML > 3, 4, 5and 6, respectively. Note that the mainshock is at the edge of the aftershocks.

Moment tensor solutions obtained using a rapid grid search and the CIA model. The orientation of the T-axis is uniform, although dip angles vary. Beachball size is function of Mw and color indicates source depth – dipping fault planes are seen. Solutions from March 30 through October 20 are shown. The location of the city of L'Aquila is given by the black box. The white outline indicates the surface projection of the finite fault simulation.

Mainshock Data These broadband stations are used for the mainshock inversion. Nearer stations were clipped.

Open Documented Software

Computer Programs in Seismology: http://www.eas.slu.edu/People/RBHerrmann/CPS330.html **Tutorials, Documentation, Q&A**

Depth (Km) 2 4 5 13 14 15

The Mainshock

We successfully used the 0.02 – 0.10 Hz ground velocity band for all events except the mainshock, for which only the 0.01-0.025 Hz band led to an upper crustal depth. The use of higher frequencies led to a lower crustal depth, required to fit reduced high frequency spectra. In addition time shifts on the order of 5-6 seconds were required for a fit. The point source solution using the CIA model is Mw=6.13, strike 135, dip 55, rake -95 and depth 5 km.

Reading first arrival times. we determined a hypocenter using the CIA model to get coordinates 42.34N, 13.37E and H=13 km, slightly east of the INGV location, which cannot explain needed time shift.

Given confidence in our Green's functions, to resolve the inability to use higher frequencies for the mainshock, we used the fault plane solution given to define the fault plane and slip angle, and solved for moment release as a function of rupture initiation, rupture velocity and frequency band using NNLS. As expected, in the 0.01 – 0.025 Hz band, we get greater variance reduction (72%) than for the point source inversion (69%), but also 65% in the 0.01-0.05 Hz band vs 52% for a point source. We sampled a large suite of rupture velocities and initiation points. All finite fault simulations show significant moment release at shallow depth. The best result for the 0.01 – 0.05 Hz band requires nearsimultaneous moment release at several shallow patches. Variance reduction is now a function of the model rather than the source.

Map view of finite Fault [Red=shallow, blue= deep] Cell 0: 42.40N 13.31E Cell 19: 42.27N 13.65E Cells are 2 km x 1 km **Rupture initiates at patch** 230 and VR=2.6 km/s

	2	3	4		6	7	8	9	10	11	12	13				d.		
	22	23	24	25	26	27	28	29	30	31			34	35	36	57		
451	42	43	44	45	46	47	48	49		51	52	53	54	55	56	67		
	62	63	64	65	66	67	68		70	71	72	73	74	75	76	77		
	82	83	84	85	86	87	88	89	90	91	92	93	94		96	97		
	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
121	122	123	124	125	126			129	130	131	132	133		135	136	137	138	(lists
141	142	143	144	145	146	147	148	149	150	151	152		154	155	156	157	158	158
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255			258	259
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296		298	299
201	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319
	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339
	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359
	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	378
	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	200
		403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	411
		423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	
			444	445	446	447	448	449	450	451	452	453		455	456	457	458	
			484	465	466	467	468	469	470	471	472	473	474	475	476	477	478	
					486	487	488	489	490	491	492	493		495	496			

Overlay of finite fault solution (color: red largest Mo, blue smallest Mo) over rupture time (gray: light early, dark late)

Note major moment release to SE of hypocenter and near surface

.8950e+17 5.49

7.9079e+16 5.23

4.1419e+16 5.04

3.0020e+16 4.95

2.4517e+16 4.89

.4590e+16 4.74

6.90 5.1882e+16 5.11

3.73 5.11 9.3612e+15 4.61

5.01

5 42.4387 13.4007 0.41 5.61 5.4168e+15 4.46

0 42.5000 13.3115 0.41 8.45 5.3900e+15 4.45

.4651e+16 5.17

- Mainshock is complex with two zones of moment release about 13 km apart. The shallow Mw 5's at upper left coincide with secondary fault
- •Velocity model provides detailed fit to high frequency ground velocity throughout Apennines and can be used for future large earthquake inversions until superceded
- •Finite fault specification can be used for forward modeling of teleseismic observations
- •Forward modeling of velocity in 0.01 0.10 Hz band matches observed amplitude and waveform shapes, but could not be used for inversion because of time shifts due to slightly imperfect Green's functions •Grid search MT inversion was efficient