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DIGEST

A complete system of wave integral theory is esta-
blished for purpose of synthesizing high quality and
high frequency seismograms in plane iayered media. The
system consolidates the foundations of wave theory, and

greatly facilitates its numerical application.

A classical contour integration method is exten-
sively studied. Wiﬁhout introducing any sort of
attenuation, the integration is taken directly along
branch cuts and poles. An attempt to classify the con-
stituents of seismograms from different integration
contributions is discussed. Such a discussion proposes

a new viewpoint for understanding wave fields.

The eigenfunctions of surface waves are found »to
have concise analytic solutions. These analytic forms
not only provide a firm basis for theoretical develop-
ment, but also provide a way to study high fréquency

signals and complicated structures.

The reflection and transmission properties of
layer interfaces are recbnsidered using a new approach.
A simple method is proposed to decompose the wave
fields, which can easily be incorporated into our sys-
tem. Using this method, body as well as surface waves

from a particular portion of structure are generated.



A new method for expressing seismic sources 1is
explored, which enables us to isolate the fault orien-
tation and receiver azimuthal dependences, thus facili-
ating the study of source mechanism. An inversion tech-
nique is developed to extract the instrument response
coefficients. These coefficients were included in
designing a recursive filter to describe the instrument

effect,

Comparisons with other methods confirm that the
new theory is both flexibile and reliable. The present
study clarifies several ambiguities in the theory of
the wave integral method and provides several new téch—

niques for simulating wave propagation in the earth.



WAVE THEORY FOR SEISMOGRAM SYNTHESIS

Chien-Ying Wang, B. S., M. S.

A Dissertation Presented to the Faculty of the Graduate
School of Saint Louis University in Partial
Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

1981



COMMITTEE IN CHARGE OF CANDIDACY

Associate Professor Robert B. Herrmann
Chairman and Adviser
Professor Brian J. Mitchell

Professor Otto W. Nuttli

ii



ACKNOWLEDGMENTS

Forémost, I wish to thank my advisof, Dr. Robert
B. Herrmann, for providing continous guidance and
stimulating ideas, throughout the duration of this
work. I am especially grateful for his meticulous con-

tributions to major parts of this dissertation.

I benefited greatly from discussions with Dr.
Brian J. Mitchell and Dr. Otto W. Nuttli. Their
interests provided much of the impetus and direction

for the success of the work.

I want to thank Dr. David G. Harkrider for provid-
ing me the idea of using analytic solutions of eigen-

functions.

Spegial thanks are due to Eric J. Haug, Chandan K.
Saikia, and David R. Russell. Their assistahce in
developing and maintaining the computer programs has
been of great help. Finally, I thank my wife Tai-Chi
and my son Albert, for their understanding and sacri-

fices in behalf of this éffort.

This research was supported by National Science

Foundation under Grant - PFR-79@9795.

iii



TABLE OF CONTENTS

ACKNOWLEDGMENTS L] L ] . L] L] L] L] L] L] L] L] . L] . L] L

LIST OF TABLES & &« & ¢ &4 4 ¢ o o o o o o o o« «

LIST OF ILLUSTRATIONS . . 4 v & ¢ o o o o« o o &

CHAPTER

I

II

III

Iv

INTRODUCTION . . . . L] . . . . L} .. L] L]

1.1 The Problem [ ) L] L] . l‘ L] L] L] * * L ]
1.2 Historical Review . . . ¢« + « . .

WAVE INTEGRAL THEORY . . « & ¢ o« o« « .

2.1 Haskell's Matrix. . . . + o« o o &

2.2 Compound Matrix . . . . . « . . .
2.3 Comparison with Other Formalisms.
2.4 Numerical Integration . . . . . .

SURFACE WAVE
- NORMAL MODE STUDY. . . . . . . . . .

3.1 Haskell's Matrices for the Layers
3.2 Normal Mode Theory. . . . . . . .

BODY WAVE
- LEAKY MODE STUDY . . . . . . . . . .

4.1 The Influence of Leaky Modes on

Body Waves. . . ¢« v v 4o 4 o o o+ .
4.2 Locked Mode Approximation . . . .
4.3 Reflection Method and

Reflectivity Method . . . . . . .
SOURCE AND INSTRUMENT. . . v & « o «
5.1 Source Considerations . . . . .
5.2 Instrument Response Parameters by

Least-Square Inversion, . . . .
5.3 Simulating the Instrument by IIR

iv

Page
iii
vi

vii

10
11
26
38
47
72
73
85

100

105

124

134

156

156

162
173



TABLE OF CONTENTS (CONT'D)

CHAPTER
VI COMPARISONS . & v v ¢ + o o &

VII SUMMARY AND CONCLUSIONS. . .

Page

o e e e . 182
. . . . ° R 195

APPENDIX
A Layer Matrix . . ¢ ¢ ¢ ¢« ¢ ¢« o« ¢« o o 199
B Compound Matrix. . « ¢ « ¢ ¢ ¢ o o o & 201
C Symmetry‘of Compound Matrix. . . . . . 2085
D Perturbation of_Surface Wave 4
Energy Integrals . . . « ¢« o ¢« ¢ & o & 209
E Description of the Eigenfunction

Programs . . « o« o o o o o &
BIBLIOGRAPHY. ¢ 4 4 ¢ o o o o o o o &

VITA AUCTORIS v + & o« o o o o ..

¢ e e e 215
. L . L] L] 226
L] [ ] * L L] 235



TABLE

LIST OF TABLES

Earth Models: Simple Crustal Model,
Central U,S. Model. . . . v ¢ &« « &« « & &

Comparison of Parameters for
Synthetic PulsesS. . « v ¢ ¢ ¢ o « o o o &

Two Layers Overlying Half-Space Model . .

Earth Models: El Centro Structure,
Imperial vValley Structure . . . . . . . .

Information for Synthesizing Seismograms.

vi

Page

56

170
189

191
217



LIST OF ILLUSTRATIONS
FIGURE , Page

1 Direction of axes, numbering of layers
and interfaces, and the depth of source
in the source layer m. . . . & « o & « o o . 12

2 Contours in the complex k plane for
evaluating the wavenumber integrals.
The positions of the k. and kgv branch
points and the surface-wave poles (X's)
are indicated. Branch cuts are shown
by thicker lines. Two circular arcs,
71 and 7z, surround the possible Hankel
function pole at k =0 . . . . . . . . . . . 49

3 The responses of integrands in equation
(II-2-15) along the real k-axis branch
cut, The CUS earth model, a source
depth of 16 km and a frequency of 1.0
Hz, are used . . ¢« ¢ ¢« o &« ¢« ¢ o « « « &« « + 54

4 The real k-axis wavenumber responses of
ZSS component along the real branch cut
as a function of frequency between #.1
and 10.0 Hz. The simple crust model (SCM)
and a 18 km deep source are used . . . . . .. 57

5 The disperson curves for Rayleigh waves
as expressed in the frequency and wave-
number plane for a 30 layer oceanic
MOdel. ¢ & & & & o o « o o o o o o o o o o .+ 60

6 The dispersion curves for Rayleigh waves
as expressed in the phase velocity and
period plane. The same earth model as in
Figure 5 is used .« « « v ¢ & « ¢ & & « « o . 61

7 Radial component velocity time histories
(RDS) due to a vertical dip-slip dislo-~
cation source at a depth of 12 km in SCM
model. A source time function with 7 = 8.5
sec and seismic moment of 1.0E+20 dyne-cm
are Used . + . ¢ o o o o ¢ 4 s e o o 4 o s+ o 65

vii



FIGURE

18

11

12

13

14

15

LIST OF ILLUSTRATIONS (CONT'D)

Results corresponding to Figure 7 but
for the vertical component . . « ¢« ¢« « « &

Results corresponding to Figure 7 but
for the tangential component . . . . . . .

Radial component velocity time histories
(RDD) due to a 45° dip-slip dislocation
source at a depth of 10 km in CUS model.
Other parameters are the same as in Figure

70 [ L] s ° [ o ° ° ° e e . @ ° ° ] ° ° ° e

Vertical component velocity time histories
(28S) due to a vertical strike-slip source
in CUS model. The sources are buried at
different depths as indicated at the end
of each seismogram. Epicentral distance
is kept at 100 km. Other parameters are
the same as in Figure 7. . . « ¢ ¢« ¢ « o« &

Theoretical seismograms generated by ei-
genfunction programs. The upper five seis-
mograms are due to a dislocation source
with a triangular source time function
and buried at a depth of 14 km in CUS
model., The frequencies used cover the
range from @ to 18 Hz. The bottom seis-
mogram is due to the same dislocation
source but with a step source time func-
tion. A Q-model with @Qg= 250 for top 24
km and §g = 2000 for other layers is used.
The number at the end of each seismogram
indicates the epicentral distance. . . . .

Results porfesponding to Figure 12 but
for the radial component . . . . . . « . .

Results corresponding to Figure 12 but
for the tangential component . . . . . . .

Study of contribution of various com-
ponents of contour integration. (a) is
the set of vertical component seismograms

viii

Page

. 96

. 97

. 98



FIGURE

16

17

18

19

20

LIST OF ILLUSTRATIONS (CONT'D)

due to an explosive source at 100 km away
and buried at 10 km deep in SCM model.

(b) is the set of radial component
seismograms due to a 45° dip-slip source
at 25 km away and buried at 1 km deep

in CUS model. 1In each set of seismo-
grams the top one is the complete solu-
tion, the middle is the pole contribu-
tion, and the bottom is the contribu-
tion from branch line inteqral . . . . . .

Same comparison as for Figure 15, The
radial component seismograms due to a
dip-slip source buried at 18 km depth
in SCM model are displayed. Two sets
of seismograms correspond to epicentral
distances at 25 km and 200 km, respec-

‘ tiVEly ° ] . ° . * . L] [} . . . L] L] . L] [] .

Same comparison as Figure 16 but for
the vertical component . . . . « « . . . .

Same comparison as Figure 16 but for
the tangential component . . . . . . . . .

Curves of the null real part of the period
equation (denote by '+' sign) and of the
null imaginary part (denote by 'x' sign)
in the fourth quadrant of (+,~) sheet of
complex k plane. k. and kgy are branch
points. The top figure is obtained at
.32 Hz and the bottom at 6,33 Hz. The
SCM model is used. « & ¢ ¢« ¢ ¢ ¢ 4 o o 4

Paths of leaky modes of SCM model through
the fourth quadrant of (+,-) sheet of
complex k plane. The frequencies change
from #.25 Hz to #.40 Hz. Two kinds of
modes, namely PL and OP modes, exist
before ks, which is the wavenumber cor-
responding to the first layer P velocity.
After this point, two kinds of modes min-
gle together and form the shear-coupled
PL-OP mode. The numbers at the beginning
of each path indicate the starting fre-
qUENCies . «. & v v v 4 e e e e e e e e .

ix

Page

101

192

193

104

112

113



FIGURE

21

22

23

24

25

26

LIST OF ILLUSTRATIONS (CONT'D)

Page

Same as Figure 20, but for leaky modes
on (-,=) sheet of complex k plane. . . . . 114

Same as Figure 28, but for five-layer
CUS modelb -3 Qe L:2 o L e o Q L] e L o a [ o Q 115

The effect of leaky modes on the vari-
ations of integrands along the real
branch cut. 'x' denotes the modes on

the (+,-) sheet and '+' denotes the
modes on the (-,-) sheet. The response
curves of integrands are obtained using
the SCM model with the source at 10 km
depth. The names of the integrand res-
ponses are the same as those in Figure 3,
Four plots correspond to frequencies at
0.25 Hz, 0.50 Hz, @.75 Hz, and 1.0 Hz,
respectively . .6 o o o o o s o o o e o o 118

Results corresponding to Figure 23,
but for the CUS model at frequencies
0025 Hz and 0075 HZO L ° L] L] a o L] L) L) L] L] 120

Paths of leaky modes of SCM model for
the SH case. Other parameters are
the same as Figure 20. . o + o « o o « o o 123

The positions of poles along the real
k-axis at frequencies §.25 Hz, #.50 Hz,
@.75 Hz, and 1.0 Hz. &k, and kg are
branch points for SCM model without the
cap layer. When the cap layer is added,
the leaky modes are forced to migrate

into the normal mode positions as those
shown to the left of &gz . These created
"locked' modes are numerous and are diffi-
cult to locate. The positions of regular
normal modes are essentially not affected
by the present of the cap layer . . . . . . 127



LIST OF ILLUSTRATIONS (CONT'D)

FIGURE Page

27 The amplitude factors, which represent
- the relative contributions of different
‘modes to the final solution, are dis-
played against the period for the capped
SCM model. The modes displayed are of
the order 10, 20, 30, 40, 50, 60, 74,
80, 90, 1080, and 110 . . . . « + + & & o . 129

28 Comparison of locked mode approxi-
mation to the complete solution using
the method of chapter II. (a) the locked
mode approximation solution; (b) the
wave integral complete solution; (c¢) the
pole contribution; (d) the branch line
integral contribution., The SCM model
with a strike~slip dislocation source at
a depth of 10 km is used. The cap layer
is located at 200 km deep and has a P
velocity of 20 km/sec, S velocity of 18
km/sec, and density of 6 gm/ecm®. . . . . . 131

29 Results corresponding to Figure 28 but
for the radial component and a dip-slip
SOULCE . o o o o o o o s « o o o« o o o o o 132

30 Results corresponding to Figure 28 but
for the tangential component and a 45°
dip"’Slip SOUECEQ ° ° ° o o ° ° ° a ° ° ° ° 133

31a Radial component complete seismograms,
The SCM model and an explosive source
at 1% km depth are used. A distance
range of 25-500 km is presented. Multiple
reflections and surface waves are well-
developed, especially for large distances . 147

31b Results using the source and model of

' Figure 3la, but the reflectivity of the
free surface is suppressed. Some easily
identified phases from the crust-mantle
boundary are indicated . . . . . . . ., . . 148

32 ~ Results using the source and model of
Figure 31 but for the vertical component . 149

xi



FIGURE
33

34

35

36

37

38

39

LIST OF ILLUSTRATIONS (CONT'D)

Page

The effect of reflection suppression.

The displays are for the radial component
due to a strike-slip source buried

at 10 km depth, and for stations at
distances of 208 and 306 km, In each

set, (a) is for the two-~layer SCM model;
(b) is for the three~layer modified SCM
model; and (c¢) is for the modified SCM
model with the reflections from the secon-
dary interface suppressed . . . .+ « & o o .

Results using the source and model of
Figure 33 but for the tangential component.,

(a) Vertical component complete seis-
mograms due to an explosive source

buried at 10 km depth for the modified
SCM model. (b) is the seismogram for the
same model but with the reflections from
the free surface and secondary interface
suppressed. Compare (b) with Figure

32b L] L] L L] o L] L4 L) 9 L) L] L e L L] * o . * L]

The calibration pulse and its amplitude
spectrum obtained from the WWSSN LPZ
seismograph at the station FVM. . . . . . .

The impulse-response pulse and its
amplitude and phase spectra of a simu-
lated instrument obtained by applying

the inversion technique to the cali-
bration pulse of Figure 36. o « o o o« o o &

Simulation of an LRSM 6284-13 instrument
using the Z-transform method, Three res-
ponse curves correspond to different
sampling rates of 1.0 sec, #.5 sec, and
B.0625 S@Ce o o o o o o o o o o o o o o o o

Simulation of a WWSSN SP instrument using
the bilinear Z-transform method, Different
response curves correspond to different
sampling rates of §.15 sec, #.05 sec,

P.01 sec, and 0.005 SE€C . & o « o o o o« o .

x1ii

152

153

154

171

173

177

179



LIST OF ILLUSTRATIONS (CONT'D)

FIGURE Page

480 =  Seismograms showing the effect of the
instrument. The two displays are for
the vertical and tangential components,
respectively. (a) is the ground dis-
placement; and (b) is the seismogram
after passing through a short-period
instrument. The instrument response
is that shown in Figure 39 . . . . . . . . 181

41 Comparison of Cagniard-de Hoop and
wave theory solutions for a vertical
strike~slip source at a depth of 19
km in a half-space with parameters
of the first layer of SCM model.

(a) Cagniard-de Hoop solution. (b)

The complete wave theory solution,

(c) The wave theory solution con-

taining only the near-field and far-

field P-SV terms. (d) The wave theory

solution including only the far-field

P-SV term. . .+ o o o« o o o ¢ « o o« o o « o 183

42 Results using the source and model of
Figure 41, but for the radial component
due to a vertical dip-slip source., . . . . 184

43 Comparison of wave integral solution
with the finite element solution for
the radial and tangential components
due to a vertical strike-slip dislo-
cation buried at a depth of 1 km in
the two layers overlying the half-~space
model of Table 3 . . ¢« ¢« ¢« ¢« ¢« ¢« ¢« ¢« & « o 186

44 Results using the source and model of

Figure 43 but for a source buried at
the depth of 5 kml a 9 ° o L] L] L] L] . L] L] @ 187

xiii



FIGURE
45

46

LIST OF ILLUSTRATIONS (CONT'D)

Page

Comparison of Love wave synthetic ground
displacements with Swanger and Boore's
modal summation method (solid line in a)
as well as Heaton and Helmberger's ray
summation method (dashed line in a) of
the 1968 Borrego Mountain earthquake.

A vertical strike-slip source at 6 km
depth and a symmetric triangular source
time function of 1 second duration are
used. The epicentral distance is 68 km
and the azimuth is 8 degrees from the
strike of the fault. The model used is the
El Centro structure listed in Table 4.
(b) is the result of eigenfunction pro-
grams but including only the first three
modes which Swanger and Boore used. (c)
is the result including all modes.

(d) shows the synthetics from the locked
mode approximation with a rigid layer

at 200 km deep. Note that (d) successfully
models the first arrival of ray theory

) SOlution o ° a L] o ° ° o L] L] L] ° L] ° ° L] L] 192

Same comparison as for Figure 45 but for
the 1976 Brawley earthquake. The Imperial
Valley structure (Table 4) of Heaton

and Helmberger (1978) is used. The

source is a vertical strike-slip point
buried at 6.9 km, and the source time
function is a 1.5 sec duration tri-
angle. The top trace gives the real

data. Our solution (b), which is the
summation of first five modes, shows a
better fit of first arrival around 12
second than Swanger and Boore (1979).
Again, the locked mode approximation
solution (d) gives a good match to the
ray theory solution in the front part of
the record, but not in the rest. . . . . . 193

Xiv



LIST OF ILLUSTRATIONS (CONT'D)

FIGURE Page
47 Flow chart of eigenfunction programs . . . 216
48 Jumping method for searching the poles . . 219
49  Phase velocity dispersion curves for

the CUS model at short periods . . . . . . 228

50 A expansion of Figure 49 for period
between .16 and #.15 second and
phase velocity between 3.8 and
3.9 k/SEC o 4 o o o o o o o o o o o o o o 221

51 Group velocity dispersion curves for
the CUS model. Note that the low
order higher modes have group velocity
around 3,5 km/S€C. o o o o« o o o o o o o . 224

xXv



CHAPTER I

INTRODUCTION

L.l The Problem |

In recent years synthetic seismograms have become
increasingly useful as an aid to seismic data interpre-
tation. Various techniques have been developed to cal-
culate theoretical seismograms which are valid, at
least, for plane-layered media. However, further
improvements are still desirable. The problems of com-
putational efficiency and accuracy, restricted by the
use of a computer, cont{nue to be a challenge. To solve
them a thorough understanding of the nature of the
problem and a detailed reexamination of the related

theories are truly necessary.

The work of Thomson (1950) and Haskell (1953)
first permitted the treatment of multi-layered media
using matrix calculus. Prior to that time it was only
possible to consider simple one- and twb-layer models.,
Many developments based on the Thomson-Haskell tech-
nique have been pursued., The extension of their work
to compound matrices and source specification are not-
able examples. Most of these developments, however,
can be related to Haskell's work between 1953 and 1964.

Because of simplicity in both concept and mathematics,

-1 -



Haskell's research provided an easily understandable
approach to the problem. The purpose of this disserta-
tion is td reconcile different formalisms and to estab-
lish a complete system to treat wave propagation in
layered media using Haskell's work as a starting point.
Such a system will provide a foundation for handling
more complicated cases and for extending the theoreti-

cal studies.

The formulation of the method developed by Haskell
is constructed in the frequency domain. The complete
response at a particular frequency is represented by
semi-infinite integrals with respect to wavenumber so
as to automatically include all types of waves. To
match the boundary conditions, the responses are
déscribed in terms of a layer matrix. There still
exist several questions about the properties of this
matrix and its compound form. A systematic approach to
the problem will provide further iﬁsight to the Haskell

matrices, and will promote their use.

After stacking the 1layer matrices over layers,
time domain seismograms can be synthesized by perform-
- ing any of several integrations in complex frequency-
wavenumber plane. The behavior of the integrands must
be known in order to choose the proper numerical method
for integrations. This analysis also provides a frame-

work for understanding the nature of different signals



on the recorded seismogram, which in turn establishes a
basis for exploring the effects of seismic source and

earth structure on the seismograms,

The main application of the theory developed in
this dissertation will be for synthesizing high quality
seismograms at high frequencies. High frequency sig-
nals have become increasingly important in the studies
of deep earth structure, earthquake source mechanism,

and strong ground motion.

1.2 Historical Reviev

The era of the seismogram synthesis was opened by
H. Lamb (19064), who generated the first synthetic
seismogram for an impulse source acting upon a semi=-
infinite medium, Most early studies were for simple
models such as liquid layers or one solid layer over a
halfspace (see Ewing et al, 1957). With the advent of
mbdern computers, the research rapidly grew to cover
more complicated models and more sophisticated cases.
In the last two decades, theoretical as well as numeri-
cal developments have progressed tremendously. We will
now review the contribution of some papers on syn-
thesizing seismogram. Most of them have formed the

foundation of modern theoretical seismology.

In most theoretical developments, the evaluation



of synthetic seismograms generally can be divided into
two parts: first, the solution of an ordinary differen-
tial equation using transform methods with appropriate
radiation and boundary conditions, and second, the
evaluation of the corresponding inverse transforms,
Several methods exist for both parts and many combina-
tions are possible, One important approach, called
'generalized ray theory', uses the Laplace transform
technique and genérates waves at discrete time points
by summing hundreds of rays. The basis of this method
comes from Cagniard (1962) and dé-Hoop (1960) .
Although this theory works well in predicting particu-
lar phases, it can be inaccurate and cumbersome when
modeling long time duration seismograms for a multilay-
ered structure. Hron(1972), Kennett (1974) and Wiggins
and Madrid (1974) have madé great efforts to improve
the efficiency of calculating the responées of a large
number of rays. A recent review of the method can be
found in Pao and Gajewski (1977). Helmberger (1968)
and Vered and Ben-Menahem (1976) present typical appli-

cations of the method to layered media.

Another approach, called 'wave theory', uses the
Fourier transform technique and calculates all the
waves excited in the structure by integrating over fre-
quency and  wavenumber (or slowness), This method
encompasses normal-mode theory, especially for the

determination of dispersion of surface waves (Press et



al, 1961). Because of increasing complexity at higher
frequencies, the method suffers from computational
inefficiency and stability problems. This dissertation
will thoroughly explore this theory, especially at high

frequencies,

In 1953 Haskell published a corrected version of
Thomson's (1950) theory of elastic waves in a plane
multilayered medium. Haskell's study introduced the
'matrix method' to seismic wave studies. This method
provides a systematic approach and greatly facilitates
numerical computation. Since then, the theory has been
extended principally by Haskell (1963, 1964) and Har-
krider (1964, 1970) to deal with the surface wave
motion. Because of growing exponential terms in the
matrix under certain conditions, the siﬁple matrix
method suffered from numerical problems which caused
loss of precision. Knopoff (1964), Dunkin (1965), and
Thrower (1965) reformulated the computational pro-
cedures using compound matrix extensions in which the
minors of the layer matrices are propagated from inter-
face to interface instead of the matrices themselves,
so that the squared exponential terms never appear,
thus controlling the precision problem. Randall
(1967) , Wwatson (1978), and Schwab and Knopoff (1974)
made successful improvements in computational effi-
ciency and accuracy. More recently Abo-Zena (1979) and

Menke (1979) reexamined the matrix approach for



extension to very high frequencies.

The existence of dispersive surface waves has been
recognized since the early days of the science of
seismology. Keilis-Borok (1960) presented a detailed
study of surface waves generated in a layered medium.
Vlaar (1966) applied eigenfunction theory in  the
analysis of Love wave deneration. Saito (1967)
developed a solution for surface wave excitation in
terms of mutually orthogonal eigenfunctions for the
generation of free oscillations in a radially inhomo-
geneous earth, and £for surface waves in a vertically
inhomogeneous flat earth, A recent contribution by
Takeuchi and Saito (1972) summarized the previous stu-
dies, considering both theory and numerical methods.
They appliéd the calculus of variations to dekive the
derivative-related quantities such as group velocity,
attenuation factor, etc., from the surface wave eigen-

functions. This work provided a detailed mathematical

basis for surface wave eigenfunction theory.

Hudson (1969a,b) extended the work of Haskell
(1964) and Harkrider (1964) to synthesize seismic sig-
nals at teleseismic distances. Hudson's analysis is
applicable for 1large epicentral distances, as all
near-field terms are ignored. However, as shown by
Herrmann (1978a), the truncation of these terms causes

non-causal arrivals. Herrmann (1979) and Wang and
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Herrmann (1980) expressed the Haskell formalism in a
more concise form, and improved the integration method
of Ewing et al (1957) for synthesizing high quality
seismograms. Other interesting methods to treat the
problem of integration over the wavenuhber-frequency
domain appear in the work of Chapman (1978), Apsel
(1979), and Bouchon (1979,1981). |

Using another approach, Fuchs (1968) and Fuchs and
Miller (1971) recognized that the reflectivity of some
layers (reflection zone) can be isolated and excited by
some incident waves from a 'transmission zone' to pro-
duce synthetic body wave seismograms. Their development
was named the 'reflectivity method'. Fuchs (1971) sim-
plified the solution by using the stationary phase
approximation. The method is largely used in the study
of crust or upper mantle structures from an artificial
explosive source. However Kind and Mi@ller (1975,1977)
and Mﬁller and Kind (1976) extended the method to
include a double-couple point source, and after adding
the earth flattening correction (Miiller, 1971), they
were able to simulate many real earth phases, such as
Sn, ScS, SKS, etc. Kennett (1975) skillfully separated
the transmission response beneath the source and the
receiver in order to study the laterally varying struc-
tures. Another achievement of this method was the
introduction of attenuation into the layers in the form

of complex velocities (Kind, 1978). This modification



enables a computation for only a short time window,
even if the nonattenuated seismogram has a long dura-

tion,

Extending the systematic development by Gilbert
and Backus (1966) of the 'propagator matrix', Kennett
(1974) and his colleaques were able to express the
matrix in terms of reflection and transmission proper-
ties of the stratified medium. This research bridged
the gap between the wave approach and the ray method,
and also provided an internal view of the layer matrix
theory. Kennett et al (1978) extensively expiored the
symmetry properties of reflection and transmission
coefficients. These symmetries not only reflect the
theory of reciprocity, but provide a novel approach to
exploit the properties of Haskell matrices. Kennett and
- Kerry (1979), Kennett (1980), and Kerry (1981) gave a
complete derivation for this 'reflection and transmis-
sion coefficient' method and also proposed some

interesting numerical evaluation techniques.

In searching for the roots of the period equation
in the complex frequency plane, Gilbert (1964)
described several wave-guide generated waves as leaky
modes., Alsop (1978) interpreted these waves as a con-
structive interference of reverberating waves within a
layer. Abramovici (1968) and Cochran et al (1978) found

a relationship of this kind of mode to the regular nor-



mal mode. Watson (1972) gave a very detailed discus-
sion of leaky modes by wusing real frequency-complex
wavenumber analysis. In the observed data, it is
believed that a dispersive body wave, called the PL
wave, which arrives between the direct P and 8 waves,
arises from the contribution of leaky modes. Oliver
and Major (1960), Laster et al (1965), and Su and Dor-
man (1965) provided some real and experimental data
analysis to reveal the properties of this wave. The
success of improved computation with Haskell's method

may lead to further insight into this phase.
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CHAPTER IT

WAVE INTEGRAL THEORY

The objective of this chapter is to establish a
complete, self-contained, system for wave integral
theory. The solution for the surface displacements is
found using procedures parallel to those of Haskell
(1964) ., The derivations are put forth in an easily

understandable, step by step, way. Some interesting

symmetry properties of the layer matrix or its compound

' gform are revealed, which are then used to simplify the

numerical application or. theoretical extension.

A numerical integration technique of Herrmann
(1978a, 1979) also 1is extended. The method requires
contour integration in the complex wévenumber plane,
the performance of which is complicated by the presence
of singularities. The contour integration reduces to a
consideration of pole residue contributions and branch
line integrals. A detailed discussion of these aspects
is undertaken, which is then used to improve the compu-
tational efficiencya The discussion also provides a
framework for the investigation of different signals

making up the complete seismogram.

- 10 -
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2.1 Haskell's Matrix

In the present section a previous modification
(Wang and Herrmann, 1988) of Haskell's theory (Haskell
1963, 1964) is further developed and revised. All of
the derivations are made in a step-~by-step manner for
clarity. Several significant differences with respect
to Haskell's papers are specifically noted. Such revi-
sions are made not only to simplify the expressions,
but also to compare them to other related formalisms to
be discussed later. The three different types of
waves, P, SV and SH, existing in the layered media are

all included.

We define a semi-infinite elastic medium made up
of N .parallel, solid, homogeneous, isotropic layers
(Figure 1). Each layer ' is characterized by the
compressional wave velocity «a , the shear wave velo-
city g , the density p , and the layer thickness d
Any linear variation of elastic properties can be
approximated by many small layers (Fuchs, 1968). The
m‘th layer is bounded by the m and m+l interfaces.
Thus any quantities at the free surface are denoted by
the subscript .'l'a If a water layer is placed on the
top, it will be assigned a layer index '@#'. The param-
eters 1in the half-space are denoted by the subscript
'N'. In order to match the boundary conditions at the

horizontal layer interfaces, a cylindrical coordinate
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Figure 1. Direction of axes, numbering of layers and
interfaces, and the depth of sSource in the
source layer m.
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system (r, ¢ , 2) is chosen with origin on the free
surface just above the source, and the z axis is taken

positive downward,

In the following, expressions will be derived for
the displacements from a point source using Haskell's
notation (Haskell, 1964). Let us start from the very
beginning., The displacement field can be expressed in
terms of three different types of potentials, ¢ for P
waves, ¥ for SV waves, and X for SH waves. The func-
tion ¢ is known as the scalar potential. ¥ and X

are the vector potentiéls. Define
A=e,x + Vx(e,¥),

where e, is the unit vector in the z direction. Vari=-
ables with bold cases represent vectors or matrices.

The displacement u can be expressed as

u= Vg + UxA
= Vg + Vx(e,x) + VxVx(e,v), (I1-1-1)
where the potential functions ¢ , ¥ , and X satisfy

the wave equations:

1 9%
—atz

<

V3p =

jol}

(24
1 o
2

g

vey = (11-1-2)

2

o
QD
LN

-
3
n

V3 = .
X 6% Bt2

Expanding the gradient and curl operators in equation

(II-1-1) in cylindrical coordinates, we obtain the
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three components of displacement in terms of poten-

tials:

= —a—g ——-La + —Laz
U =5 Y 7os t Broz

dy 8%y 2
=2¥ L 5 ¥ _ 1I-1-3
8z  9z? vy ( )

- O¢ _ oy 0%

Us 708® or rosvdz .

If the time dependence is isolated by the Fourier
transform factor e*' , the resulting Helmholtz equa-
tions (II-1-2) can be solved using characteristic func-

tions of three cylindrical coordinates:

cos n¥
;0(7‘,19,2,&))'—‘ sinn’@} Jn(k'r)] Z1(Z)]

Y 8,z,0) = "Sj’jgg} Jn(k'r)} Zz(z)} (1-1-4)
9.0 = S reg) )| Fito)],

where J,(kr) is the Bessel function of the first kind
of order n., The solution involving the Bessel function
of the second kind, Y, , is not used since the solution
must be wvalid at r = @ where this function becomes
unbounded., The subscript index, n, indicates azimuthal
mode number, and k indicates the horizontal wavenumber,

Zyr Zy, and Fy are functions of z only, satisfying

d® Z
dzal —l/ng"O
d? Z, 2
—vEZo=0 (11-1-5)
dz? pe
d® F
3 —V§F3=O
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where
2
R P
[ 4 (¢
Vg = 2
A k<
o 4
2
e P
- 8 8
8 = )
A e % k<
g g

Now let us consider one homogeneous layer first.
By substituting equation (II-1-4) into (II-1-3), we
find

dZ$ dJ (k1) nd, (kr)
YWy = -1 +Z2%)k [—7—— §f ———
4npw,.(r,0,2,0) = cos n¥ ( e Z5$)k ] py kF§ P
+ sin nﬁ[ c-s ]
dZ§
4npu, (r,9,2,0) = cos nV|| k2Z§+ e I (k) (11-1-8)
+ sin nd c-s ]
. dJy (k7) dZ§ 75 (k)
P [+ - [+ -—_
dnpuy(r,d,z,0) = sin nO}) kF 3] Tr ( - +Z$ Yk r
— cos nﬁ[ c—s ]

where 'c-s' indicates the term in brackets above with
¢ replaced by s. The constant‘p is included for sim-
plifying the notation when the stresses are involved,
and 47 for balancing the source terms which come from
the Green's function. Using the transformed displace-

ments given by equations (II-1-6), the transformed
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stresses across a horizontal plane are

du, Ou,
+
0z or

AnT, (7.%,2z,0) = 4nu

= cos nB¥| w?

p 4Py }mfn(k‘r)
p dz kr

o 9% ]k] Ay (kr)

- ¢
LOo-1Z8+7-0 dkr

+ sin 'n't?[ c—s ]

0u,
oz

a il ou.
A LB v B
-

AnT, (r.¥,z,0) = 4n ~ 38 Tt 5e

[

(7=1)25 49228 ]an—)

= cos n8| w? (11-1-7)

dz

+ sin n® Cc-s

1 0w, au.,,
= Ao 2 a4
AnT,o(r 0,2 ,0) = dnp 30 " 52
dF§ | dJn(kr) dZ§ ., |nJn(kr)
— M 3 n 2 - C+_7_
= sinny p dz k dker Y [ o-1)28 k? dz I kr
- COS n't?[ c s ]
where
= 26%*
7= o2

In equations (II-1-6) and (II-1-7), the azimuth depen=-
dent terms, the cosine and sine functions, are implied
by the superscripts c¢ and s, respectively. Since the
model is plane layered, such a dependence arises solely
from the orientation of the force system of the source.
For homogeneous solutions, we first ignore the azimu-
thal terms and define the functions U,,U..T..T,.,Usy,

and 7, from the bracketed terms in equation (II-1-6)
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and (II-1-7) as follows

U, =2, k
p | 2 dZ 1
dZ
pU, = k3Z, + —L
dz
dz
T, = (y-1)Zy+ 7y d: (11-1-8)

dz,
Tr = |(y-1)Zo + 7}2—&—
pU-,y= Fak
T.oz ﬁ dFa

The azimuthal terms dropped will be reconsidered when

the source is introduced.

These functions are useful, since all of them
satisfy the transformed boundary conditions: (a) the
continuity of displacement and stress across the inter-
faces of layers, (b) the vanishing of stresses at the
free surface, and (c¢) no upward waves in the bottom
halfspace 'if the source is inside one of the upper
layers. If we further require that waves decay
exponentially in the halfspace, these functions are
nothing but the eigenfunctions of a boundary value
problem. In equation (II-1-8) there are extra k's com-
pared to Haskell's (1964) definitions. The functions
with an extra k'are those which possess &y (kr ) in the
corresponding equations (II-1-6) " and (11-1i§3. Since

Jnlkr) Oor s _ (kr) are characteristic functions in the

r direction, these k's make the functioms y,,y, , and
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Uy have dimensions of displacement. Also U, differs by
a minus sign and 7, by «?® when compared to Haskell
(1964) ‘or Wang and Herrmann (1980). Such a particular
definition will allow the layer matrix a and all other

Haskell's matrices defined below to be more symmetric,

From equation (II-1-8), it is easy to find ordi-
nary differential equations for these functions.

Expressing equation (II-1-8) in matrix form, we have

k k [z,
U. 0 f'; “; 0 0 0 32
2
U, L o o £ o o]z
, p p
dZ
Ty [= |0 (r=1) v 0 0 0 |[|-*~
z
(11-1-9)
T, % 0 0 (yp-1)k 0 0 ||2Z,
k| |ars
Uy 0 0 o0 0 o 2\l
k
0 0 o 0 L ool|F
T”J L “o JLeeg,

The inverse of this equation is

az, 1 | . 11..]

7 0 p{y=1) 0 k& O © U,

Z, —p% 0 -1 0 0 0|0,

dz -

dzz - pbk—ll 0 1t 0o 0 of|mT,

(11-1-10)

Zs 0 ply 0 —% o oflr

4 b

— 0 0 0 0 0 rAREL

Fg 0 0 0 0 % 0| |7y

If we take the depth derivative on both sides of equa-

tion (II-1-9), replace the second z-derivatives of Zi
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Z,, and p, by equation (II-1-5), combine with equation

(II-1-18), and use po?=x+2u , pB%= u o we find

that
1T ? 11,
U, 0 E O _7 0 o ||U,
U, ~ko O mz% 0 0 © .
g | T | = 0 =-p O k 0 0 ||T,
2 2 (11-1-11)
az | p—t5- 0 -kc 0 0 o0 ||T,
[#8}
1
U 0 0 O o o —||U
)/ L )
Ts ) 0 0 0 puvf O ||Ty
where
£= 4 A+ v = A
T AN+ 2u TA+2u .,

The matrix on the right hand side of this equation is
denoted by A . Note that A is a skew-symmetric
matrix, i.e., symmetric about the secondary diagonal
axis, Such symmetric properties will reappear later.
Actually, one part of the differential equations in
(II-1-11) comes from the equation of motion and the
other from the relationship between displacement and
stress. The differential equation (II-1-11) forms the
basis of the propagator‘métrix theory of Gilbert and
Backus (1966) and the starting point for solving the
eigenfunction problem by numerical integration (Takeu-

chi and Saito, 1972).

The z components of potentials satisfying equation

(II-1-5) have the solutions
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14 2

Z,=A'e """ 14" "

Zo=B e ** +pB" e”f* (11-1-12)

Fa= Cre-Vﬁz + C“ evﬂz'

where the single primes represent the waves propagating
in the positive =z direction, i.e., downward, and the
double primes for waves in the negative direction,
i.e,, upward. Some authors normalize the coefficients
in equation (II-1-12) by the energy flux in the =z
direction (Kennett et al, 1978), which is [av,p for A
and ﬁﬁ?;;Z; for B and €. Normalization is not used
here, but this point should be remembered in reference
to the reflection and transmission coefficients. After
substituting Z, , Zz , Fj into equation (II-1-8), the
U's and T's in the layer m can be expressed by the fol-—

lowing matrix:

] - ' 1 [ e
o I I T T e | [
Je P P P
| Vo o kB _va K? 0 e’ || B
i P P p P
T, | _|(-1) ve (y=1) -7 O 0 e efl | A
= dig,
v 1% g
T, 7;: (r- 1)k ‘7;: G-k 0 0 | | B
k k
U,o 0 O O O ; ;‘ ellpz C.
kv kv -
T, 0 0 0 0 HKkVg — HEVE e vz LC.
Lol p J X JUT 4,
(11-1-13)

where the subscript m is the layer index. We have

denoted the quantities at the top of the m'th layer by



- 21 -

m and at the bottom by m+l. From equation (II-1-11)
and (II-1-13), it is obvious that the ¥ component can
be separated from the r,z components. This represents
the SH wave with particle motion parallel to the inter-
faces. For ease of expression, we will keep the three

transformed components of motion together.

It is convenient to introduce the matrices

B= [Uy, Uy T T Up Ty I
K=[4"B"A,B,C,C'],

E for the first matrix, and A for the diagonal second
matrix on the right hand side of equation (II-1-13).
Note that the matrix A describes phase variation along
the depth direction, With these substitutions, equa-

tion (II=1-13) becomes
Bni1 = Ep An(z) Ky, . (1I-1-14)

In equation (II-1-14) we have one of the most important
equations of this dissertation. Matrix B , the eigen-
function vector is also called the motion-stress vector
(Aki and Richards, 1988) and has the convenient property
‘of being continuous across interfaces except at the
depth of the source. Matrix K is called the
potential-constant vector which is composed of poten-
tial coefficients from equation (II-1-=12). These coef-

ficients are constant everywhere inside a homogeneous
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layer. In the reflectivity method, the vector plays

an important role.

Let B,, be the value of B at the top of the m'th
layer and B,,, be its wvalue at the bottom of this

layer., Taking z = 8 in equation (II-1-14), we have
Bn = E,. K, , (11-1-15)
and taking z = d,, , we have
Bnsi = Epn Ap(dm) K . (11-1-16)

It is important to mention that although K, is constant
in the m'th layer, it can be premultiplied by the
matrix A,, to become 'propagatable' when it is wused to
describe waves inside the layer. Therefore An(0)K,
represents the potential at the top of layer m and
An(dm)K, 1is the potential at the bottom of this layer.
By combining equations (II-1-15) and (II-1-16), we

obtain a useful formula:

Bnst = Em Am (ER! By, )
= (Em Apn ER') B = G B, (11-1-17)

where we have defined

An = E, Ay B3, (11-1-18)

and E;! is



y (=1 k W
~pL —pA= . & 0
P P Vg Vg 0
{-1) 2z 1 _1
Pk Pee v Tk 00
Y (r=1) k
—pL -1 =% 0 o0
| T N (11-1-19)
m == _ 11-1-19
2 _p_(L_ll p_'% 4 _1 0 0
. Vﬁk k Vﬂ k
0 0 0 o £ £
k  ukvg
L __P
0 0 0 0 B-—il

Matrix a transfers the motion-stress vector through

the layer; hence it is usually referred to as the layer

_ matrix or matrix propagator. The elements of a are

defined in Appendix A, Tﬂis matrix possesses several

interesting properties:

(1) a(z) is a function of z only, i.e.; it propagates

in the vertical direction, and this z-dependence
arises solely from the diagonal matrix A(z).

(2) aNz)=a(-z) , since

a N z)=[EA(z) E! ]!
=EA” (z) E!
=EA(-z)E!

a(-z) .

(3) agiz(—1f+jaﬁ , this can be seen from Appendix
A where terms with i+j = odd are related to
sinh(vgapz) which is aﬁ odd function, and terms
with i+j = even are related to cosh(vepz) which

is an even function.
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(4) In a homogeneous layer,
Am(z1+22) = Am(z1) Ap(z2),

since the diagonal matrix A can be decomposed:

Am(z1+22) = B Am(z1+22) B!
= En Am(zy) A (zp) E7!
= Ep Am(zy) BR' B, Ay (22) EF!
= Am(z1) Am(z2).

This is the property of a propagator matrix (Gil-
bert and Backus, 1966).

(55 All of the elements of matrix a are rea} for
real k and «, and most importantly the sinh func-
tions always appear as sinh(Vq 82 )/ Vag or

ﬂnhﬁhﬁz)-uéﬁ which suppress the possible branch
points due to the multivalued functions Vasg .,

(6) a has a type of symmetry

Qg QA5-j,5-i for P-SV

Qss = Qegs for SH

Properties (3) and (6) can be combined as

( -1 )i+j QA6-j,6-i for P-SV

&
Il

&
il

(-1)d @115, 11-i for SH , (11-1-20)

In a similar way, the potential-constant vector

can be transferred across the layer boundary by
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o1 = Exley Bn A (d) K (I1-1-21)

Am(dm) K, 1s the potential located just above the m+l
interface and K., just below this interface. Hence,
-1 ,E, contains the information about the reflection
and transmission of waves passing through the m+l
inﬁerface. This property was extensively used by Ken-
nett (1974) in his study of reflection and transmission

coefficients.

In the above discussion, we constructed the
displacement=stress field in a layered medium with the
aid of the motion-stress vector B which in some sense
repreéents the character of the boundaries. To connect
these vectors between layers, a potential-constant vec-
tor X was defined in a more direct way than Haskell
(1953,1964) . Haskell (1964) defined K=[A4+4",6 4'-4", B-
B", B'+B" 1% This quantity is not convenient for applica-
tion and was replaced by TFK in Wang and  Herrmann
(1980) . The potential-constant vector represents the
waves inside the layers. With this new K we are able
to find a diagonal matrix A , and consequently a
better form for the layer matrix a=EAE'. Matrix E
consists of eigenvectors of matrix A in the differen-
tial equation (II-1-1l), which will be further explored
in section 2.3, It is noted that use of the matrix D
of Haskell (1964) and matrix F of Wang and Herrmann

(1980) has been avoided.
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2.2 compound Matrix

The compound matrix theory was first introduced to
seismology’ by Dunkin (1965). This theory was proposed
to treat the problem of loss of precision during calcu-
lation of the layer matrix in Haskell's (1953) original
theory. Knopoff (1964) also developed a method using
matrix representation to solve this problem. However,
because of complexity in notation his method was not
widely applied. The reason that Haskell's layer matrix
needed to be extended to a compound matrix arises from
the exponential terms contained in matrix A . During
the calculation, these exponential terms, when they
happen to be real functions as in the case of surface
waves, will grow very large to obscure the significant
figures‘ of other factors. The remedy for this is to
control the exponential vélues during the computation
of these elements and/or to reformulate the matrix
theory of Thomson (1950) or Haskell (1953) using com-
pound matrix forms. In this section, we will discuss
the compound matrix in detail and also consider the
source representation to obtain complete solutions.
The source function will be further explored in chapter

Ve

From Hudson (1969a) the source effect can be taken
into account by means of a discontinuity of motion-

stress vector across the source depth. Suppose that a
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source is in the m'th layer at a depth &, beneath the m

interface. The source vector S is defined as

S =B} - By, , (11-2-1)

where B, , B; are the motion-stress vectors immediately
above and below the source depth 2zm +hm, respectively.
Such a source definition is different from that of Wang
and Herrmann (1980), which is a modification of Haske11 
(1964), in that the S they used comes from the discon-
tinuity of potential-constant vector K , i.,e.,
L=K; - K, . The relation of these two expression is

just
S=E. 2T . (11-2-2)

Haskell's expression for the source is also useful when
applied to other theories such as the reflectivity
method (Fuchs, 1968). The introduction of revised
source terms has the advantage that the factors v, and

Vg are no longer required,

It is straightforward to relate the motion-stress
vector B; at the surface to B by the layer matrices in

between:
Bn = @m(hm) Qpoy -+ @y By = ZBy (11-2-3)
Similarly, B; can be related to Ky in the half-space by

Ky = EIVI ay-1 + Cz'-n-z.(dm_ 'm.) B‘rtx = XBT;. . (11'2'4)
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Equations (II-2-1), (II-2-3), and (II-2-4) are further

combined as

Ky = XB}, = XS + XZB, = XS + RB, (11-2-5)
where

X=Ey'av Quidm—hm)

2= Q) 0 0y (11-2-6)

R=XZ=Eg'an-1 - &y .

We have used property (4) of matrix a (page 24) to

define matrix R .,

Now we consider the boundary conditions at the
free surface and the half-space. Vanishing of stresses

at the free surface requires B; to be
By=[U;,,U;,0,0,Us,0]" .

Inasmuch as the source is assumed to be in one of the
layers, there can be no upwardly propagating waves in
the half-space. Thus Ay =By =Cy =0, and Ky takes the

form

Kv=[0,0, 4y .By .0, Cy 17,

The first two and the fifth rows in matrix equation

(II=2-5) can be written as

Sy
[O]_[Xu X1z X1a X14} Se R11R12] Ur,
0% | Xo1 Xoo Xag Xagf |Sa| T |Ray Reo| | U,

S4
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Ss
0=[Xgp, Xss] Se

+ Rgg U'dl ,

Here the P-SV and the SH components are separated. The

free surface displacements are easiiy found to be

U Roz =Ryl | Xy Sy 2 .

U, 1_(_.1) ~Re; Ry |Xe 5.7 Bli2 =l 4
(11-2-7)

Us, =(~1)(Xs; S; )/ Rss j=5,8 ,

where the use of summation convention for the sub-
scripts and the compound matrix or second order sub-
determinant definition RI|H =RyR, - RyR; are understood.
This is the extent of Haékell's (1964) development. Let
us consider the P-SV waves further. Since R=X1Z ’
i.e., Rij = Xue Zij ¢+ equation (II-2-7) 1is further

developed as

[Ur] [—-Si X125
Ushi 7 L S; X R 254

/S RIE o (11-2-8)

A compound matrix can be expressed as the matrix pro-
duct of its compound sub-matrices (Dunkin, 1965). Hence

from equation (II-2-6)

X|F=Eitlas anal 3™ Omat| T Qo (A —hon) |
' (11-2-9)

RIE=Eq'lmy = ael& arlif .
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The elements of compound matrices fy'|J? and a!} are
listed in Appendix B, It is important to point out
that/in deriving a]ﬁ from matrix a; we are able to
remove the questionable square exponential terms by the
analytic equality cosh?®(vz) - sinh®vz)=1 . This is the
basic reason that the compound matrix is better than
the simple matrix in Haskell's theory. 1In Appendix‘ B,
we have factored out the quantity 1/(4kve,vs,) when
defining E5'|}?to remove the possible singularities from

van and ¥gy . This quantity is usually canceled out by
division of similar terms in the denominator of equa-
tion (II-2-8). Therefore it will be suppressed in our
calculation., However, in other cases, this term might
not be discarded so easily, such as when considering
the stresses (Baumgardt, 1980). This point should be
noted when the compound matrix Ey'|d* is included in the

formulation.

The compound matrix a|§ can be looked at as a 6 by
6 matrix, if we assign the indices as
12 - 1 13 » 2 14 - 3
23 - 4 24 - 5 34 - 86 ,
In Appendix B, we find that the third and fourth rows
or columns of compound matrix e are equivalent in a
particular way. This can be explained mathematically in
Appendix C by means of two properties of compound
matricés; As indicated by Watson (1970) , this

equivalehce pérmits us to reduce the 6 by 6 matrix to a
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5 by 5 matrix by discarding the third column and row
and replacing the fourth row by [2a|ﬂ§,2ai%,2a]§?~
1,24 |%. 2218 ] during the matrix multiplication. The
Ey'|{f matrix also drops the third component E§'|{f. Such
‘a feduction saves some storage space and computer time.
The. third component dropped can be retrieved easily,
since it is exactly the same as the o0ld fourth com-

ponent.

‘Because of the symmetry exhibited by matrices a
and E! , there exist some interesting properties of
their compound forms. As shown in Appendix C and equa-
tion (II-1-20), the compouhd matrices X and R , which
consist of E! and @ , possess the following proper-

ties:

Y UE = (-1 gy Y485
Y |[{f=Y1 (11-2-10)

v = v g

where Y might be E*, X, or R , and the constant
4k2vaN VgN

PR ~
zation factors we have mentioned in equation (II-1-12).

gy = . This constant consists of the normali-

Matrix Z , which consists of a's, also has the proper-

ties:

Z-i;l = (__ 1)‘i+j Z5—j,5—‘i

Zg = (- 2 gt

These symmetry properties are a characteristic of
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Haskell's formulation, although they arise from a some-
what arbitrary choice of motion-stress and potential=-
constant vectors in the last section. In Haskell's work
(1964) or other similar formulations, these properties
are more or less missing. These properties will be of
particular interest when relating the eigenfunction

theory and matrix theory in the next chapter.

The sutrface displacements in the forms of equation
(II-2-8) are stable for éalculation, since they include
X|#{ which imposes the boundary conditions from
halfspaces all the time. However, Harkrider (1964) and
Harvey (1981) used another form. Since R=X1Z or

equivalently X=RZ ! we have

X|FZp = (XuKes - XyXei ) Zgp
= Rt Zi'Ry (Zt]‘lz_jp)" Rim (ZmjZ3) Rew 23!
= RwZG'Rop — RipRop 2,5
=R|Ezi .

Hence
[Ur] {le’% Za' Sy 2
U, = (-1) —R | 2,3 s, S RIE . (11-2-11)

Numerically this form is not as good as equation (II~-
2-8), since it requires more calculations with ngﬂthan
with x|tz . However it is a useful expression for deriv-

ing other properties,

At this point, it is interesting to consider the
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dispersion property of surface waves., It is known that
the dispersion is determined by the velocity structure
and 1is independent of sources. Assuming 8=0 and

Ky =RB, » We obtain

0 Ry Rz . . ||Uny
0 Rgy Rap . . | |VUzy
471 . S 0
B’ 0

The first two rows give

Ur, - _ R _ _ Ra
U, Ry Ry

1

and the 1last equality defines the period equation
R|{=0 . Ur /Ue, is called the ellipticity of Ray-
leigh waves at the free surface, which is wusually

denoted by ¢ . By applying the arithmetic equality

b _d _ br —dy

a c azr — cy

where z and y are suitably arbitrary numbers, it is not

difficult to find that

U, RIE __RIE

= - = (11-2-12)
Ue, R|{§ RI|{f

)

i

(This is the derivation of Equation 28 in Harkrider
(1978)). Furthermore, another expression exists for the
ellipticity in terms of R, ‘By using the symmetry pro-
perties of compound R (equation (II-2-14)), it is found

that
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o RIS _RUM
T RME T RTIE .

" The period equation in this case is R7!'§=0.

THe solutions in equation (II-2-8) include the
source terms S; ., For the surface waves in which
R|{$=0 , the ellipticity of Rayleigh waves is known to
be independent of the source. This can be shown by

another form of the solution in equation (II-2-11):

e = Uy, ~ RIEBZ&S
Uz, R ll}% Zk-il Si
2 pag , B1E
Riz5(Za! Si + R Zg Si)
=~ = l"‘f; (11-2-13)
RIB(ZaSi+ "5 ZiS:i)
R |15

Using an equality for any compound matrix R|}* (Abramo-

vici, 1968),
R RIF+ RIE RIB=RIBRI|E
however since R|{#=0 , equation (II-2-13) becomes

R|3
R

o

£ =-

Copo

Thus we have shown that the ellipticity is really a
quantity determined from the layer response only and is

independent of the source.

The solutions for the Fourier transformed dis-

placements as expressed in equation (II-1-6), after
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summing the mode numbers over horizontal and azimuthal

directions, have the forms

u, (r,9,0,0) = Z f (UM cosnd + UPFsinn®) J,(kr) / Fp }
n=0"p

, -u,(r,9,0,0) = 3}, f dk { (UP° cosnd + UM sinn®d) J,_y{kr) / Fp
0

n=0

- (2-) (U cos nd + UM sinnd) J,(kr) / Fg

3 g

+ () (UPS cos nd — U sinns) J, (kr) / F) } (11-2-14)

g

—ug(r,8,0,w) = E f dk { (U3 cosnd® — UZ° sin nd) Jp-1(kr) / Fy
n=0“o

- () (UT cosnd - UF sinn®) J,{kr) / Fy

S

+ ( ) (UM cosnd® — Uj® sinnd) Jo(kr) /Fri

where U*, yr*, U¥y* , Frpand F, are

Um:,s = S{lc,sXIi}E Zjl

e = = SPe X | 2
Umps = — ij S;w,s

Fp = R|{

FL = R55 .

There is now no doubt that an earthquake can be
represented by a double-couple source without moment
model (Aki and Richards, 196@, p.43). Haskell (1963)
used n for the vector normal to the fault and f for the
direction of force to describe the source. For practi-
cal applications, the dip d¢ , strike ¢ of the fault

plane and the slip s of movement on this plane are usu-
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‘ally preferred. The relation of these quantities to =n

and f are just

1= —-sind sing f1=coss cosg+ sins cosd sin ¢
TNp = sin d cos ¢ fe=coss sing — sins cosd cos p
Ng= —cosd fa=—-sins sind .

The Fourier transformed displacements generated by
such a dislocation source, for which n = ¢,1,2 in‘equa-

tion (II-2-14), have the forms:

uy (7.9,0,0) = ZSS * Res + ZDS * Rys + ZDD * Rua
u(r,9,0,0) = RSS * Rys + RDS  Rgs + RDD - Ry
ug(r,8,0,0) = TSS - Rs + TDS - Rus (11-2-15)

where
Rem = (f 1m—f2nz)cos 28 + (f 1n2+f2n1)-sin 29
= sind cos s sin 2(%—¢) + % sin 2d sin s cos 2(¥—¢)
Ras = (f yna+ fany)cos ¥ + (fona+ fang) sin ®
= cos 2d sin s sin (8—p) — cos d cos s cos (¥—p)
Ras = fang |

=%sinssin2d

Re = (f yna+ feny)cos 28 = (f jny— fane) sin 29
= sin d cos s cos 2(¥—p) - % sin 2d sin s sin 2(¥-¢)
Rus = (f ana+fane)cos ¥ = (f na+fany)sin @

= cos d cos s sin (¥—¢) + cos 2d sin s cos (¥-p)

ZSS

S (L/FR) { SEX 82 2513 T oller) die

0

ZDS = [ (L/FR) { S X |{ Z;1 ) J o(kr) dk
v}

Z0D = [ (1/Fp) { SP X |} 2,1} Jolkr) dk
0

RSS = [ (L/FR) { SEX |4 252} J1(kr) o
0
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- _Z (L/FR) { SE X | Z;2 320 olkr) /K dk
+ _Z (L/FL)S X 65320 o(kr ) /K dk
RDS = ,Z (L/FR) { S X {f Z52 3 Jolkr) dk
- ,Z‘ (L/Fp) { S X | Z;-é } I (kT )k dk
+ z(l/FL)ESszj;J,(kr)/kr dk
RDD =—,Z (L/Fr) { SP X | {f Z;2 3 J (k) dk
TSS = ,Z (L/FL) { Xoj SP 3 Jo(kr) dk
"..Z (L/FL) { X5 SP 3 2Jo(kr) kT dk
+ Z (L/FR)SEX |i11‘2Zj2§2J2(’f7T)/kT dk
DS = i (1L/Fpy { Xs; SP 3} Jolkr) dk
- ‘Z(l/FL) { Xs; SP 3 J(kr)/ kr dk

+ [(/FRSIX 12523 (k) /kr d
[+]

with
Ampm0®SE = 4k kE  4maPS{ = 2k2 [(26m/ 0 )?-3 ]
4mpm®S{ ==2k kF  4mo®S§ = -2k? (I1-2-18)
Amp . BES = -2k anSE = 2k? |

All other S equal zero. The solutions and source
forms for other types of sources will be given in

chapter V.

In the above equations, SS represents a strike-

slip type of source, DS represents a dip-slip type of
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source, and DD represents a 45°dip-slip type of source,
It is apparent that these three components are all that
are necessary to represent the P-SV motion for any
shear-dislocation source :(Harkrider, 1976). The SH
motion only needs SS and DS components. RSS, RDS, TSS,
and TDS in equation (II-2-15) also include the near-
field terms. These terms decrease faster with r than
the others, and thus, are important only at short dis-
tances or low frequencies. The near-field tefms in the
r and t directions have exactly the same forms. It is
worthwhile to indicate that the near-field terms have a
higher order Bessel function than their far-field coun-
terparts. The calculation of near-field terms requires

special care. This will be studied in section 2.4.

2.3 Comparison with Other Formalisms

Mahy approaches have been developed to treat wave
propagation in isotropic and homogeneous layered media.
In this section, we will discuss three typical
approaches from the stahdpoint of the system con-
structed in this dissertation. It will be shown that
our system 1is related to these other approaches with
only a little modification. Examples describing the

merit of our approach will be given later.
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The Eigenvector of ODE

We have already mentioned that the eigenfunction
theory plays an important role in establishing our
matrix system. The mathematical foundation of matrix
theory was provided by Gilbert and Backus (1966) using
the 'propagator matrix' description. The mathematical

connection is enlarged in the following discussion.

The motion-stress vector satisfies the first order

differential equation (II-1-11):

dp_
2. B=AB, (11-3-1)

where A is a matrix representing the material pro-
perty. Within a given layer A is a constant, and the

solution takes the form
B(z) = e* 7" p(z,)

where z; is the reference depth. The function g® %04 oy

calléd the matricant or layer matrix for a homogeneous

layer, is defined by Sylvester's theorem (Hildebrand,

- 1965, p.61). Compared to equation (II-1-17), the layer

matrix defined in equation (II-1-18) must be

- e(z—zo)-A '

a (11-3-2)

Applying matrix multiplication, with E?!' and E from

'

equations (II-1-13) and (II-1-19), equation (I1-3-2)

becomes
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E'1aE = Ete 0 g o0 ETAE

Since A(z)=E'eE (equation 1II-1-18), we obtain an

interesting form:

vg 0 O 0 0 O

Oy 0 0 0 0
T 0 0 -v; O O 0
|E"AE=1o 0 0 -yg0 0=V
o 0 0 0 0 w O

0

0 0 0 0 -y

It is found that matrix A is diagonalized in a way
similar to that of the characteristic-value problem,
According to eigenvalue theory, E must be constructed
from the eigenvectors of A and v, , v are its
eigenvalues. This fact is confirmed as we actually
obtain the eigenvalues from matrix A (Aki and Richards,
1988, p.275). Therefore the eigenvectors e 's of A

constitute the successive columns of the E matrix:

[

€y € €3 ey

The corresponding eigenvalues A's are Var Vg =Va, =Vg, Vg

-vs , The e&'s are mutually orthogonal.

With this view of the E matrix, matrix B in
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equation (II-3-1) can also be expresSed in terms of
eigenvectors and eigenvalues. Project vector B into
the direction of e; eigenvector, and denote this com-

ponent by M, :
My=Be =fy(z)e, .

Because of the linear independence of e 's, M, still

satisfies the differential equation ( II-3=1):

4 (F1() e) = & (7 (2) o)

(‘d%‘ Fi(z)) er = (Aey) £1(z) = (\ey) Filz)
i.e.,

E%f,(z): At fi(z)

Hence in the ey direction, we have the solution

A —
Ml =@ 1(2 zo)el

‘Repeating the same procedure for the other components,
we obtain the solution to the ordinary differential

equation (II-3-1):

L e tl7=o

€y € €3 €4

ekg-(z—zo) 0

This form of solution is called a fundamental matrix.
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The propagator matrix is defined from it (Gilbert and

Backus, 1966, eq.2.4):

@(z-zo) = M(z) M™(zq) = EA(z) [E A(zo)]™
= EA(z) A(~z4) ET?
= EA{z-2z,) E™!,
The most general solution of equation (II-3-1) is
described by a linear combination of the fundamental

matrix M ,

B=MK-= EAK

where K is any constant vector. It follows that the
differential equation (II-3-1) can be written in the

form:

d%(E Az) K) = A (E A(z) K)
E%(A(z) K) = (EAE ) A(z) K (11-3-3)

= V(A(z)K) ,

where we have used the fact that E and K are indépen—
dent of - z. Since V is a diééonal matrix, it is said
that the wave field has been ‘'decoupled' (Claerbout,
1976, p.169). It is easy to see that vector K is just
the potential-constant veétor ‘defined before, which
consists of upgoing and downgoing waves.'|These waves

flow up and down in homogeneous regions without

interacting with each other.



The compound matrix x|/ expressed in equation
(Iim2m9) appears as a (1X6) matrix during compound-

compound multiplication (Dunkin, 1965):
X\P=[x18.X\8.X\5.X\8. X8 X8 .

When X[ is multiplied by a regular matrix as in equa-
tion (II=-2=-8), it can be viewed as a (4X4) anti-
symmetric matrixs
| X1 x|
g oo xi18 xk
X2 =
=Xl -x18 o x1§
-X 11§ -X | -x|§ o

This property provides an alternative method of formu-

lation.

In recent papers, Abo-Zena (1979) and Menke (1979)
decomposed the layer matrix multiplication into a form

with recursgive relations:
Yoo = AL AS . {[EATT [EB] = [EB])T [EA)} An-r o Ay (11-3-4)

(Abo-zena, equation 48), where {[EA)” [EB] - [EB]” [EA]}
is an anti-symmetric matrix, which is actually
equivalent to our E~'|JF. After a tedious expansion, we

find that
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YIRal=4aL YA .

" The recursive procedure (II-3-4) is exactly the same as

the compound matrix multiplication we used to calculate

R in equation (Ii=2-=9).

since layer matrix @ can be factored into EAE™,
2bo-2%ena further removed the phase terms in A out of
@ in order to control the exponentially growing terms
when the phase velocity is less‘than a wave velocity
(Abo=gzena, equation 44); A gimilar technigque can also
be found in Kennett's (1974) 'phase-related’ opération
(ref, section 4.3)., In such a reformulation, the
square exponential terms are identically zero, as we
have seen in deriving the compound matrix a . It 1is
this procedure which makes the matrix method useful for

very high frequencies.

Mantle Wave Simulation

A scheme by which the teleseismic body wave pulses
from a seismic source are calculated, allowing for the
effects of transmission through the mantle and crust,
was given by Carpenter (1966) and Hudson (1969b). The
calculation is divided into three partss source crust
response, mantle effect, and receiver crust response.
The rays emitted from the source crust are allowed to
travel through the homogeneous upper mantle, then enter
the receiver crust and be recorded, Hudson (1969b)

gave a detailed derivation providing both formalisms
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and approximating solutions, Here we ‘will extend his
result by using the compound matrix. Although both Car-
penter (1966) and Hudson (1969b) start from Haskell

(1964) , our derivation is relatively simple and direct.

In the source crust, the waves from the source are
reflected and refracted and finally enter the bottom

halfspace as mantle waves following the equation:
Ky = X5 + RB; .

After expanding, setting A4y=B8By=0 and T, =T, =0 ,

1

and substituting equation (11-2-7), we have
Ay =[R|EXuS +RIB XS~ RIS XaiSi 1/ R\

for P waves. This equation is equivalent to equation
(3.3) of Hudson (1969b). Another form can easily be

found by using

R = gu(—1)i+7+ R 8
The vesulit is

Ay =5, R"XI%X;'@ SR,
or, by R1l'=ztx

ay = 5,7 K/ RE

Similarly for SV waves,we have

By = =S R4 X /R84
=S, 27 G X SR
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Inside the mantle, the waves .as expressed in dis-

placement form are By, = Ey Ay Ky

or,
k Va2 5}(2 VgZ o
= _ 2 . = P o 7SV
U, Nt “”‘KE‘-Q VEZA}:] + -k__e IIFJB}:J U, + UZ N+t
p P :
(11-3-3)
where z is measured from the deepest interface. The

solutions are divided into P and S components
corresponding to 4y and By respectively., The final
solutions similar to equation (II=-2-15) can easily be

found following the procedures in section 2.2.

When waves pass through the mantle, the effect of
the mantle can be simply included by adding geometric
spreading factors for P and S motions respectively
(Ben—-Menahem and Singh, 1972). The wave fields expressed
in equation (II-3=5) are decomposed into the 'compresM
gional and shear components by using the angle ¢ which
is the angle made by the downward vertical with the ray

directions

UF = UP sin 8p + UL cos vp

USY = USV cos 05 ~ USY sin ¥g

where
Yp = tan! k.
V“N
¥ = tan™! -
V‘;N N

UP and US” are then multiplied by the spreading factors

of P and S5V waves, respectively, to take into account
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the mantle effect. At the bottom of the receiver
crugt, the P and 8V waves can be resolved back into the

r and z directions as follows:

U, = U? sin ¥p USY' cos 95

U, = =UP cos ¥p - US sinvg ,

I

where the prime indicates the mantle waves which reach

the receiver crust.

The effect of the receiver crust is easily taken
into account by using the Haskell matrix R £from the
whole layer stacking, For our system, we just need to
change (Jg=Je) in Hudson's equation (7.7) to Rgp .,
(Jar = J41) 0 Ry , and evaluate the period equatién by

compound forms,

In the above discussion, we have shown how easy it
is to extend our system. Many theories with difficﬁlt
derivétions come out simply by using the relation of
Haskell matrices developed in section 2.1, Mére exam-

ples will be given in the later chapters.

2.4 Numerical Integration
Contour Integration

A1l of the integrals in equation (II-2-15) have

the general form
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{ 7 (e, 0) Iy (k) dk (11-4-1)

The evaluation of this integral is complicated because
the function Jf(k.@) has poles and branch points (Figure
2). The poles come from the zeros of the period equa-
tion, and the branch points from the radicals vaw and
vgy given in eguation (II-1-5). To avoid dual values
of these radicals, we introduce the branch cuts at the
loci along which the real parts of VYav and V¥aw are
equal to gero, For the limiting case of real frequency
and real layer velocities the two branch cuts,
corresgponding to VYw and Vg respectively, collapse to
form one branch éut along the real k-axis from the S
branch point to the origin, then along the iﬁaginary
k-axis to =~iwx , The number of poles is finite and all
of them are located on the real k-axis. The positions
of poles determine the dispersion values on the w-k

- domain.,

The integration in equation (II-4-=1) can be
evaluated by applying Cauchy's theorem. This is a stan-
dard technique and is used, for example, by Ewing et al
(1957) , Harkrider (1964), Hudson (1969b)., and Herrmann
(1979) in their work. In order to deform the contour
properly we need to apply a transformation which
expresses the Bessel function in terms of the Hankel

functions of the first and second kind:



K=PLANE

Pigure 2.

Contours in the complex k plane for evaluating
the wavenumber integrals. The positions of the
koy and kg, branch points and the surface-wave
poles ('X's') are indicated. Branch cuts are
shown by thicker lines. Two circular arcs, 7

and 72 , sourround the possible Hankel function
pole at k = 0,
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Inller) = 5 [HOkr) + HOkr) ] |

The integral path can be deformed into the first and
fourth quadrants, since H\{Y and AS? are analytic in the
first and fourth quadrants, respectively, of the com-
plex k plane. These two contours can further be com-
bined into one as shown in Figure 2., Herrmann (1979)

finally expressed the contour integration in the forms:

%ff(;s,@) Jalkr) die = =i Y Res f (ko) H®(kr)

&
By

+i [ Iy folk o) HO(kr) di (11-4-2)
0

+ () [ 11 lima) ep (=inm,/2)

+ f(~iTw) exp(inn/2) | Kp(rr) d T

»

where the + or - subscripts indicate that Veay , vey > B
or < B, respectively, be used to evaluate the function.
K, is the modified Bessel function which decreases

exponentially with increasing arqgument,

At each different frequency, when wavenumber k
approaches zero, there might be some singularity intro-
duced by the Hankel function. Wang and Herrmann (1980)
realized that the solution (I1II-4-2) is correct only if

fk,w) = 0(kn+1) as k approaches zero where n is the
order of the Bessel function. Otherwise the singular-

ity of the Harlkel function at k = @ contributes to the
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integral. After carefully examining the k terms in the
response function, we find that such a Hankel singular-
ity only occurs in the components of the near=field
displacement of a double~couple source, for which

F (k) = 0(k°) for n =1 and I (k.w) = 0(kY) for

no= 2,

Figure 2 shows the proper contour to be uged for
contour integration, where we have made a small circle
to avoid the singularity at k = ., One cannot contract
the semall contour about the origin since the Hankel
function singularity is still present at the lower lim-
its of the branch line integrals. An interesting way
to overcome this is to use a known integral whose
behavior at k = 0 is the same as that of the functions
in equation (II-4-1), Using an integral from Harkriaer

(1976)

‘o ey J(kr) die
7 lmL(_.L) e[ 1 = exp(~ikyr) ]/ ir
4]

where Vi(k,w)=k?- g2 . The integral for n = 1 becomes

{ Jlk,w) Jy(lr) die = —mi 3 Res [ f (ko) B (kr) ]

&
fy

eszm LF sl .0) o+ T T £ o(0,0)] H D () ae

g

» . k,u
J T L7 (iro) + W Inf +(0,0)] Ky(7r) dT

=
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+ -;{- Re f .(0,w) (11-4-3)

- 'i,jmf +(0,0)

S 1 ezp (iky 7)]

To evaluate the near field integrals for n = 2, a
careful examination of the integrands revealed that the
integrand could easily be factored into the form

f (ko) =kg(k,w) , This contour integration used the

other integral of Harkrider (1976):

T kyle T aller k &
f , Y yﬁ( ) il = - %g:ﬁp(“iky'f‘) + 2 [l-neaav(?lku’f“)] /,er °
0 v

Using this integral and performing the contour integra-

tiong

S 7k w) Jallr) die = ~mi ) Res [k g (ko) B (kr))
0

&
8y
k
i f I [g4(l,w) + ~ Ing +(0,0)] k HE (kr) dk
[} 7]

* sz Lg.(ir,e) + ( )mg+(0 )] TK(rr) dT

2
+ u;féRe g .{0,0) (11-4-4)

I g +(0.0) . 2 .
+ IR0 oy exp(-iy7) + 2 (1-eap (~ik,7))] |
In both equations (II-4-3) and (I1I-4-=4), the lower lim-
its of integration equal zero because the functions
f(k.w) for n =1 and 9{k.®w) for n = 2 are even Ffunc-
tions in k. Therefore the integrands in the branch line

integrals are identically zero as the lower 1limit of
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ihtegration goes to zero, The choice of the parameter k,
is somewhat arbitrary. For the SH terms, ky =kg, is
used while ky=ks from equation (II-4-~5) is used for

the P-SV terms. This point will be further discussed

later,

The solutions as shown in the integral form of
equation (II-4-2) consist of two contributions: the
pole residue contribution and the branch line
integrals, Generally speaking, the pole contribution
gives risé to surface waves and the branch Lline
integral vyields most of the body waves. The pole and
its residue will be discussed using normal mode theory
in the next chapter. Later in chapter IV, the branch
line contribution will be examined using a leaky mode
approach., Here we just give a brief discussion of
these two contributions, and attempt to improve the

numerical integration technique,

To evaluate the integral

kﬂN
S s (ko)) HOer) k™ dk
0

kncwledge of the behavior of the function /I, f{(k,w) is
egsential., Figure 3 shows the variation of these func-—
tions along the real branch axis at a freguency of 1 Hz

for a point source at a depth of 14 km in the central
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Figure 3. The responses of integrands in equation (II-2-
15) along the real k-axis branch cut. The cen-
tral United States (CUS) earth model, a source
depth of 10 km and a frequency of 1.0 Hz, are
used.
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United States (CUS) model (Nuttli et al, 1969;
Herrmann, 1978a) of Table 1. The symbols indicate that
the functions plotted arise from the corresponding
integrands of far-field terms in equation (II-2-15). It
can be noticed that the peaks and troughs of the excur-
sions, corresponding to P=SV and SH reépectively, are
aligned, although the magnitude might vary. This is
caused by some factors independent of the source type.
Another feature seen in Figﬁre 3 is that the tangential
components, TSS and TDS, are substantially smoother
than any of the P-SV function. The P=SV terms (Z and R
components) oscillate rapidly near both 4,y and kg
branch points, indicating that they should be sampled
with care. Note also the behavior of the RDS and TDS
plots as k goes to zero. These noanero limits are the
reason for the involved contour integration required in

equations (II-4-3) and (II-4-4).

Figure 4 shows the variation of integrands for the
ZSS component with frequencies between #.10 and 14.0
Hz., The point source is at a depth of 10 km in the sim-
ple crust model (SCM) of Table 1. The requirements for
adequate sampling of the integrand for proper numerical
integration at high frequencies are obvious. Given the
frequency f, we found it adequate to sample the region
between (o'kﬁw) by 50+200*f points. This sampling
represents one of the most time consuming aspects of

our computations., . Such <calculations set practical



TABLE 1

Earth Models

Thickness P vel ‘ S vel Dens%?y
(km) . (km/sec) (km/sec) (g/cn)

Simple Crustal Model

4o 6.15 3.55
8,09 L,6m7

W N
o

Central U. S. Model

1 5.00 2.89 2.5

9 6.10 3,52 2.7

10 6,40 3.70 2.9
20 6.70 3.87 3.0
8.15 4.70 3.4
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Figure 4.

8.1 0.2 0.3

The real k-axis wavenumber responses of ZSS
component along the real branch cut as a func-
tion of frequency  between 0.1 and 10.0 Hg.
The simple crust model (SCM) and a 10 kn deep
source are used.
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msg._
limits to this form of numerical integration,

To alleviate any numerical problems near the P and
§ branch points, a change of variable of integration is

introduced following Fuchs and Miller (1971):

=g L
kg sin y 7= [0, 2 ] for O<k sk,
k= (11-4-5)
katkg,  ko—kg, v=[0,n] for k.<k skg, :
2 2

where ks is chosen as an average of ko *d, over all
upper layers. This formulation permits the solution of
the halfspace problem as a subset of the layered
halfspace problem by removing the possible singulari-
ties due to the branch points at k. and kg . For a
layered medium, the transformation weights out the pos-
sibility of a surface wave pole at the kg branch point
interacting with the real branch line integrai° The
success of this particular transformation is evident
from the quality of the synthetic seismograms presented
later. For SH integrals, the transformaﬁion k ékmNsﬁl7

for y=(0,n,2) is used,

The residues due to the poles of the integrand
occur at the zeroes of the period equation, The number
of poles, or surface wave modes, increases with fre-
quency. For example, the SCM model of Table 1 has one
Rayleigh wave pole at the frequency of @.01 Hz, and

twenty poles at the frequency of 2 Hz. The number of
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poles increases almost linearly with frequency. For
the dispersion studies, the positions of poles need
only be grossly located compared to the precision

requirements for seismogram synthesis,

Figures 5 and 6 display the dispersion relations
in the frequency-wavenumber plane and phase velocity-
period plane, respectively, for a complex oceanic
model, A stair-1like dispersion pattern is obvious,
which usually causes difficulty for pole searching. To
overcome this, a pole searching technique was
developed. Since the dispersion curves vary more
gently in the frequency-wavenumber domain than in‘the
phase velocity=period domain, the pole location will be

traced in the w-k plane,

We start with a very fine search between k& =kg,
and k =kg_ (for Rayleigh wave l;se k =kg  0.88 to include
the fundamental mode) at the two highest frequencies of
interest. At this stage a dense search technique with
an interval halving refinement is used to find =zero
crossings. The poles at the next lower frequency could,
of course, be found by repeating the same procedures.,
However, we can save computation time by using the fact
that for most earth models, the phase velocity of a

given mode always increases with decreasing frequency.

For a given mode we known that
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w=kc,
and that
= Aw _  Ac
B = == —k—= (11-4-8)

This can be used to estimate the pole position of a
mode from its position at slightly higher frequenciéso
The previously calculated pole positions at two higher
frequencies are used to give Ac. The search at the
present frequency begins with the lowest order mode at
huw==ku¢-+£%i . This guarantees that a particular mode

is not overshot.

Next, several fractions of the increment k%f are
added to k,,, to find the place where the sign of the
period equation changes, at which time the interval-
halving method is used to refine the zero. The compu=-
tational efficiency as well as the results are found to
be substantially improved, since the modes.are now fol-

lowed rather than searched at each frequency.

. The numerical evaluation of the imaginary axis
branch 1line integrals is the same as that given by
Herrmann (1979). The Gauss-~Laquerre integration rule
was used since P-SV, SH functions Vary harmonically and

since the X,(7r) decayed exponentially;

[76r0) Karryar= § wlr 62)] [se™ Ko ()] -
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. . : (11-4-7)
[ 1) Koy 7 dr= § il (5] [ave™Kaln)] 5

=1 »

where w, is the weight and z=717, Because of the r
term in equation (II-4-7), the imaginary branch line
integral only becomes important at short distances.
For computation, the integrand function equation (II-
2-7) was used rather than compound matrix formulation
(I1-2-8) because there are no exponential terms
involved. An m = 100 order Gauss-Laguerre integration
rule is used, which should be valid at radial distances

as close as one-half source depth,
Synthetic Seismograms

After the values of u.(r,9,0,w), u(r,9, 0,0), and
uqys(r, 9,0, w) are calculated at several discrete frequen-
cies, we 'take the inverse Fourier transform with
respect to frequency to form the time histories. The

source time function with spectrum s(w) should be

taken into account at the same time:

u(r,8,0,t) = f s{w) u(r,8,0,0) exp (iwt) dw/ 2m

Since the fast Fourier transform (FFT) is used to
approximate the Fourier integral, the source time func-

tion given by Herrmann (1979)
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0 47<e

.is used. In the context of dislocation theory, s(¢) is
proportional to the velocity of the dislocation, or
equivalently the far-field displacement time history in
an infinite medium. The time histories generated by
such an impulse will be those of ground velocity. The
Fourier amplitude spectrum of this pulse is enveloped
by f° and f~® asymptotes which intersect at a corner fre-
‘quency of fe=1/(4.38*7) (Herrmann and Wang, 1979).
To avoid numerical noise problems with the FPFT, =+ is

taken to be an integral of sampling interval, At¢.,

The above numerical technique was tested by gen-
erating theoretical seismograms using the mddels listed
in Table 1. Figures 7, 8, and 9 illustrate some high
quality seismograms from a vertical dip-slip source in
the SCM model for three different components, respec-
tively. A source depth of 18 km, seismic moment of 1.0
E +20 dyne~cm, source-time function with = = f§.4 sec,
and a frequenéy‘ range from @.0 to 1.25 Hz are used.
The seismograms at distances less than 166 km include

' both the near- and far-field terms; beyond this dis-
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tance only the far-field terms are used. It is noted
immediately that the body and surface phases are very
clear, At large distances, there are multiple reflec-
tions following Pn, the first arrival, which last until
the onset of the surface waves. Rayleigh-wave groups
are well developed, even at short distances, in dis-
tinction to the Love=-wave group which becomes apparent
'ohly at ranges larger than the S-wave critical distance
(about 81,9 km). At the distance of 500 km, an interpo-
lation of the pole contribution with one-half the fre-
quency spacing was applied to double the time window
(Kennett, 1984). At this distance, only the first half

of the time series is plotted.

Figure 10 displays the radial component seimograms
due to a 45° dip-slip source of 1 km depth in the CUS
model of Table 1. The reverberation within the top
layer provides a wave guide which generates large sur-
- face waves. The well-developed dispersed groups consist
mostly of fundamental mode waves, which might have been
greatly attenuated in the real earth structure. Some
higher mode Lg wave arrivals prior to the dispersed

wave train can easily be seen,

Figure 11 shows the effect of focal depth. The
model used is the CUS model of Table 1, and the source
type is vertical strike~slip. The epicentral distance

is kept at 100 km. Numbers at the end of each seismo-
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due to a vertical strike-slip source in CUS model.
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tral distance is kept at 100 km. Other parameters
are the same as in Figure 7.
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gram are the source depths. It seems that for shallow
earthquakes the surface wave is dominant. When the
source is deeper the seismogram becomes complex due to
the increase of the body waves with respect to the sur-
face waves. When the source is very deep the seismogram
becomes simple again, because it consists mostly of
body waves. Surface waves have not yet had time to
develop. | Note that the source at depth 60 km is

already in the halfspace.



CHAPTER III

SURFACE WAVE - NORMAL MODE STUDY

The application of eigenfunction theory to the
study of surface waves is an important step which
incorporates modern mathematics into the investigation
of wave propagation in the earth. Using Green's theory
as a tool, the response functions in the transformed
domain can be defined algng ~mutually perpendicular
directions of chosen coordinates. By the imposition of
boundary conditions, the values of response functions
are discretized and yield specific modes of the‘surface
wave. Because of this, the theory is also called nofﬁal
mode theory. Orthogonality and normalization, two most
useful procedures in eigenfunction theory, further pro-
duce the final solutions in a form which is easy to
use, The reason for such a discrete excitation arises
because surfacé waves are a type of trapped waves which
reflect back and forth in the layers, and decay
exponentially in the halfspace. A consequence of this
system 1is the conservation of its total energy. Takeu;
chi and Saito (1972) used the calculus of variations to
derive quantities concerning the derivatives of the
conservative energy. These partial derivatives are
somewhat sensitive to the properties of the model and
can be used to jinvert for an earth model 'from surface

wave dispersion data,
- 72 -
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The numerical application of eigenfunction theory
FWas discussed by Bolt and Dorman (1961) énd Takeuchi
and Saito (1972). They chose two independent solutions
along two perpendicular directions as initial values
and used the Runge-Kutta method to integrate over
layers. The boundary condition at the free surface is
imposed in order to regulate the variation to final
solutions. Because of exponential growth of several
terms, this method fails to fit the special case of
very high frequencies. 1In this chapter, we will derive
a new method to calculate the eigenfunctions. The main
effort is directed toward felating the eigenfunction
theory to the general layer matrix method. As a result
of the symmetry properties of Haskell matrices revealed
in the last chapter, the eigenfunctions as well as the
energy integrals can be expressed in closed, analytic,
forms., Some well-known formulae are revised and
rigorously proved using the new framework. The overall
objective of this chapter is the calculation of high

frequency signals in any plane layered model,

3.1 Haskell Matrices for the Lavers

The eigenfuction problem for the generation of
surface waves in plane layered media is an important
topic in the theory of seismogram synthesis. After

Lamb's famous study, many authors have explored this
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problem using different approaches (Alterman et al,
1959; Keilis-Borok, 1968; Saito, 1967; Takeuchi and
Saito, 1972; Harvey, 1981); Here we will start with
the solutions for displacements derived in the last
chapter (equation II-2-8), and arrive at a formulation
using eigenfunction values at the source depth. The
reason we need the -eigenfunctions rather than the
Haskell's matrices X or Z is because these eigenfunc-
tions can be used to determine the energy which is con-
served for surface waves traveling in the 1layers.
Such an energy system is permitted to be perturbed to
derive other properties. For example, quantities such
as group velocity, dissipation functions, and amplitude
factors, which arise from small perturbations of elas-
tic parameters, can be obtained by the variation of
total energy (Jeffreys, 1961; Harkrider and Anderson,
1966) . 1In this section, a new formulation for evaluat-
ing the eigenfunction values at any depth, which was
suggested by Dr. D. G. Harkrider (personal communica-
tion), will be presented. This formulation is not only
computationally stable and precise, but 1is consistent

with the system derived in the last chapter.

Now, let us discuss the eigenfunctions in the
layers. The eigenfunction}at any depth can be deter-
mined from the eigenfunctions at the free surface by

the layer matrices in between

B,, = Z B, (1i1-1-1)
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where

'z=a'rn.a"m.—1"'a'l o
%

P-SV Eigenfunctions

As the first step, we consider the P=-SV case.

Expressing equation (III-l-1) in index form:

(111-1-2)

23 »

Bm, = Zp1Up, + Zy2U

v ‘\.'“

where we have used the surface boundary conditions
which require the stresses to vanish at the free sur-
face. For ease of expressioh, we Will use the indices
m, n, or N for the layers, and the indices i, j, k, or
1 for the componrents in the corresponding vector or
matrix which have values 1 to 4 for P-SV waves and 5, 6
for SH waves. Normalizing by the surface z-component

displacement LQI ;, equation (III-1-2) becomes
Bm, = Bm, / Us, = Ziy (Up /U, ) + Zkz (111-1-3)
UrU,, is the ellipticity at the surface, which we

already proved to be independent of the source and to

possess several equivalent forms:

e __Bu_ _Ra
Ue, Ry Ra1
12 12 -1 13 -1) 14
et Ao R (11-1-4)
R|{§ R RTYE RIS

Using the last of equation (III-1-4), R-'|8 =0 (period

equation), and R=X1Z , equétion (ITI-1-3) becomes
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Bm, = Ze1 (RT3 / R7ED + Ziee
=[Z R4+ Za RYE + Zia RTIEE + Zws RS/ R\E
= [Zxp R3] /R84
= [Zip(RpdR i} - RplRE)1 ./ R7'|8E
= [(Zin Zs) X3 23 Xid' = (ZwpZsd) Xsd 200 X3 )/ R ik

R\ 2 (111-1-5)

Equation (III-1-5) includes the inverses of 'Haskell's

matrices, which can be related to normal matrices by

using the symmetry properties of compound matrix

described in Appendix C:

Zit= (=1Y* Zgoy 5-g
X5 = qu(-1)* X |82 e

R 8 =gv(-D)RI

Using these, equation (III-1-5) can be written ' in

It

t'

another form:

B = (1) X |42 5k Zp-1
™ - R|{%§

by substituting 5=k=i 5-1=j,

= _ (~10)'X|}Fz,

B, = AT (111-1-8)
which is equivalent to
X|§F#2Z=(-1)Y"R| Ems_i . (111-1-7)

Equation (III-1-6) will be the form chosen for applica-
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tion.,

From equation (III-1-6), we find that eigenfunc-
tions at any depth can be calculated by a formula simi-
lar to equation (II-2-8), which has already been shown
to be computationally stable and accurate. This point
is worthwhile emphasizing. Since all of the Haskell
matrices, their compound forms, and all of the boundary
conditions are involved, this formula has attached to
it many numerical and theoretical advantages. For
example, the squared exponéntially growing terms are
suppressed by compound matrices. - The models used are
not restricted by the number of layers or layer
thicknesses. The frequencies are permitted to go‘vety
high, say 208 Hz, as long as care is taken in evaluat-
ing the compound matrices. At the same time the effi-

ciency and accuracy of calculation are all improved.

If the eigenvalues have already been fohndz from
another calculation; equation (III-1-6) can be used in
the following way. Firsﬁ, we insert the source depths,
which might be several different values, into the velo-
city structure as interfaces. To find the eigenfunc-
tions at these interfaces} the calculation is started
from the bottom of the layer stack upward. At every
interface, XW%gis calculated and stored. When reaching
the surface, X is transformed into R , and R|{# is

obtained. Next, a downward procedure is taken to find
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Zji. After combining with the stored X|/?at that depth,
we obtain the eigenfunction B by equation (III-1-6). It
is obvious that in these procedures the layer matrix a,
its compound forms a |, and the compound matrix Byt 2
are involved, hence the eigenfunction problem is said
to be solved in an analytic way. Such an analytic form
of calculation is useful especially for high frequen-
cies and complex structures. One test has been made
with Harkrider's oceanic model (Harkrider, 1970). The
result is satisfactory even with frequency as high as'

206 Hz.

If we start with different forms for ellipticity
in equation (III-1-4), differeht formulas can be

obtained following the same derivation procedures.

They are
Rz = Xy Z|
&= Ry * B = Ry
- Rag - E- XZj ZI&
- 21 ™ Rz
R |45 = (-1 Zi'R| R 111-1-8
TR T Pt T RIE (8
= — RIE 5 = (-1 Zi'R1}%
RI|Z e R\
_ R4 5 = (=1)'X | Z;p
TR T T T RIE

Except for the third one, these formulas are not: very
useful. The reason for this statement becomes clear

when a surface water layer is introduced in the next
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section,

Given the eigenfunctions at any depth, we can
evaluate the energy integrals which are further used to
find the quantities resulting from the perturbation of
elastic properties. This technique is called the varia-
tional principle, which was introduced by Jeffreys
(1961) and has been widely applied now (Takeuchi and
Saito, 1972; Aki and Richards, 1988, chapter 7). The
energy integrals needed to form the the system Lagran-

gian Lz for the Rayleigh wave,

Lp = 0?1, —‘kz Iy -2k Iy— 14 (111-1_-9)
are

Io=J:p[(l75 +(U,)? ] dz

11={[(>\+ 2u)(T, ) + w(T,)? ] dz

Py — dU, — dU, , (I11-1-10)
Ia=f[—,u,Uzdr+)\U-,.Eg-]dz
)

4
au,
dz

fo= [ 1+ 252 + G Vs

The Lagrangian is'defined as the difference between the
kinetic and potential energies. 1Its value is required
to be zero if the sYstem is at the eigen state. Hence,
this function can be used to diagnose the numerical
results.. It should be noted that the eigenfunctions
used in.the integrals (equation III-1-1¢) are all nor-

malized by the surface z-component displacement. The
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integrals in -equation (III-1=1@) can be expressed in

terms of the integral [y ,

I{j=f§i§j dz
where.
§=[U-r, Uz, Tz'TT ]T/Uzl .

The eigenfunction or motion-stress vector B, in

the m'th layer can be expressed as (equation II-1-14)

Bm(z) = Em A(z) Km -,

Taking the explicit forms of matrices A, and K, , we

have

n_V

Bn(z)=En[4"e"", B"e"" 4'e”

Ya*, B'eTVe* I,
Since the dependence on depth z arises solely from the
diagonal expdnential matrix A, the integration of BiB;

over a given layer m with thickness d,, is easily found

to be \
Zen w1
| o | _
S BBy dz = [ BuBy (47" + Buya (4 —h—(e ™% 1)
Zm . «

" d ’ "'2 d
+ [ ByoByp (B'e"™)2 + EuEy4 (B )thzl—w(e Vel _ )

+ [ (BurBiyp + By (A7e"") (Be™?)

* (Buokiya + Bubyo) () (B) 1~y (6707 -0

+ [ (Ei1Ej4 + E—M—Ejl) <A"euud) (B") (Hl'l-ll)
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+ (EizEj3 + EiaEjz) (B'e "ﬂd) (4" ]_Tl/::;;(e-vud_e-.vﬂd)

+ [ (Bi1EBja + Esafyy) (A "e*a") Aa)1d e
+ [ (BieEjs + BouBlyz) (B"e™) (B) 1d &7,

where the‘iayer index m has been omitted. In equation
(III—l-il), A" and B'aée part of elements of the vector
K, (or A,(0)K, ) which possess the values of potential
constants at the top of layer, and 4"¢”® and B'e”™ are
part of components of the vector A,(d,) K, which is at
- the bottom of layer. These quantities can be determined

from equation (II-1-15) and equation (II-1-21):

Kn=[4",B",4", 8" )i = Ex!Bn

Am Km = [4""" B¢ 4™ o™ |I = 3! Buu

i.e., A' and B’ are determined from eigenfunctions at the

Vabmand B'e"s® from eigenfunc-

top of the layer and 4'e
tions at the bottom., If it were not done this way, the
4, A" , B , and B"could be very inaccurate by just
using E;'B,, . Suppose that the eigenfunctions have
been determined precisely, the energy inteérals as

expressed in the analytic forms as equation (III-1-11)

can be calculated with sufficient accuracy.

Equation (III-1-<ll) is applied to the layers lying

above the half-space. In the half-space, the integral
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has the simpler form

f B,‘_ Bj dz = Eia Eja (A),'l)a 21/1
2y ' an

+ E1.4 EJ4 (BN)

zﬁy

1

+ (Big Bjq + Eig Eyg ) (A):") (Bx) T

where 4y and By are the elements of vector Ky , and can

be determined from Ky = Ey!By.

Some of the integrals in equation (III-1-10)
require the derivatives of (¢, and U, with respect to
the depth. From the differential equation (II-1-11),
these derivatives can be expressed‘ in terms of the

eigenfunctions U, , v, T, , and T, as

dl. 2
dzr '—kUz - @ Tl’-
= ~kAU, +
dz >\+2 (=kAU, + 0T, )

Therefore, the integrals in equation (III-1-10) as

expressed in the form of J/;'s are

fo= X o U
Iy = i)l (A + 2/"’)7:. (fu)n) + .Un (fzz)n
N
Iy = '21 2 [anumo + (124>n1 - zc[<m>n<fu %(122 )]
fa= 3 B Oo)u(lin b %uzz)n] L 2k oo o) + (7304

n=1 - ) \ \

ot [(o/wn(faa)\n T<1/u>n<f44>n] D )
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where

= 2
T OA2u

It is interesting to note that the Lagrangian L,
defined in equation (III-1-9) has the following form as

expressed in [y 's:

N kz
Lp = 21[ “;“z‘f)n(fn)n + pal22)n

e () ol = (LU a)n]e? 11-1-18)
)\+2’u"n 33/n u a\l{4d/n o (1 =1=

The coefficients before the I;'s in this equation are
just those of skew-diagonal elements in the differen=-
tial equation (II-1-11). This property will be used i#
Appendix D for finding the amplitude factors from

energy integrals.

SH Ei Funct i

The above derivation was for the P-SV, or Réy%éi%é'
waves., We have found the analytic solutions of fh§ 
eigenfunction at any depth{ and the analytic foﬁmsﬁ<f6f
taking energy integrals. Similarly, for the Love waves

we have the following properties:

(1) period equation Rg=0,

(2) symmetry of Haskell matrices: Zy = (=1)"*7Zy ;1
and Xi'= (1" quX ;0 .With v = “Zkzy;}’ﬂy/pfz: ,
and i, 3j=5,6.

(3) since Ry R3! =1, therefore RggRes = 1

14
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Now the eigenfunctions normalized with the surface

tangential displacement become

B, = Zis
= Xip Ryps
, 1-1-14
= Xié Res ( )
==3$3/:§63
—1)k+ -
- (—1)** Xg 11 k=56 |
Fgg
or equivalently
Xsi = (~1)' Reg Bm, , i=5,8 ,  (l-1-15)
The Lagrangian for Love waves is
Ly =oflp-k21y -1, (111-1-18)

with
Io':fpﬁgdz
0

11=f;1,(7§d2
, 0

_m dﬁ!’z
12—,{#( I ) dz

The integration over one of the upper layers is

2+t

" d ' . 1 -2
S BiBjdz =[ B Eys (C'e"™ )2 + Eyg By (C')2 ]Téu_,(e Y8 1)
2

m

+[(Big Ege + Eyg E45 ) (C) (C"evpd) ld G

and over bottom half-space is

Y e 1
fB'iBj dz = E,‘_s Eje (C )2 z—l/p
zN



= 85 =

The energy integrals as expressed in terms .of

I;'s take the forms:

N
Io= 3 pn (Tsg)n

n=1

. _
Iy= 21 i (I 55)m (111-1-17)
=

Ie= 3 ()
2_n=1“‘n 68/n

It is noted that there are some extra w's present in
equation (III-1-12) but not in equation (III-1-17). The
reason arises from the somewhat arbitrary definitions
for stress eigenfunctions which we chose in equation
(II-1-7) . The P-SV stresses used here should be multi-
plied by w® before comparing with other formalisms

such as that of Takeuchi and Saito (1972).

3.2 Normal Mode Theory

Normal mode theory is a method which uses the
boundary value problem technique.to deal with the waves
propagating within layers. A normal mode defines a
preferred frequency of vibration for the system. The
surface wave, which is the most prominent phase on the
seismogram, comes from the summation of the contribu-
tions from various preferred vibrations, or modes, of
the system. There have been a number of investigations
6f this theory (Haskell, 1964; Ben-Menahem and Har-

krider, 1964; Vlaar, 1966; Saito, 1967; and Levshin and
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Yanson, 1971). Their results are principally
equivalent (Tsai and Aki, 1978), although some expres-
sional differences exist, especially for the source
functions. In this section, a derivation will be peré
formed using Ehe results constructed in the last
chapter, in which Saito's (1967) important extension tb
evaluate the residual contributions by means of varia-

tional principles will be intensively discussed.

The Fourier-Hankel transformed displacements at

the free surface expressed in equation (II-2-8) are

Us (@k.n) = Sy X\ Zy / RI{3
U (0kn)=~5 X|$¥2Zp/RIE  ij=14
Uﬁl(m,k:.n) = "'Sj ng /Rﬁb j=5,6 o

From the discussion in section 2.2, the displacements
at any depth for a double-couple dislocation source can

be written as:

Uy (r9,2,0) = [ USLTker)dic Ry + [ U ((kr )k Ras + [ U o(kr )dk- Ry
wr B,2,0) = [ ~UBT ((kr)dke Ry + [ ~USN o(kr)dk Ras+ [ USOT ((ler )dk- Ryg

wg(r,8,2,0) = [ ~UPT (kr )dk Rig+ [ U o(kr )dk-Ras (111-2-1)

where only the far-field terms are retained, and the R's
describing the radiation patterns are given in equation
(1I-2=15). The superscripts répresenting the azimuthal
mode number are parenthesized for clarity. Since the

eigenfunctions found in the last section are all nor-
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malized with respect to Lgl (P=SV) or Uﬂl(SH), the
integral to be evaluated in equation (III-2-1) actually

is
S B™Nz) dnller) dk = [ B(z) UM T (kr) di
0 0

where B is the normalized eigenfunction at the depth
z, and UfY is the surface z-component displacement. Of

course, for Love waves we use 17% instead of [@1,
/

With the eigenfunctions available at different
depths, we are ready to derive the surface wave fields,
After laborious substitution and expansion, final
results, similar to those of Saito (1967), Levshin and
Yanson (1971), or Harvey (1981) will be found, Here we
just show a component, RSS, for instance. With the aid
of equation (III-1-7), the RSS component can be written

as

RSS = [~U,(z) UD J(kr) dk
0

o S@x |tz
= [~T(e) XL D Gy i
0 R|
¥ Fr R'll‘g =y )
= [=Up(z) (=1)! =23 B SO Jy(kr) di
0 Rz

where the index m indicates the source layer., Setting
the period equation R|{f=0, and applying the residue
theorem, we can find the surface wave displacements

from the pole contributionss
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' — R 12 =
RSS = =mi 3 [~ T, (=)] —-6'—“”1;(—1>* By, SO H(kr) |
__R 18

where the summation consists of each of the normal mode
contribution at a given frequency. For far-field, i.e.

r very large, the Hankel function H,®(kr) has the

approximation
1 hr +i (1
g = |2 |2 e o (1+2n)
" wkr o
By substituting the source function  4me?S{R) = -2k?

the RSS component surface wave at large distance

becomes
' 1
RSS = 3 [~U(2)] dn 5 b Ty, [ |* om0
where :
Ap = R | ltg _’?_
? D i ¢,
ak" '8

The amplitude factor or amplitude response 4p ,
defined by Harkrider (1964), can be evaluated in terms
of phase velocity ¢, group velocity ¢, and the énefgy

integral 7/, according to the following formula:

1

4R = 3T T

(111-2-2)

(" Harkrider and Anderson , 1966; Levshin . and

Yanson , 1971; Takeuchi and Saito, 1972). The verifi-
cation of this relation was first provided by Saito
(1967) . He employed the variational technique and

decomposed the eigenfunction into two parts, one of
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which is continuous along the z-coordinate and the
other is discontinuous by the interruption of. the
source at the source depth (Aki and Richards, 1980,
p.310) . However, such a splitting of the eigenfunction
is not necessary if it is only desired to express the
pole residue in terms of energy integrals, In Appendix
D, we apply similar techniques from the variational
principle, but use only the forms of the eigenfunction
defined before. The derivation is relatively straight-
forward, but involved. An extra k¢ and an extra o®
which were presented in section 2.3, automatically

appear in our formulation,

Applying this result to the partial derivative of
the period equation, we will obtain the excitation of
surface waves in terms of the eigenfunction at the

source depth and the energy integrals:

1
1 1 2

1 en
2clUl, 2m Tm

kr

RSS =3, [-T,(2)] pmikr=ion/s

The same procedures can be applied to all other

components with the results:

1
7.,(z) |en |2 -tr-if
w7 9.2.0) = 3 D g [ !
~ 1 R . 3n
-U. —ikr ~i—— .
uT('r'qy’z'm) = 2 Dk‘.R ﬁ(‘f) % 2 4 (1”-2‘3)
0
i
_ Us(z) |pnl2 -mn’%
uﬁ('r,'@,z,cu) = 2 DkL ZCU[o kT ,
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where
T R + 25T (-2 T ) R
DhR - o [(kUrm) ss T i Om Zen O Tm dd
Icgm -
+ 1 ( Trm.> Rd.s ]
P

1 = o 1= oo
Du:a-[k UﬁmRss“‘l—#’:‘Tode_s] R

These solutions are the same as others (Saito, 1967;
Herrmann, 1974; etc.). It is noted that at the free
surface [, = and U,(0)=1 , Hence the z- and -
component displacements at a particular frequency have
the ratio is (Haskell, 1953), i.e., a 98 degrees phase

shift and €& maximum amplitude ratio.
Water Layer

If there is a water layer on the top of the solid
layer stack, as in oceanic models, the situation does
not become overly complicated. Only a simple modifica-
tion of the formula derived above is needed. Denote
the surface watér layer by index '#'. The calculation
of eigenfunctions in the water layer is just a case of
acoustic wave propagation which is widely used in

applied physics. The equations to be solved are

1 3%

VR g = ——t

v a? ot?
= 9¢
Yr ar

g

uz=3£
z

T, = AVEp



- 9] -

The boundary conditions become

p=0 at z=0
a1 = e at z=d

=dg
Tsszﬂo

(Ewing et al, 1957, p.158). It is noticed that the w.
component is no longer continuous across the solid-
liquid boundary, and 7.=0 in the water layer, for
which only compressional potential ¥ is still needed.
The solutions similar to those of equation (II-1-4),
(II-1-6), and (II-1-7) reduce to

o(r, 9,z ,w) = c;c:; 23] J,,(kr)} Zl(z)l

and Z(z)=4"e""™ + 4" e”** = —24’ sinh v,z

’

where we have used the free surface boundary condition,
i.e., Z,(0)=0. The eigenfunctions are defined in the

same way as before;

dJ, (kr)

e ]+ sind ¢ » s ]

4dnpou,{r,V,z,0) = cos ¢ [~{—kZ§}

dZ§
dz
4nT,(rd,z,w)=cos V[ ®~-Z 3 Jo(kr) ] +sind[ ¢ » s ]

4npou, (r,9,2,0) = cos ¥ [ { J Jp(kr) J+sind[ ¢ » s ]| (llI-2-4)

ioeoy
k 24" X
U, =~—2{=—k sinh v,z
y Po ! Po “
1 dZ, 24’
UZ:E = =—73_0_Va cosh Vg2
T, ==21= 24" sinh vaz .

After normalization by Ue, at z =4dy , we have
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U, = ~k sinh vqz / (vq cosh v4dg)
cosh vqez / cosh vadg (111-2-5)

—po sinh vaz / (Vg cosh vado)

&
(T

Since there is the same Bessel function dependence
for T, and U, components as in equation (III-2-4), we

find that

= po sinh vedg | = —
Y = () U, = T U,

~3

Vg cosh vqdg 1

at the solid-liquid boundary. 7 was also derived by
Harkrider (1964) from the ratio agz/az for the water

layer Bo=0 .

Now let us check the effect of the water layer on
the results derived before. The surface displacements
to be found are now at the top of the solid 1layers.

First, the period equation is altered to appear as

U, Ur,

8 Uzi Uzl
= R = R 111-2-6
ap |= ®in, | = ®lro,, (111-2-6)

By 0 0

where R includes the matrices for solid layers only.

The first two rows give the new period equation:

R|{#

+

TR|i=0

It is noted that because the period equation changes,
so do the dispersion values. The form of the ellipti-
city relation at the solid-liquid boundary is not

affected if we use the following derivation:



- 93 -

e = Uy _ Rip+TRy3 _ Rap+ TRy
T Ul Ry Ra
_ _RipRas + TRyaRas _ _ RaalRya + TReaR1s
- RnRza RZI-RIS
_ _Ri2R23=RaaR15+T (R 15R 23— Reaf ) _ _R |25 (111-2-7)
| Ry Reg=RaiR 3 RI|¥

or equivalently,

(I11-2-8)

However, other forms, such as those in equation (III-
1-4), can no longer be used., For example, there is yet
another form:

__RIE+TRIE
RIE .

As a consequence, the eigenfunction formﬁla (equétions
I1I-1-6 and III-1-8), if expressed in the corresponding
forms with equations(III-2-7) and (III-2-8), will stay
the same, but this 1is not true for the other forms.
This point should be noticed when a water layer is

imposed.

The energy trapped in the water layer is easy to
obtain by direct integratioﬁ from equation (III-2-5),
Here we just list the results needed to calculate the

Lagrangian:

dy
[0, dz= =5 [5 -a
A TTZ*ZAVE[ ‘ko]



where

sinh 2v,dq

- 2 =
A = cosh “v,dg 20,

The Lagrangian integral components /; have the follow-
ing‘.forms,obtained by setting ;=0 in-equation (ITI-1-

1e@),

fo= [ po( T+ T%) az
]1=f>\0[7,.2d2
au,

£ dz

12=f}\0[7,. dz
al,
—Z 4z

du,
]3=f>\° dz dz

These integrals.over the water layer should be added to
the qorrespondihg integralsAfor solid layers derived in
seqtion_B,l. Although the diéplacement fields calcu-
lated are at the top of solid layers, we find part of
the wave energy is trapped in the first water layer,
especially for high frequency signals. When using the
energy viewpoint to approach the eigenfunction problem,
the contribution from the water layer cannot be simply
ignored. The presence of the water ~layer does not

affect the corresponding SH solution,
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In thevabove discussion, we have set up a complete
system to calculate eigenfunctions and the related
parameters. A FORTRAN program was designed to compute
the surface wave time history or its spectrum for rela-
tively high frequencies and moderately complex models.,

An explanation of this program is given in Appendix E.

Figures 12, 13, and 14 show examples obtained from
these programs for three different components. In each
figure the upper five seismograms are obtained by using
a symmetric triangular source time function with base
of one second, and the bottom seismogram from a step
source time function. The frequencies cover the range
from 0 to 10 Hz, although the triangular source has the
cornér frequenqy at 0.7 Hz. The CUS model in Table 1
is used. Soutce parameters are dip = 50% slip = 18@°,
strike = 486°, and depth = 14 km. The receivers are
located to the nérth of source, and the epicentral dis~
tances are indicated at the end of each seismogram.
Furthermore, a Q-model with @g= 250 for the top 24 km
depth followed by Qg = 2000 for the halfspace is also
assumed., - In these figures an apparent low frequency
fundamental mode signal arives after some high fre-
quency Lg (Airy) phases. These synthetic seismograms
seem to be of quite high quality. Even the step-source

generated seismograms, which contain 14 Hz frequen-
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Figure 12. Theoretical seismograms generated by eigenfunction
programs. The upper five seismograms are due to a dislo-
cation source with a triangular source time function buried
at the depth of 14 km in CUS model. The frequencies used
cover the range from 0 to 10 Hz. The bottom seilsmogram is
due to the same dislocation source but with a step source
time function. A Q-model with Q4= 250 for top 24 km and
dg° 2000 for other layers is used. The number at the end
of each seismogram indicates the epicentral distance.
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cies, exhibit well developed and fairly noiseless

waveforms,



CHAPTER IV

BODY WAVE - LEAKY MODE STUDY

In the previous chapter, the normal mode theory of
surface waves was considered, The objective of this
chapter is to present a detailed discussion about the
generation of body waves, This part of the waveform
comes from, at least for most P-SV cases, the branch
line integral discussed in section 2.4. Figure l5a
shows the contributions of the pole residue (middle),
branch line integral (bottom), and the total seismogram
(top) of the REP component with source depth = 18 km
and r = 100 km for the SCM model of Table 1. Figure
15b gives a similar display for the RDS component with
source depth = 1 km and r = 25 km for the CUSimodél.
It ;s obvious that there are two definitely diffeféﬁt
signals arising from the pole contribution aﬁd the
branch line integral, which constitute the ;finél
seismogram, This fact can further be seen from Figures
16 and 17. However for the SH case, the situation is
totally different. Figure 18 indicates that, for the SH
case, the pole contribution constitutes most of the
signal, and the branch line integral is only required
to make the total seismogram ‘causal’ (Herrmann,
1978a) . Thus, what is the role of the branch line
integral in constructing a seismogram? This question

will be discussed in this chapter using the leaky mode
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Figure 15. Study of contribution of various components of contour
integration. (a) is the set of vertical component seismograms
due to an explosive source at 100 km away and buried at 10 km
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grams due to a 45°dip-slip source at 25 km away and buried at
1 km depth in CUS model. In each set of seismograms, the top
one is the complete solution, the middle is the pole contribu-
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at 10 km depth in SCM model are displayed. Two sets of
selsmograms correspond to epicentral distances at 25 km
and 200 km, respectively.
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approach,

Harvey (1981) imposed a deep and rigid cap at the
bottom of the structure to lock the energy in the upper
layers. It was found that this process is an approxi-
mation which ignores the leakage of waves and forces
the leaky mode to appear on the real wavenumber axis as
pseudo-normal modes. Since the normal médes are usually
easy to hahdle, this approach provides a good way to

simulate the body waves,

The reflectivity method of Fuchs and Miiller (1971)
is a widely used method for calculating body waves.
Using a theory from Kennett (1974), we are able tg gen-
eralize the reflectivity method. Most importéntiy,
such a modification is made by simply adjusting our
system constructed in chapter II. Hence, the reflec-

tivity method is only a special case of our system.

4.)1 The Influence of Leaky Modes on Bodv Waves

In section 2.4, we constructed the full wave field
after combining two different types of solutions: the
pole contribution and the branch 1line integral. The
poles which describe the vibration modes of layered
wave guides exhibit dispersion and contribute mainly to
the surface wave. This point was further confirmed by

the normal mode approach as presented in chapter 1III.
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- It 1is natural to ask whether the branch cut integral
naturally gives rise to the body wave. In this sec-
tion, we will extend the normal mode theory to include
the leaky mode (or leaking mode), and investigate the
role of branch line integration by means of the leaky

mode approach,

The study of leaky modes began when the computer
was still in its infancy. The direct evaluation of a
line integral along the branch cuts is difficult. To
overcome this, two methods were proposed. One was the
use of the steepest descent method to find the approxi-
mate solutions for large source-receiver distances
(Lapwood, 1949; Fuchs, 1971). The other was an attempt
to deform the integration path into other Riemann
sheets and evaluate the pole residue there (Rosenbaum,
1960; Phinney, 1961). The branch cut and Riemann sheéts
were introduced in order to make the vertical
wavenumber single valued. There exist four sheets for
P=SV with respect to four combinations of Re(v.),
Re(vg) being positive or negative, and two sheets for
SH. We will use (+,-) for positive Re(vq) and nega-
tive Re(vg), respectively, and similar sign symbols for
other combinations, The polés‘ in the 1lower Riemann
sheets are called leaky modes, as distinct from normal
modes., Since these poles are situated off the real
‘axis in the complex plane, imaginary parts cause the

attenuation as waves propagate with distance or time.
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Physically, the leaky modes describe traveling distur-
bances as a leaking S wave or P and S waves, respec-
tively, into the substratum. At moderate distances,
such a mode might be seen as it sometimeé results in
large amplitude dispersed oscillatory trains appearing
in the interval between the P and S arrivals, which are

called PL waves.,

Many authors haVe explored leaky modes by extend-
ing the normal (or trapped) mode theopy (Phinney, 1961;
Gilbert, 1964; Laster et al, 1965; Haskell, 1966;
Abramovici, 1968; Alsop, 1978; Cochran et al, 1979:
Dainty, 1971; Watson, 1972), Among these works, that of
Gilbert (1964) is of fundamental importance. Using
real k-complex £ as independent variables, Gilbert
classified the modes into two types: Lamb's roots aﬂd
orgah pipe roots, when k approaches zero. Lamb's rod;s
are associated largely with the properties of the
halfmspéceq One of these roots is the fundamental mode
of the Rayleigh wave which occupies (+,+) position over
the whole range of k-f, But the other Lamb's roots
behave 1like organ pipe modes as k or £ become larée,
An organ pipe mode represents the standing wave trapped
in the layer. It is the mode associated with the energy
reverberated almost vertically inside the 1layers. Two
forms of organ pipe mode exist: 7 modes which possess
P-wave properties and originate from the (-,+) sheet,

and £ modes which have S-wave properties and come from
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the (+,=) sheet,

Following the work of Gilbert (1964), investiga-
tion principally concentrated on the search for modes,
i.e,, defining the dispersion curve and its attenuation
relation. Laster et al (1965) provided a theoretical
basis for the dispersion study. They also generated
theoretical seismograms from leaky mode contributions
and indicated the importance of the leaky mode in the
early part of the seismogram by comparison to experi-
mental déta° Cochran et al (1970) dispiayed the disper-
sion curves for 7 and ¥ modes in a multiple elastic
wave guide, and found lattice dispersion'patterns:which
are characterized by 7 -pseudo and E}—pseudo mode§. The
T -pseudo modes were shown to make up the osciliatory
part of the seismogram between P and S, which depehds
solely on the P velocities, Abramovici (1968) extended
the compound matrix technique to the leaky mode caléu—
lation, and defined a transfer function to study the
contribution of individual modes., Except for Laster et
al (1965), the real k-complex £ -approach of- Gilbert
(1964) has been employed to compute dispersion curves
by all other investigators. Watson (1972) made an
interesting study using real f-complex k analysis. The
most significant contribution of his work was the iden-
tification of PL and OP modes. His approach is espe-
cially suitable for our present study. It will be seen

tha£ it is these two modes which affect the response
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along the branch cut and enter into the final contribu-

tion of seismogram synthesis.

Following Watson (1972) we take the frequency to
be real and allow the poles to wander on the complex
wavenumber plane. The branch cuts are kept along the
real and imaginary axes, as before. This differs from
the cuts used by other studies (Gilbert, 1964;, Laster
et al , 1965; watson, 1972), in which the branch cuts
were usually made directly in the first or fourth qua-
drant to expose the lower Riemann surfaces. Our object
is to investigate the influence of leaky mode poles on

the response function along the real branch cut.

It is already known (Gilbert, 1964) that the poles
in the complex plane occur in sets of four, that is, if
k is a pole, so are -k, k°, and -k°. Here we will res-
trict ourselves to the fourth quadrant only. Keeping
the branch cut along the real and imaginary axis, the

radical v, has values in the fourth quadrant given by

vy = 4 Jr+z _ i»\/r-z-x ] (IV-1-1)

where



- 110 -

A similar definition for vz can be obtained by changing

a to B .

Poles were searched for on the lower complex-k
sheets corresponding to different frequencies, When
frequency changes, the leaky poles also transit along
some paths, and sometimes even pass across the branch
éut and appear on other Riemann sheets. Since our
branch 1line integrations are carried out on the (+,+)
sheet, we will consider only those poles which have the
ability to enter this top sheet. When poles transit
through the branch cut between &, and kgy ¢+ oONly v,
changes. sign, but through the cut between # and ko
both signs of the radicals change. Hence the candidates
are those poles just below the kav~- kgy cut on the
(+,=) sheet and those near the cut between the origin
and k£ on the (-,-) sheet, These two regions are
called region I and region II by Watson (1972) and
Pilant (1979). The poles on the (-,+) sheet have no
effect on the integration, however they might :transit

into (+,-) or (-,-) sheets and become important.,

A computer program was set dp to find the curves
in a finite regibn of interest in the complex-k plane,
such that the real or imaginary parts of the period
equation are =zero. The intersections of these curves
are taken as the roots of the leaky modes. Since we are

only interested 1in their properties, no refinement of
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pole position is necessary. Figure 19 shows the curves
of the null real part of the period equation (denoted
by '+' sign), and curves with the null imaginary part
(denoted by 'x') at frequencies #,32 Hz and 0.33 Hz.
The model used is the SCM model 1listed in Table 1.
These curves exhibit a pafticular pattern, which will
help us to identify a specified pole as the frequency
varies, The pattern obviously shows that two kinds of
poles exist,the OP modes which always remain on the
(+,-) sheet, follow an exponential type of path frbm
-io ,and the PL modes which wander in the vicinity of

the 4&av - ksy branch cut,

Using these, we made a close search for poles b§
varying the frequency from ©.25 Hz to #.40 Hz in stébé
of #.01 Hz. The results are shown in Figures 20 to ?g,
Now the roles of the OP and PL modes are clear. Ian;é;
ure 20 the OP poles migrate from the region with iatge
imaginary k, i.e. high attenuation, and approaéh t%é
point ke, o The PL modes, on the other hand,‘emerge‘ftpm
the (-,+) sheet by crossing the cut around ke, » and
shift slowly in the region very <c¢lose to the branch
cut. These poles will contribute to the integration
along the cut, which under some particular conditions
.are significant enough to generate a dispersive
wavetrain between P and S, called PL waves. The PL and
OP modes collide at the place just beneath ko o After

this, two kinds of modes mingle together and generate
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Figure 19. Curves of the null real part of Rayleigh wave
period equation (denoted by '+ sign) and the null
imaginary part (denoted by 'x' sign) in the fourth
quadrant of (+,-) sheet of complex k plane. kaNand
kg, are branch points. The top figure is obtained
at 0.32 Hz and the bottom at 0.33 Hz. The SCM mo-
del is used.
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Figure 20. Paths of leaky modes of SCM model through the
fourth quadrant of (+,-) sheet of complex X plane.
The frequencies change from 0.25 Hz to 0.40 Hgz. Two
kinds of modes, namely PL and OP modes, exist before
ks, the wavenumber corresponding to the first layer
P velocity. After this point, two modes mingle to-
gether and form the shear-coupled PL-0P mode. The

numbers at the beginning of each path indicate the
starting frequencies.
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Same as Figure 20, but for leaky modes on
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Figure 22. Same as Figure 20, but for five-layer
CUS model.
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the shear-=coupled PL wave.

As the frequencies keep increasing, the poles will
approach the shear branch point, then cross the cut,
and enter the (+,+) sheet to become the normal modes.
It is thus possible that, at some frequencies, the
shear branch point is also a pole. One might suspect
that the PL poles, when crossing the cut from (-,+) to
(+,-) sheet, will give a singularity on our integration
path. It is fortunate that this will not happen,
because the integration is carried out on the (+,+)
sheet and the cut which the PL modes cross is not the

one we are integrating.

Figure 21 shows the leaky poles on the (~;~)
sheet. Except around the P branch point, these poies
have relatively large imaginary components. Hence Kwe
can expect that their contribution will be smailel Tﬁis
is easy to understand since the waves from thisé,pért
have large phase velocity, or equivalently travel
nearly vertically. Hénce the leakage of waves into. t%e
halfspace will carry away most of the energy. These

poles will be named 'weak' leaky poles.

When the model becomes complex, the pole shifting
also becomes complicated. Figure 22 shows the varia-
tion on the (+,-) sheet for the CUS model of Table 1.
In this frequency range (0.25 to @#.4 Hz), the effect of

the first weathered 1layer cannot be seen, The
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variation between k, and k., is rapid; however, after

ko, the shear-coupled PL modes retain their simple

shifting pattern.

From the above discussion, we find that there
exist at least three kinds of poles which affect the
values of the integrand along the real branch cut: (1)

weak leaky poles between # and k (2) PL-OP poles

ay ¢
between k oy, and kay ¢+ (3) shear-coupled PL poles
between k,, and kg . Figures 23 and 24 strongly sup-
port this conclusion. In Figure 23 pole positions and
integrand responses like those. of Figure 3 are
displayed, with four plots corresponding to 0.25, 8.5,
.75 and 1.8 Hz, Different source types are arbi-
trarily chosen. Figure 24 shows the same response
variations with different source type and the
corresponding leaky poles for the CUS model at .25 and
P.75 Hz, respectively. As expected, the correspondence
between the pole location and integrand variation is
very apparent, It is obvious that the PL-OP poles are
the most significant contributors to the integration,
which give rise to the main part of the body waves with
dominant P characteristics., The shear-coupled PL poles
are important only for several components such as ZSS.
These shear-coupled poles have an apparent tendency to
be associated with normal poles, which can be said to
possess properties which are between 'pure' surface and

'pure’ body waves. The causality appearing in Figures
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Figure 23. The effect of leaky modes on the variations of
integrands along the real branch cut. 'x' denotes the
modes on the (+,-) sheet and '+' denotes the modes on
the (-,-) sheet. The response curves of integrands
are obtained using the SCM model with the source at
10 km depth. The names of the integrand responses are
the same as those in Figure 3. Four plots (two in the
next page) correspond to the frequencies at 0.25, 0.50,
0.75, and 1.00 Hz, respectively.
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Figure 24. Results corresponding to Figure 23, but for
the CUS model at the frequencies 0.25 and
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16 to 18 arises from the contributions of these poles
which compensate the Gibb's effect of abrupt truncation
of normal modes at the S branch point, The contribu-
tion of weak leaky poles 1is relatively small, even
though they might be very near the branch cut. This
leads to the argument that the (-,-) cut is a stronger

"barrier' than the (+,=) cut,

For SH waves, the situation changes since there
are no more PL poles. Figure 25 shows the migratioﬁ of
SH-OP modes, which have the properties of weak poles
and shear poles in the P-SV case. Their contributions
are only in compensating the noncausality from norﬁal
modes. In this sense, we might be able to say that the
shear or shear-coupled leaky poles and the normal mod;s
near the S branch point are the factors which consti-
tute the S type body waves. In this range, it 1is not
possible to define an absolutely distinguishing point
for surface and body waves. A similar conclusion was
" obtained from ray expansion theory which supposes that
body waves come from a finite number of rays, but when
infinite rays are included they form the surface wave
(Kennett, 1974)0' There is not a definite separation

between body and surface waves.

After the study of the influence of. leaky modes on
the integrand, it is now clear how to perform branch

line integration. The variable transform in equation
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Figure 25. Paths of leaky modes of SCM model for the

SH case. Other parameters are the same as
Figure 20.
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(II-4-5) Jjust makes the sampling closer in the region
where PL-OP modes are important, and thus improves the
computational accuracy. Finally, the solution in equa-
tion (II-4-1) is determined not on;yifrom the integrand
discussed above, but from the inner product of this
integrand and the Hankel function. The Hankel function
is an oscillatory function which depends on kr, i.e.,
wavenumber times epicentral distance. The final contri-
bution to synthesizing seismograms can be looked upon
as a cross=-correlation between these two oscillatory
functions along the real wavenumber axis. Because of
the relatively smooth variation of the SH component
(Figure 3), the branch line integratioﬁ contribution to
the tangential component seismogram is significant only
at short distances. However, for P-SV waves, the effect
will persist to much greater distances, as seen from

Figures 16 and 17.

4.2 Locked Mode Approximation

In the previous section we have discussed the
relationship between branch line integrals and leaky
modes as a way to improve the evaluation of body wav;s.

| An interesting method to treat this contribution,
called the locked mode approximation, was introduced by

Harvey (1981). He simply added a deep rigid cap to the

bottom of the structure to 'catch' leaky modes. Since
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the cutoff wavenumber for the 1locked modes is con-
trolled by the half-space S-wave branch point, the
branch cut shrinks and opens a place for more higher
order 'locked' modes as the S-wave velocity in the bot-
tom layer increases. These 'locked mode contributions’
can easily be evaluated by normal mode superposition
(Harkrider, 1964), which has been successfully used in
synthesizing surface waves. Thus the method provides an
easy—-to-solve solution for the branch line integral or

leaky mode contributions.

"Another novel approach to the problem of branch
line integration was proposed by Bouchon and Aki (1977)
and Bouchon (1979, 1981). They made an attempt to
discretize the wavenumber responses vby presenting an
infinite number of 'extra' sources at evenly spaced
grid points or rings. Because of the interference of
waves from' these sources, the integrands are quantified
and form an exact solution to be evaluated at discrete
wavenumber points. This technique is beyond the scope
of this dissertation. Here we just simply discuss the
method of locked mode approximation which, in addition,
serves as a test for our eigenfunction solutions of

chapter III.

With the same methodology as used before, the
integration is still made wusing real wavenumber and

real frequency so that the search for poles is easier,
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Nevertheless an anomalously high velocity cap layer is
placed at the bottom of the structure. Such a process
just serves to 'squeeze' the leaky modes in the lower
Riemann sheets into the real 'trapped' mode position.
The cap layer not only traps most of the seismic energy
in the upper layers, but also brings in those pulses
not existing in the real structure. If the cap layer is
situated at a depth so large that the energy reaching
it 1is small compared to the energy in the near surface
layers, these false phases can be isolated and filtered
by a wavenumber window (Embree et al , 1963). However
for the test of normal mode theory of chapter III, we
will not consider this filtering, so as to pursue the

normal mode superposition method faithfully.

When using the locked mode approximation, several

requirements should be fulfilled beforehand:

(1) The calculation of locked mode positions must be
precise, Figure 26 shows the pqle positions along the
real wavenumber axis for a cap ’layer structure, The
model is SCM listed in Table 1 with a cap layer at 240
km depth and P velocity 20 km/sec, S velocity 180
km/sec, and density 6 gm/cm®., As the reqular normal
modes are still kept at the same places, the surface
wave contribution is not affected. However, the newly
generated 'locked' poles are numerous and very close to

each other,. For example, 15 modes for the original
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Figure 26. The positions of poles along the real k-axis
at the freguencies 0.25, 0.50, 0.75, and 1.00 Hz.
kay and kg, are branch points for SCM model without
the cap layer. When the cap layer is added, the
leaky modes are forced to migrate into the normal
mode positions as those shown to the left of kun
These created 'locked' modes are numerous and are
difficult to locate. The positions of regular nor-
mal modes are essentially not affected by the pre-
sent of the cap layer.
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model at 1 Hz become 119 modes for the capped layer
model, The treatment of these pseudo-normal modes

requires special care,

(2) The pole contribution arising from the parﬁial
'derivative of the period equation (or equivalently the
amplitude factor defined in equation III-2-2) is not
easy to evaluate since’ thesé pbles have very large
phése velocities and cause numerical difficulty. Thus
we use equation (III-2-2) instead of the alternate

expression for A4p .

(3) Because of the large number of poles involved, it
is important to pay attention to the computational
efficiency. 1In the previous section, we have found a
different importance for each kind of leakykmode.‘Is
there any difference of contribution from these -loéked
poies? One test 1is shown in Figqure 27, where the
amplitude factors for mode order 16, 20, 30, 4@, ’50,.
60, 70, 80, 99, 108, and 116 are displayed. This figure
reveals that each mode has about the same level of con-
tribution. = Hence, unfortunately, all of the locked

modes must be taken into account,

To overcome these difficulties, a new technique
" other than the usual' normal mode method (Harkrider,
1964; saito, 1972) 1is required. Harvey (1981) used
Abo-Zena's (198#) formulation to calculate displacement

eigenfunctions, which in turn give the stress
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eigenfunctions, by a constraint derived from the‘rela-‘
tion between the displacements and stresses. Similarly
after the study of normal mode theory in chapter III,
we also raised the eigenfunction theory to a very
powerful stage, This formulétion will be used to con-
sider the idea of locked mode approximation, On the
other hand, the locked mode approximation may provide a
good test of the stability of our method. Figures 28

to 30 present the results.

Figure 28 illustrates the results from methods of
chapters II and III, as compared to the locked mode
approximation. In this figure, (a) is the locked mode
approximation, (b) the branch 1line integration and
pole, (c) the normal pole contribution, and (d) the
branch line integral. The display is the ZSS component
due to a point source at 18 km depth in the SCM model
with highest frequency 1 Hz and source time function
(equation II-4-8) T = 0.5 sec. The agreement betweeﬁ
(a) and (b) 1is excellent except for some artificial
early arrivals due to the fact that the cap layer
effectively introduces a sharp wavenumber cutoff in the
solution, This means that the methods we developed in
chapters II and 1III can be trusted. Figure 29 is the
RDS component for the same case, and Figure 30 gives
the TDD component. The match of results from the
locked mode approximation to thg complete seismogram is

obviogs° However the compytation times are quite
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Figure 28. Comparison of locked mode approximation to
the complete solution using the method of chapter 2.
(a) the locked mode approximation solution; (b) the
wave integral complete solution; (c) the pole contri-
bution; (d) the branch line integral contribution.
The SCM model with a strike-slip dislocation source
at the depth of 10 km is used. The cap layer 18
located at 200 km deep and has a P velocity of 20
km/sec, S velocity of 10 km/sec, and density of
6 gm/cm? .

- 131 -



©

o

%

o

t

R o
#*

?

o

i

©o

H

o

»
Figure

200

200

-~ 200

60 75

29. Results corresponding to Figﬁre 28, but for
the radial component and a dip-slip dislo-
cation source.

- 132 -



E2

o O .
oy 200
e O :

v |
© b
-]

SH = S\ 200

*

ol

[Q
. O .
ot —— N 200
LI

3] \/
_—
: d
@ — — 200
*

o |

0 18 30 45 60 75
T-25.00

Figure 30. Results corresponding to Figure 2§, but for

the tangential component and a 45 dip-slip
source. |

_133_



- 134 -

different. Using the locked mode approximation the cal-
culation takes about 2 hours on a DEC PDP 11/7¢ mini-
'computer, while using the direct integration method
requires only half an hour. Since these two methods use
the same wave theory, any time consuming aspect, such
as the case of high frequencies, will be required for
both methods. The advantage of the locked mode
approach is that once the dispersion curves are found

for a given model, they do not have to be recomputed.

4.3 Reflection Method and Reflectivity Method

In the previous chapters, we built up the whole
wave field by summing the layer responses over
wavenumber and frequency. The calculation includes all
details of energy possibly excited in the layered
medium. Sometimes, for the study of particular portions
of the structure, we desire to suppress the ref;ectiohs
from certain interfaces. This is especially useful for
body wave studies. This section will develop a method
to 'eliminate' the reflections from some layer boun-
daries., The significance of the pole contribution to
the generation of surface waves becomes apparent if the
reflections from the free surface, the strongest
reflector, are artificially suppreséed. Two theories
closely related to this section are worth reviewing.

One is Kennett's reflection and transmission coeffi-
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cient method, which is referred to as the 'reflection
method' here (Kennett and Kerry, 1979), and the othet
is Fuchs's reflectivity method (Fuchs and Miiller,
1971) . In this section, these methods will be stated

using the terminology of this dissertation.
Reflection Method

The reflection method introduced by Dr. Kennett
and his colleagues‘ (Kennett, 1974; Kennett et gl ’
1978; Kennett and Kerry, 1979; Kennett, 1980; and
Kerry, 198l1) possesses properties of both ray theory
and wave theory. They established a connection between
conventipnal matrix methods and the reflection and
transmission properties of a single interface. This
approach lends itself to a ray interpretation, however,
from a view point of gross reflectidn and transmission
response of layers. Starting from the response of the
entire stack of layers, the Haskell matrix R in equa-

tion (II-2-6):

R=Ei'ay.. - - a;.

a's, the layer matrices, can be expressed in terms of
the fundamental matrix E and phase matrix A (equation

II"‘].-].B) 7
a, = E, A, E;t

Hence,
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R=(Ei'Ey1) Av-1 (Bt Byg) -0 - - ‘ |
A (B Epy Y Apoy - (EgtEy ) A EfY - (Iv-3-1)

The reflection and transmission can only occur at velo-
city discontinuities; therefore only the terms within
the parenthesis of equation (IV-3-1) contain the infor-
mation of wave-interface interaction. The matrix A 1is
only used to ‘'phase relate' the waves through the
layer. Consider a single interface. The potential-
constant vector K , which represents the waves inside

the layer, can be rewritten as

[,

where U and D are 2x1 matrices for the P-SV case con-

t
i
o b

taining upgoing P,SV and downgoing P,SV potentials,
respectively. For the SH case, U and D are scalars.

The waves just above and below the interface satisfy

¥ wren B -m Y]
D'n— nEn—l D.n-i_ " D in-1

The underscoring denotes the quantities at the bottom
of the n-1 "layer. F, is called the reflection-and-
transmission matrix, It is noted that F, does not con-
tain the phase terms. These terms, as discussed in
section 2.2, might be exponentially growing and cause

an accuracy problem.
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Consider a downgoing wave incident at the boun-

dary,

Ve -
N oSN

we define

Upey =1p Doy
D, =tp Dnoy

rp and tp are matrices of the reflection and transmis-
sion coefficients for both P and SV waves in downward

propagation,

D D D 4D
Top T ¢ top  tsp
Yp = D =
D 4D
'r‘,’;’s 'rs'; tps s

Similarly, an upgoing wave incident at the boundary
defines ry , t; . Following the discussion of Kennett
(1974), or more clearly Frasier (1970), we have

tt . —ti'mp

Fp = E;'Epy = | o L (1v-3-2)
rytg | tp-rytyrp |, :

and
rp = - Fi{Fy,
tp = Fpp — FoyF{{Fy2 ,
ry = Fy,Fj} (1v-3-3)

ty = Fif
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Note that det(F,;) is the Stoneley function.

If the waves pass through a layer from the bottom

of layer 1 to the top of layer 3;.

N
N a

the response for potential-~constant vectors through the

layer becomes
(Eg'Ez ) Ao (Eg'Ey)

The situation does not become complex, since an itera-

tive form can be found (Kennett, 1974):

Xpy, = Tp, + tUZ(P"erSP'l) [1- ru, (P 'rp P1)]! t,

tDa; = (tDap—l) [1- Iy, (P-1ruap-.1)].‘1 to,

- - - - - 1vV-3-4
YUz = FUs + (tp Py, [1- (P 'rp P Ny, 1 (P ty) ( )
tUa; = tUe [1- (p-er3P-~1) ru, 1 (P‘ltys)

where
e’**2 o
P=
0 e”ﬁdz ,

and 31 represents the stack between the top of layer 3
and the bottom of layer 1. 1In equation (IV=3-4) we
have used P to phase relate the reflection and

transmission coefficients at interface 3 to interface



2., However, note that ry, need not be 'phase related’'.

Equation (IV-3-4) reveals some interesting features:

(1)

(2)

the

The term [ 1-ry(P-'rpP1)]t can be expanded as a

power series;
[ 1-ry(P'epP )] = 1 + ry(P'pP™") + ry(P*'rpPY) ry (P rpPt) + -+

which describes the ray propagation with different
internal reflections and transmissions in the |
layer. Kennett (1988) has provided a detailed ex-
planation about this ray viewpoint of wave theory.
Hence, the total response of layers is just a
superposition of multiple reflections from
boundaries.

The phase term which might grow exponentially

is excluded from the calculation of reflection and
transmission coefficient at layer boundaries.
Hence the problem of loss of precision can be

well controlled.

To calculate R, we need only start at the base of
the layers, progress upward,literatively adding a
layer to the stack, one at a time. This iterative
approach represents the most important step of

Kennett's method,

Suppose that the stacking from the half-space to

top of first layer (just beneath the surface) has

been accomplished. The (1,1) component of 2x2 partition

of matrix R can be determined from



i.eu 14
Ry = t5, (B —1p By ),
where E represents the inverse of the E matrix of the

first layer, Going back to our formulas for the dis-

placement at the free surface ( equation II-2-5),

0 Ryt . Rz | | Wy
Dlin Rz i Raz || O |g
or
T
W1 = = - Rﬁ‘ Xh- Si . (]V'3'5)
Uzl

If we use the discontinuity in the constant - potential
vector to describe the source (their explicit form will
be listed in section 5,1) rather than a discontinuity

in displacement and stress,

XS=Ey'Ey_1 Ay1 E§t -+ A (EXS)
(E§'Env-y AN-t' " A ) 2y

t7'. —ti'rp Ty

NS | ZD |pm

and equation (IV-3-5) becomes
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Wi =~ (Eu - r,,Ba1 )™ ty,, t5hs (Su - o, Sp ) | (Iv-3-8)

det (Ey - rp, Ezy) 1S the period equation. Note that,
~except for the source depth, any partition of layer
stacking at other places such as receiver depth has
been avoided. There exist several different forms of
the period equation in the derivation (Kennett, 1974;
Kennett, .198ﬁ; Kennett and Kerry, 1979; and Kerry,
1981). After lengthly discussion, Kerry (1981) finally
chose this form to calculate dispersion values. How-
ever, by using a different partition of layer stacking,
he was able to find an interesting screen effect of a

low velocity zone at depth.

We will not expand equation (IV-3-6) to calculate
éeismograms. Only the concept of reflection and
transmission coefficients or equation (IV-3-2) will be
used in the following development for the reflection

suppression technique,

Reflectivity Method

The reflectivity method is an important applica-
tion of the Haskell matrix (Fuchs, 1968; Fuchs and
Miller, 1971; Kind and Miiller, 1975; Miller and Kind,
1976; and Kind, 1976, 1978, 1979), hitherto mostly used
for body wave computation for an explosive type of
source. This method involves a double integration with
respect to real wavenumber and real frequency, but over

a small range of interest such as those with real
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number of incident angle. Such a numerical integration
correSponds oniy to our real branch line integral. The
- integration could cover the whole range of response
including the surface-wave poles by adding a small com-
plex part to the velocity in each layer, accounting for
anelasticity, which would move poles off the positive
k-axis (Kind, 1979). However, one has to sample the
integrands very closely over a much larger range of
angle of incidence, ahd the computation time increases
substantially. The reéson for dense sampling is simi-
lar to that which we have discussed in section 4.1,
i.e., the influence of 1leaky or normal modes on the
integration along the real wavenumber axis. In princi-
ple, the reflectivity method is not suitable for the

computation of normal modes.

Consider the potential-constant vector K just

beneath‘the free surface., If there is no reflection at

. the free surface, we can simply make D, = 8, and the

free surface displacement is just W, =E,U,, where E,,
is, for P-8sv, the (1,1) component of the 2 by 2 parti?
tion of the Haskell E matrix of the top layer, and for
SH, a scalar, Fuchs (1968) used this form to treat the
free surface in the original theory of the reflectivity
method. However, if we téke into account the free sur-
face effect, but do not allow the wave to be reflected

back into the earth, then from equation (II-1-15),
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Wy E11:E12 {Ul
0| |Eet: EBee| LD,

and the solution is

Wi=(Ey~EpEdEy ) Uy =F Uy | (Iv-3-7)

This is the form Fuchs and Miller (1971) used. For SH
such a modification just doubles the amplitude, and for
P-SV some conversions between P and SV take place but

without much effect.

For a reflecting and transmitting interface, we
can simply set ry and rp equal to zero to suppress its
'reflectivity'. From equation (IV-3-2) the
reflection-and-transmission matrix F becomes

t7' . o
Fn=E1;lEn-l=
0 'Y

n o,

Furthermore under this condition, (IV-3-3) provides
that

ty' = Fyy
Because of the reciprocity relation, Kennett et al

(1978) and Fraiser (1978) found that

tp = tf x ( normalization Sactors ) |,
In our system, the normalization factors, as discussed
in deriving equation (II-1-12), enter the result as

D D
|t tpUp a tj,,Us b
tD = D D = )
tps lss t.g, c tsUs d
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with

L N7 V) _ v P _ve/p

= c = d
Va/ P Vo P vgk?/p ve/p

a

where‘primes denote the quantities just above the
interface and the unprimed quantities are just beneath

the interface. The matrix F takes the form:

Fyy Fyg 0 Y
F= ' r F (IV-3-8)
0o o 22 _Fa
A A
Fi Fyy
0 o - A c A d
where
A=TF|{§ |

Now let us stack a whole set of layers together.

Use equation (II-2-5)

Ky = XS +RB,
=XS+ (RE) (E{'B)) = XS+ QK, ,

where

Q=RE =XZE;=XP
= Ey' Ey_y Ay— Bty 0 Ay
- P=En A Bl Ay

Following the same procedures between equation (II-2-6)
and (II-2-8); we have

=SiX | {f Pje
Uy

<
SiX |f Py
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and the free surface displacements are

Uy, ["SiX‘é‘z Pia ] '
—_ 12 o)
[ ] =T sx1¥#p, / Q|15 (IV-3-9)

Uzl
where
YV
~SVavs -2k vg(y—1) .
Fy = Eq; ~ Eqp Egf By, = € as 2
t = By = By Bgg By = | 2yvavg 7 pa P (r=1)%);
2';—(7—1) —_—r . .
1

To calculate Q , the form (IV-3-8) 1is wused if the
reflection is to be suppressed. If it is not to be
suppressed, the'layer matrix @ can be used. In the
transmission zone of the'reflectivity method, all of
the reflections are suppressed, and in the reflection
zone, the normal case 1is retained. Hence, Q 1in the

reflectivity method is

Q=Eq'ay-1 " Qp Aoy Froyr o A Fa Ay

‘Some aspects of our system for the reflectivity
method are interesting to point oﬁt:

(1) It is just a simplified case for our system but is
a generalization of the reflectivity method.

(2) The conversion of waves during passage through the
interface is involved. If such a conversion is not
of interest, we need just set the off-diagonal
components in the matrix F (equation IV-3-8) to

zero, This is the approach used in the usual re-
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flectivity method.

(3) Any kind of point source, namely explosion,
double couple, or other, is permitted, since the
-source term S in equation (IV-3-9) is left in a
general form.

(4) All benefits we have discussed for our system are

also applied to this new reflectivity method.
Synthetic Seismogram

Several synthetic seismograms were made to illus-
trate the layer reflection suppression technique by
applying the integration method of chapter 1II. Figure
31 shows a simple test using the SCM model and an
explosive source at a depth 18 km. Figure 3la is the
radial component complete seismogram which is used to
compare to Figure 31lb, in which the free-surface
reflection 1is 'suppressed'. As expected, Figure 31b
just exhibits some easily identified arrivals such as
Pn, Sn, P, PP, PS which are reflected or refracted back
from the crust-mantle boundary. All other multiple
phases as well as surface waves are eliminated. Figure
32 shows the similar comparison for the z component,
‘Since a compressional type of source is used, there are

no obvious direct shear signals.

For the test of reflection suppression in 1lower
boundaries, an intermediate layer with a = 6.70 km/sec

B = 3.87 km/sec, and p =3.8 gm/cm®is inserted between
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depths 20 km and 40 Km in SCM model. Several seismo-
grams at epicentral distances of 200 km and 300 km, due
to a strike-slip source, are displayed in Figure 33,
where (a) is for the SCM model, (b) is for the modified
SCM model and (c¢) is for the modified SCM model with
reflection-deprived second layer boundary. Receivers
are located at an azimuth of the § degrees from the
strike of. fault. Because of the small velocity con-
trast across the reflection—deprivéd boundary, there is
not much difference between (b) and (c) for the R com=-
ponent. However for the SH component (Figure 34), the
effect is much more apparent, This means that the
transverse shear wave is more sensitive to changes in
reflection and transmission response than compression
and SV waves., This finding might be significant for the
development of shear wave exploration techniques.
Seismograms (a) and (c¢) in Figures 33 and.34 are not
comparable except for arrival time. Hence the choice of

correct model in seismogram simulation is important,

If the free surface reflection of the modified SCM
model 1is further suppressed, the seismogram from a
dislocation source will be deprived of most of its wave
energy, and numerical noise becomes apparent. We do not
plot this result; instead, an explosive source is used
for the example. Figure 35 shows the seismograms at
100, 200, 300 km epicentral distances for the modified

SCM model. The top traces are complete seismograms and
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the bottom traces are for reflections only from the
crust-mantle boundary. The surface waves are all can-

celled. Only those phases shown in Figure 32b remain.



CHAPTER V
SOURCE AND INSTRUMENT

For the completeness of the system developed in
this dissertation, two factors, namely source and
receiver, should also be included. The literature dis-
cussing sources is vast, and we will touch on only the
major points needed to synthesize seismograms. For
modeling the instrument, a method from Mitchell and
Landisman (1969) is revised to more efficiently
retrieve the ihstrument response parameters, These
parameters are included in the final stage to make up

the synthetic seismograms.

5.1 Source Considerations

The source factor can be included in the solutions
by simply adding a singularity to the wave equation,
Since the equivalence between body force expression and
the discontinuity of displacement and strain at the
source location was demonstrated (Burridge and Knopoff,
1964) , the development of source theory has become much
easier by the use of Green's functions. A Green's
function is a solution of a differential equation
involving the source singularity, which is independent
of the form of the source function and is determined
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only by the differential equafion‘and the bouﬁdary con=-
ditions.40ne useful application of the Green's functibn
is that the solutions from an arbitrary source, for
example a sinéle force f , can be set up by convolving

the Green's function and this source function:
u =Gy * [y,

If the source becomes more complicated, such as
second order sources (couple or dipole), more deriva-

tives with respect to the direction are involved:
Ui = = Ui T,

where m; represents the direction. These extra direc-—
tional dependences can be properly described by a

moment tensor M ;

wU = Gije * My |

A detailed discussion of the concept of a moment tensor
is given in Aki and Richards ( 1988, chapters 3 and 4);
In a cylindrical coordinate system, the Green's func-
tion of the wave equation includes the kernels in three
directions, i.e., r, z, and ¥ . Hence the Green's func-
tion itself also contains the directivity terms ¥ .
Usually the Green's function is not easy to find. For
the purpose of extracting the source dependent terms, a
whole space solution from Stoke's ‘formula (Aki and
Richards 1988, equation 4.23), which has been exten-

sively discussed in Love (1944), is expanded to a form



- 158 -

in which it 1is easy to separate the Green's function

and moment tensor.

One 6f the merits of wave integral theory is that
the solutions can be represented in a suitable canoni-
cal form. That is, in a form in which the parameters of
interest are taken into account at discrete points, so
that the parameter input at the end of the comphtation
chain can be varied without having to repeat the previ-
ous computations. Hence, it is desirable to factor out
the directivity dependence terms, or equivalently the
radiation pattern, from the source representation and
calculate only some fundamental source type solutions.
These solutions are combined with the directional
dependences in the last stage to form the final solu-
tion. Equation (II-2-15) is such an example where
three fundamental‘types of solutions, i.e., SS, DS, and
DD, are prepared before any orientation of double cou-

pPle source is considered.

Since it is not easy to isolate directivity depen-
dences from source expressions ;n the forms of the
moment tensor, we «choose the other approach from
Haskell (1963). Using a direct and clear style, Haskell
(1963, 1964) listed five source types} i.e., single
force, single dipole, single couple, double couple, and
compression source, in terms of a discontinuity in his

vector K=[4'+4", 4'-4", 8'-B", B'+B"]T A matrix F of Wang
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and Herrmann (1988) has been used to transform
Haskell's K vector to the form [4",B",4 ,B']"and in
section 2.2 we further used a matrix E to convert this
form to a vector representing the discontinuity in the
motion-stress vector (equation II-2-2). Using g# to
represent the terms from Haskell (1964), I to

represent a discontinuity in potential-constant vector,

“and S to represent a discontinuity in motion-stress

vector, there exists the following relations:

S=EZ

T=FzH ,
where

-1 -1 00

110 0 =11
2|-1-1 00
0 0 1 1

These relations can be used to relate the different

source expressions listed below.

Choose the coordinate system (x,y,2) as (1) x =
north (2) y = east (3) z = downward into the earth, and
f for the force acting at the source and n the normal
to the fault plane, as defined in Haskell (1963). For
an order one source, the only form is the single force.

The solution can be expressed by

u=faSYe+ (f1cos?¥+ fysinvg) S'Y,
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4ra?8°=[0,0,-2k,0)

4nw?8'=[0,0,0, -2k JF
where f=[f, fa f3] and ¥ is the receiver azimuth
measured from the north direction clockwise. Y,
represents U,J, for z component, and U,yJ,-y for r, s

components as in equation (II-2-14).

For sources of order two, we find five fundamental
forms are necessary, by examining the Haskell's (1964)

source functions.) They are

anw? 8% = [ 0, 0, 0, k27
4ne? 80 = [ 0, 2kk&/p, 0, 4k282/af I
4me? Y = [ 0, 0, 2k 0]
4me® S' = [-2kkE /p, 0, 0, o]”

4ne® SR = 0, 0. 0, k2 )" .

The solutions for different source types are obtained
after combining part or all of these fundamental forms.‘
Such as,
dipole without moment:
u=[(1-378 8%+ f£ 8° ] ¥,
+[fifacos®+ fafasin® ] SY,
+[(f8-ff)cos29 - 2f f,sin20 ] ST Y,
single couple:
u=[-3fam3s 8% + fans8° 1Y,
+ [ ((f 1na=fany) cos ¥ + (f gng~fanz) sin v ) SY

+ (.f 1Mm3 cos U+ f ong sin ’19) St ] Y,
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+ [ (Fene—f 1ny) cos 28 = (Ffynp+fon,) sin 28 ] S2Y,

double couple without moment:

u= [ —Bf ang So’ + 2f ang S0 ]YQ
+ [ (f 1na+fany) cos B + (feng+fang) sind ] S'Y,
+ [ 2(fana—fny) cos 28 = 2(f inatfany) sin 20 ] S* Y,

center of compression:

u= So Yo

.

Note that for far-field solutions, 8%y, and S?Y,
differ only by a constant phase term. Hence, for far-
field double-couple dislocation sources, only three
independent solutions are required, and the explosion

solution is just one of them.

The fundamental types as expressed in terms of T

have the forms:

amw? 29 = [ k% 2vq, _kp, k2 2va —k 2T
4?20 = [ kkZ/vg, 0, ~kkg Ve, 0]”
4ma? BV = [ k&, k2 g, ~k?, -k v T
ame Bt [ REE (k) k%, (vgtk2 v I
4nw? 22 = [ k320, k2, —k%/2u, -k /2 I

for second order sources, and
4me? 50 = [ k., —k/vg k, k/vg "

a0 = [ —k% v, 1, k% /v, 1]
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for a single-force type of source.

Similar relations <can be derived for SH com-

ponents. The results are

u=[2(fysin¥ - fycos®)]S'Y,

4mw®8'=] 0,kw? |7
for a single-force source. For second order sources,
the following are defined:

dipole without moment:

u=[(fofacosd® - fifasinv]S'Y,
+[(fE-f8)sin29~2f,focos280]S?Y,
single couple:

u=[finz~ f2n118%Y,
+ [ fengcos¥ - fingsinv ]8'Y,
+ [ ( f1n1—=f2np) sin 28 — (f yna+fan,) cos 20 ] S2 Y,

double-couple without moment:

u= [ (feng+sfang) cos ¥ ~ (f yna+fany) sind ] S'Y,
+ [ (finyi—fang) sin 29 — (f na+fony) cos 29 ] S% Y,

where
4maR 8% = 0, k22 ]7
4nw? S' = [ 2kk § /p, 07
4ma® 8% = | 0, k%2 17

5.2 Instrument Response Parameters py Least-Square
Inversion

Mitchell and Landisman (1969) described a method

for determining the instrumental constants of an
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electromagnetic seismograph from a digitizéd‘ calibra-
tion pulsé. They applied a least-square technique to
fit fhé pulse by varying four instrumental constants:
period of seismometer (Ts) and galvanometer (Tg), and
damping of seismometer (hs) and galvanometer (hg). A
Fourier transformation was used to calculate the syn-
vthetic pulse from a known relationship between the con-
stants in the frequency domain before comparison to the
observed célibration pulse. Jarosch and Curtis (1973)
simplified this method by deriving explicit equations
for the pulse in the time domain, and included the
scale faétor as a free parameter to be determined.
Mitronovaé (1976) added another parameter, the original
timé, in the least-square fitting procedures to improve
the error invoived in specifying the onset time in

pulse digitization.

This section will develop a similar method, but
now, fitting the response parameters (to be defined in
equation (V-2-1)) rather than the instrument constants
Ts, hs, etc. It 1is important to realize that these
parameters are the ones which determine the effects of
the seismograph on the seismograﬁ, not the instrument
constants, although, theoretically both are mutually
related. The seismograph is considered to be a 'black
box'., Only linear response of the system 1is assumed;
nothing about the instrument itself need be known.

Such a method makes it possible to fit the calibration
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pulse of any instrument in the time domain, especially
those for which suitable formula to relate the instru-
ment constants and the system response do not exist.
There are several factors influencing the resuits of
the time domain inversion method, such as the relation
of the trial values to the actual, precision of the
reference pulse, and errors in digitization. If these
factors are highly controlled, the new method will be

of practical use especially for the short-period

instruments,

Most instruments in the current seismic detécting
stations usually can be considered as a linear and
stable system. A well-known response function approxi-

mating this system is: (Luh, 1977)

(V-2-1)

where s is the Laplace transform variable, b the scale
factor, and the a's are assigned as the instrument
response parameters. b and e's are all real positive
coefficients with aps1=1 , a; %0 . These parameters
represent the system, and are those to be determined by
the least-square inversion. m,n are chosen as integers
representing the slopes near both ends of the amplitude

response bands. The function to be fitted is given by

Z(t) =bf (t-an-an—lv' Cay) '
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where f(¢) is the time domain counterpart of F(s). Per-

turbing this function, the error will be

& 0fy
eq =bf1 +b2‘—'50,j +f1‘ éb - 2 ,
j:laaj

where i indicates the data point on the time axis, and
fi=f({t) . Por a least-squares fit, we want the sum

of the squares of the errors or residuals (SSR) to be a

minimum, i.e., E::Zkf to be minimum and, hence,

1

9E  _ OE

3(65) ~ B(da;) O JELem
Writing
g =2¢/b — fi
the normal equations are
. o : _
9fi o afy 0fy ari af4
—)< : | {da £y
z‘-:(aat) Zl-}aal By, Z.;:aar,lft ! Z.‘J ‘ 9a,
8f: af« 9fi \a af; afq
Lt e 1 .
7 0a, da, thaan) ;aaﬂ T4 On 2981 dan
8fy o ar; 8 5b
-¥aa1fi ;fiaan left Il b Zi_)sif1.

(V-2-2)
Following Jarosch and Curtis (1973), we take ( a +da )

as the new value a , but use

b = b exp(6b,/b) (v-2-3) .
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for the new scale factor, to force its fast convergence
to exact value, However in practice, because of the
linear dependence of b on the a's in the low frequency
range (note that b and a's are termé of the numerator
and denomihator, respectively, in the response function
v-2-1), the inclusion of blgi§es a constraint between b
and a's, which sometimes causes the divergence of this
method. Hence, an independent determination of » by
other methods such as amplitude response analysis is
recommended. The least-squares inversion is used to
determine the a's only. In such a case the required
modification of the above matrix equation is just to

remove the n+l'th row and column.

Using the Laplace transformation pairs:

1 ~at 1 -at
e — > e V-2-4
s+a (s+a)? ) ( )

it is easy to find f(¢) by factoring the response

function F(s) and taking the inverse Laplace transform:

sm
F =
() s"+a, s+ tassta,
C1 Ca Cn
= + + o+
S—dl S—dz S'_dn
(V-2-3)
t & d;t
- f(t)= cled‘t +ege™ 4 che™ = Yice
i=1 »
where
dm
C; = .y
IT '(di — di)
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The roots di and coefficients ¢: might be complex
numbers. It is noted that in this expansion no double
roots are permitted. These double roots might happen
when parts of the instrument are set at critical damp-
ing. However, we find that a small coupling o? > 0.0001

will push the imaginary part of the roots to be
nonzero.kSince the roots are always in conjugate pairs,
the values of the c's are determined by Re(q;) and |d;|
. Hence, a small disﬁurbance in the imaginary part,
which can be added arbitrarily or with the inclusion of
coupling factors, will not affect the result much, but

will prevent the problem of a double root,

87 (t)

The time functions, Sa. are more difficult to
f)
find. To avoid using numerical differencing, an ana-

lytic form can be derived as follows:

oF (s) - (=1) gi~tm
da; (s™+ aps™ '+ - +aps +ay)?
(_1) Sj—l+7n
T (s=d)?(s=d2)? - (s=dp)?
Pij q1j P2y q 25 Pnj dnj
=~ + + + + o+ +
a0 ¥ =i ¥ eoagl T - d G-dp ) 5-dy
where
J=1+m 2 o
Dij = p & — = dg_l—m Cy 1,J = lL..n,
T (di = dp)?
k=ll—£¢i :

The expression for ¢; needs more derivations. Set

]
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H(s)= [T (s—di)?

k=1kwi
7 can be evaluated by

gd—1+m pt’:‘. ‘
%=y B " Goman 1o
1 Sj"“m d.{"“’m
SEa UEE T @ e
5 . gi-t+m

5;?7565—]h»@

. Sj—2+m S.j-—l-&-'m 1 ~
. n n
= Dis f = .i—l -2

Hence from the Laplace transform (V-2-4), the time

domain derivativegglil has the form:
aj

ar (¢t n ! ¢
_ﬂ_l=_.2 (Pijted( +q'ijed‘ )
i=1

aaj
where
_ 2
Py =df™" G

n
1
L= D =1+ ~1 . 2
9ij = Pij [(.7 ) d; k=1z;c¢i di—dy ]

dit =

We find that the derivatives of f(¢) have the close
forms in the time domain. This is difficult to attain
by varying the instrumental constants, as in common

least~square calibration pulse inversion methods.

Since the differences in order of values of ele-
ments in the inversion matrix (equation V-2-2) are usu--

ally about ten to twenty, a scaling constant sometimes
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is needed to prevent nqmerical overflow or underflow.
It is made by simply changing the transformation factor
s to »s and the parameters found will be scale
adjusted b =pm-np , 2;=p™ a;, The time axis in this
case 1is reduced by 1,/p because of the corresponding

scale change in the frequency.

To test the new method, an example from Mitronovas
(1976) is chosen. The results are shown in Table 2. We
first compute a synthetic pulse by the equation (e) of
Jarosch and Curtis (1973) for the instrument with
seismometer overdamped and galvanometer underdamped,
then normalize to the maximum values indicated, and
round off to nearest integer values to simulate differ-
ences in the digitization accuracy. A set of a values
of the instrument parameters are then obtained using
the new inversion technique. Table 2 also lists the
values using the method of Mitchell and Landisman
(1969) as a comparison, There does not seem to be any
significant difference between these methods, although
the new method seems a little better in accuracy for
such a synthetic case. This test confirms the success

of the new method.

Figures 36 and 37 show the application to real
data for the LPZ WWSSN instrument at FVM station. Fig-
ure 36 displays the digitized calibration pulse and its

amplitude spectrum, Using this pulse as an input, we
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The impulse-response pulse and its amplitude
and phase spectra of a simulated instrument
obtained by applying the inversion technique
to the calibration pulse of Figure 36.
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determine the instrument response parameters by the
present inversion method. Figure 37 shows the impulse
response pulse of this simulating instrument, and its
amplitude and phase responses, It is found that, except
for high frequency noise, the new method can adequately
‘model an instrument even if we lack knowledge of the
instrument constants., Furthermore, the a parameters
obtained can be éasily incorporated in the program to
describe the instrument effect. In the next section we

will discuss such an application in the time domain,

nt by IIR

With the response parameters determined, we cén
impose the instrument response (V-2-1) upon the input
data by direct multiplication in the frequency domain,
and then take an inverse FFT to synthesize the time
series, However, if the genekated seismogram is already
a time history, a time domain operator representing
the instrument would be more convenient to use. In
this section an infinite impulse response filter (IIR)
will be designed to make the instrument response super-
position in the time domain by a recursive operation.
The basic theory will be the classical Z transformation
which has long been used to treat digital signals

(Robinson and Treitel, 1980).

First let us consider one of the filters in
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| eguation (V=2-~5):

1

F(s)= s=d .

The relationships among Fourier, Laplace, and yA

transformations for this filter are easy to find,

e®uU@t) -

-> 1 ‘ . (V'B‘l)

* At TT
1-e Z_i’

where U(t) is the Heaviside step function., Because of
the causality of the system, the poles in equation (V-
3-1) should be located in the left half of the complex
s-plane (Papoulis, 1962), or equivalently, inside the
unit circle of the complex Z-plane. If we use the fol-

lowing definition for the Z-transform:
F(z)= 3 f(n)z™
n=0

the two-term filter will be stable for such a System,
since if expanded in an infinite polynomial of Zz-! the
coefficients are all bounded. This stable property is
necessary for any IIR to simulate the instrument
response. Before we design sudh a filter, we must be
certain to check that all of the poles of the Laplace

transformation have a negative real part,

From equation (V-2-5), the instrument response can
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be written as

Cy
F(s)= V-3-2
)= 74 . (V-3-2)
The corresponding Z-transform will be
n Cs
F(z)=}, : (V-3-3)

=t - WM g

This formula represents n number of two-term filters
operating in parallel. We are not going to sum them up
as a single filter (Seidl, 1980)

a0+ a.1Z"1+ ce o a.n_1Z'(""'l)

F{Z)=
( ) 1+b1Z_l+ DRI O T A ’

because the numerical error makes the determination of
a's and b's unsatisfactory. Besides, this form is not

easy to apply (Kulhanek, 1979).

It is known that the multipliCation.of'Z'imeans a
shift of the time sequence by one sampling period.
'Applying the filter (V-3-3) to the input data, % , we

have the output Yk ;

Yr = F(Z)
b3 CY‘.
= ( ——— ) x
Si1 -tz T F
7 o
= (———2—— 17,
&g &)
b2} N
T

‘where

i A (i)
Y =C<xk+edi 'ykt—x
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k is - the sampling point of the sequence, and i
represents a different two-term recursive filter. This
is the recursive formula describing the time domain

operation.

Figure 38 gives the impulse response pulse and its
spectrum for an LRSM 6284-13 seismograph. The impulse
response waveform is obtained by passing an impulse
signal through a Z-transform IIR filter representing
tﬁe instrument, Different amplitude response curves
~come from different time sampling intervals, which are
1.8, 8.5, and 8.0625 second for curves from top to bot-
tom. A theoretical response curve, which falls in the
position of the curve with A¢ =0.0625, is also shown for
comparison. Some restriction should be considered
before using recursive filters. For the Fourier
transformatioﬁ, the samplinq along the frequency axis,
Af, gives the periodicity in the time domain, and
causes the aliasing effect of the time series (Brigham,
1974) . Equivalently, the time sampling A¢ of. the 2Z-
transform causes the aliasing effect, but now in the
frequency domain. Figure 38 shows the effect of alias-
ing at the ends of the frequency response curves for
different sampling rates. Naturally smaller A¢{ values
give better results, The reason for such an effect
comes from Z =¢ivAt which is a harmonic function with
a period of =2m ., Tb keep wAt = 2r smaller A¢ gives

higher Nyquist frequency, i.e., shifts the aliasing to
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Figure 38 Simulation of an LRSM 6284-13 seismograph

using the Z-transform method. Three res-.
ponse curves correspond to different sam-
pling rates dt of 1.0, 0.5 and 0.0625 sec.
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high frequencies.

Another way to alleviate the aliasing problem is
to use the bilinear Z-transform. By substituting
sz R1=-2"
At 1+ 271
in equation (V=3-2), it is easy to find the recursive

relation of a two-term filter for the bilinear %-

transform:

/0 +d; )

(1) _ Ci
- k-1

Y (Tr + Tpeoy) +

R/At — d; 2/At ~ d;

The bilinear Z-transform is a low frequency
approximation (Oppenheim and Schafer, 1975, p.208).
The distortion of the frequency axis at high frequen-
cies offsets the true response. As shown in Figure 39,
which describes the response of a short period WWSSN
instrument, the bilinear Z-transform simulates the
response well at low frequencies, but is poor for high
frequencies. To obtain good results, a small At is
again required. On the other hand, the filter response
is found to be zero at the Nyquist~freqﬁency, which
avoids any Gibb's phenomina in the time domain. A spe-
cial frequency warping is used in practice to design

the digital filter from its analytic form.

'Using the time domain operation, we designed

several IIR filters to model some currently used
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instruments. Figure 40 illustrates one of the results.
The seismograms plotted correspond to the time his-
tories before and after the addition of a WWSSN SP
instrument for two cases. The instrument response curve
is the one given in Figure 39. It can be seen that the
waveforms are totally altered.Low frequency signals are
filtered out, and the remaining waveforms represent

more likely the high frequency, higher mode Lg phases.
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CHAPTER VI
COMPARISONS

To employ the synthetic seismogram method in
actual applications, the validity of theory and numeri-
cai procedures should be checked. 1In this chapter,
several comparisons of the wave integral method with
totally different methods are presented. These examples
illustrate the flexibility and reliability of the

present method, and lend confidence to the new system.,

Comparison to Generalized Ray Theory

First, the free surface displacements due to a
double-couple source in a uniform half-space generated
by the integral method are checked against the complete
solutions from the Cagniard-de Hoop method (Johnson,
1974). Figures 41 and 42 show the computed radial com-
ponents of ground velocity time histories at distances
of 168, 25, 50, and 75 km for the vertical strike~-slip -
and vertical dip-slip sources, respectively. Sections a
in these figures come from a Cagniard-de Hoop ray sum-
mation and sections b from the integral method. The
velocity structure has P velocity = 6.15 km/seg, S
velocity = 3.55 km/sec, density = 2.8 gm/cm®. The depth

of the point dislocation is 10 km. A seismic moment of
- 182 -
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1.8 E +20 dyne-cm and a parabolic source time function

with 7 = 8.5 sec are applied.

The agreement between the records of these two
methods is excellent. The -comparisons are of near-
perfect precision for both fault slip prescriptions.
This convinces us that the method of wave integrals is
highly reliable. Figures 41 and 42 also show the
effect of near-field terms (equation II-2-14) oh the
complete solutions. Sections ¢ in these figures
include the contributions of far-field and near-field
P-SV terms (first two terms in equation II-2-14), where
a noncausal, nonpropagating arrival exists as indicated
by Herrmann (1978a), especially for the vertical dip-
slip source. The records in sections d correspond to
the solution using only the far-field term. From these
figures, we can see that an‘apparent Rayleigh phase
(fundamental mode only for half-space model) emerges
from the P phase group as the distance increases. Since
a clear distinction between the S arrival and surface
wave phases 1is not possible, the separation between

these two main phases on seismograms is not obvious.
Comparison to Finite-Element Method

The second example (Figure 43, 44) shows the accu-
racy of the present solution for a horizontally layered
media. The compared solutions are obtained using the

finite element method, which are adopted directly from



N

wave integral
— — — — finite element

Figure 43. Comparison of wave integral solution with
the finite element solution for the radial and
tangential components due to a vertical strike-
slip dislocation buried at a depth of 1 km in
the two layers overlying half-space model of
Table 3.
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Figure 44. Results using the source and model of

Figure 43, but for a source buried at
the depth of 5 kmn.
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Apsel (1979). The model consists of two layers overly-
ing a half-space, as illustrated in Table 3. A vertical
strike-slip dislocation source is considered and the
source time function is a ramp 6f one second duration.
The recéivers with an azimuth of 22.5 degrees from the
strike df the fault are located at the distances indi-
cated at the ends of each traces. A low-pass filter
with corner frequency @.5 Hz is applied to make the
seismogram more visible. The results of the present
method are ~computed up to 4 Hz befofe passing through

the filter.

The comparsion results are shown in Figure 43 for
a source at 1 km depth, and in Fiqure 44 for a source
at 5 km. The components displayed are also indicated.
The a&reement in these figures is remarkable, espe-
cially in'light of the vast differences between the two
techniques. The slight deviation comes from the numer-
ical errors of both methods and from slightly different

low-pass filters used. However, the overall pattern

. 8till exhibits great consistency, especially for deeper

sources, which is sufficient to confirm the success of

the wave integral method.
Comparison to Modal Summation Method

In the previous examples we showed the comparisons
with known complete solutions. The solutions include

near-field as well as far-field terms, - and the



TABLE 3

Two Layers Overlying Half-space Model

Thickness P vel S vel Density
(km) (km/sec) (km/sec) (g/cni)
2 3.0 1.73 1.67
2 5.0 2.887 2.89
_ 6.0 3.46 3.46
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integration 1is taken for different integral parts to
create all kinds of signals. In the next example,
several synthetic seismograms from Swanger and Boore
(1978) and Heaton and Helmberger (1976,1977) are chosen
to check against our pole contribution solutions,
namely surfacé wave, as presented in chapter III. How-
ever, a solution from the locked mode approximation
method is also included in an attempt to fit body wave

signals.

Using the surface-wave modal superposition method
of Harkrider (1964,1979), Swanger and Boore (1978)
simulated ground displacement records from earthquakes
in the Imperial Valley of California. Since the sedi-
ments in thié valley form a prominent wave guide, sur-
face waves are ﬁhought to be dominant., Heaton and Helm-
berger (1976,1977) generated several synthetic seismo-
grams using the generalized ray method for this area.
They have used enough rays in their summation so that
their synthetics can be considered to be a near-
complete solution, The effort of these studies was
directed to find a suitable source model by time domain
waveform fitting. However, the synthetic waveforms
. created provide us with a check of our eigenfunction
programs. Figures 45 and 46 are the results showing

the comparison of these different methods.

Using the El Centro model listed in Table 4, we



Earth Models

i

TABLE 4

Thickness

P vel S vel Dens%ty
(km) (km/sec) (km/sec) (g/ci)
E1l Centro Structure
2.9 - 1.50. 1.5
P — 3'30 2¢5
Imperial Valley Structure
0.95 2.0 0.88 1.8
1.15 2.6 1.50 2.35
3.8 4,2 2.40 2.6
6.4 3.70 2.8
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Figure 45. Comparison of Love wave synthetic ground dis-
placements with Swanger and Boore's modal summation
method (solid line in a) as well as Heaton and Helm-
berger's ray summation method (dashed line in a) of
the 1968 Borrego Mountain earthquake. A vertical
strike-slip source at 6 km depth and a symmetric tri-
angular source time function of 1 second duration are
used. The epicentral distance is 60 km and the azi-
muth is 8 degrees from the strike of the fault. The
model used is the ELl Centro structure listed in Table
4. (b) is the result of eigenfunction programs but
including only the first three modes which Swanger
and Boore used. (c¢) is the result including all modes.
(d) shows the synthetics from the locked mode approxi-
mation with a rigid layer at 200 km deep. Note that
(d) successfully models the first arrival of ray theory
solution.
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Figure 46. Same comparison as for Figure 45 but for the
1976 Brawley earthquake. The Imperial Valley structure
(Table 4) of Heaton and Helmberger (1978) is used. The
source is a vertical strike-slip point. buried at 6.9
km, and the source time function is a 1.5 sec duration
triangle. The top trace gives the real data (Heaton
and Helmberger, 1978). Our solution (b), which is the
summation of first five modes, shows a better fit of
the first P arrival at 12 second than Swanger and Boore
(1979). Again, the locked mode approximation (d) gives
a good match to the ray theory solution in the front
‘part of the record, but not in the rest.
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generated sufface wave seismograms after .summing the
first three modes ((b) in Figure 45) or all the modes
((c) in Figure 45) by eigenfunction programs. The match
of these seismograms to Swanger and Boore's result
(solid trace in 45a) is obvious. The agreement is
superb and the phase coherence is nearly perfect.
Furthermore, the seismogram from the locked mode
approximation ((d) in Figure 45) fits the first p
arrival of Heaton and Helmberger's solution (dashed
trace in Figure 45a) quite well, although the later
part of the trace seems not affected by the presence of

a rigid cap layer.

Similar conclusions‘can be drawn for the com-
parison using the Imperial Valley model of Table 4. As
shown in Figure 46, the result (b) of the present
method seems to be a better fit comparison of the
direct P arrival to ray theory solution than Swanger
and Boore obtained. The reason might be a longer time
window we have used to avoid the time aliasing. The
locked mode approximation, again, shows‘a good match to
the ray theory solution in the front part of the trace,
These results serve to further validate the present
method, despite the fact that various assumptions are
inherent in the other methods. 1In addition, the com-
parison of (b) and (c¢) in Fiqures 45 or 46 also reveals
thét the number of modes Swanger and Boore used to make

up their seismograms was sufficient.



CHAPTER VII

SUMMARY AND CONCLUSIONS

v

A detailed and complete derivation of wave
integral théory for studying wave propagation in plane
multi-layered media has been presented. The three-
dimensional wave propagation problem is formulated and
solved in the wavenumber-frequency domain. The layer
responses at any wavenumber and frequency are given in
terms of Haskell's layer matrices and the corresponding
compound forms. The formalism presented was shown to
be stable and accurate for computations. A contour
integration is taken over horizontal wavenumber so as
to automatically include all kinds of waves. A fast

Fourier transform then gives the final time history.’

The technique is not new. However, after a close
step-by-step development, several insights were
revealed. The most important was the £finding of sym—~
metfy properties of the layer matrix and its compound
counterparts., These properties enable us to build up
the relatioh of the present method with eigenfunction
theory and most of other‘currently used wave integral

methods.

Eigenfunction solutions as expressed in analytic
forms have the advantage of computational accuracy and

efficiency. The special cases of high frequencies and
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complicated models can be'handled without difficulty.
New procedures were developed to find dispersion
values. The eigenfunctions, energy integrals, and all
other excited variables of surface waves could be
evaluated with sufficient'precision. Furthermore, the
theoretical development also provided a rigorous basis
for classical eigenfunction theory. This in turn
opened a new, and potentially powerful method, which
can be used to extract more information about the wave

propagation through the earth,

The contour integration over the real branch cut
is a difficult part of simulating body wave-like sig-
nals. The variation of the integrand along the real-k
axis reflects the influence of leaky modes. After an
intensive study of this effect, we were able to design
a numerical integration procedure for this integration
path. We also found that body waves and surface waves
cannot be separated from each other. They are intercon-

nected.

To test the versatility of the eigenfunction pro-
gram developed, the 1locked mode approximation was
introduced to simulate the signals from the branch cut
contribution, Except for the computational speed, the
test was highly successful. This method is worthy of

further investigation.

One significant value of the present study is its
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ability to be extended to other methods. The reflection
and reflectivity methods can be easily derived using
the new system. As a',result, the reflection and
transmission properties of a layer boundary cah'be
easily decomposed. With an arbitrary choice of reflec-
tion and/or transmigsion at interfaces, theoretical
seismograms consisting of signals from a particular

portion of the layered structure were obtained.

Source functions characterized by any first or
sécond order point source were considered. A set of
five fundamental forms was forﬁed to represent all
kinds of signals possibly excited in the earth. This
expression, which isolates the direction-dependence in
the final solution, is specially' useful for focal

mechanism studies.

A new way to find the instrument tesponse, using
ieast-squares inversion of calibration pulse waveforms,
was developed. The method found the parameters which
directly represént the instrument responses, even
though the instrument-related constants are not given
directly. These inversion procedures were performed 'in
the time domain, and thus are easy to use. Finally, a
digital i-transfprm technique, which was used to intro-
duce the instfument effect in the time domain, was also

discussed.

To verify the theory and numerical extension, a
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set of three validation studies was provided. The
results of comparison to other known complete solutions

serve to lend confidence in our method.

Because the models treated are plane stratified
media, the present method can describe the wave propaga-
tion in the earth up to an epicentral distance, say, of
Bﬂﬂﬂ. km, BeYond this distance, the earth flattening
correction from Biswas and Knopoff (1978) or Chapman
(1973) should be considered. Furthermore, the disper-
sion curves for the models with an appére;t low velo-

city zone sometimes become extremely complicated. Spe-

cial care is needed to handle these particular cases.

An overall view of this wave theory system shows
its completeness and ease of adaptation. With the
advent of future computers, the method will become more
and more important, It is expected that the present
development and associated computer programs will prove
increasingly useful in 'various areas of theoretical

seismology and earthquake engineering.



APPENDIX A

Layer Matrix

The elements of layer matrix a are

Q3 =7y cosh vaz — (¥ — 1) cosh vpz

sinh v,z ¥

Qo = -
12 =k(y - 1) ” i

vg sinh vgz

Q
]
i

=k cosh v,z - k cosh vgz
p P

2 sinhy_z .
_k” 508 VaZ + 1 vg sinh vgz
P Vg P

Q14

sinh vgz
Qg = —%va sinh vez + k (y - 1) ——2=
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k l/p
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sinh vgz
Qg = —————

HVg .
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The ofher elements are found by
Qi = Ap-j5-i a
for i,j=1,....,4, and

Qi; = Q11-5,11-4

for i'j 5'6.
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APPENDIX B

Compound Matrix
The compound matrix E! used in the main text is

1

E 2 I - S
Lt 4k vayvan

CEMNE EE ENEEMNE BB E Iy

where

E*gE=E"
E3E = —pyp
E'-'1I3142, = Van- kz .

The compound matrix of layer matrix @ is a 6x6

matrix whose components are
a|lie=CcPCQ+1-allt
alis = (-CQX + k2 CPY ) /p

alw=[(1-CPCcqQ)(2y-1)+ ZeXZ + (7= 1) kWY ke /p
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12 12
aleg =0a |

ales = (K2 CQW - CPZ)/p

a st = [2(1 - CPCQ) k® + XZ + k* WY ],/0?

’ 2
alis=pl-(y-1)2CcoW + -,}ECPZ]

a sl =cPcq

al=(y-1)k cqw—%cpz

alsm=aly

als=WwZ

QR
"

~pL(1-CPCQ) Z(r-1)(27-1) + Lo XZ + (= 1)% Y]
alis=kiy-1) C'PY—%C‘QX

142(1-CPCQ) #(y—1) + g XZ + (y=1)% k2 WY

3
-
i

2 G»H:—l

Q
85
n

2
a!f§=p[cQX{—E—CPY(7~1)2]

ali=xy
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2 2
alis=p? [2(1—CPCQ)%§(7—1)2 + -k% XZ + (y=1)* WY] |

The other compdnents can be found by

ald=alsyes

where

kg
CPCQ = cosh v,z cosh vz
CPY = coshvaz' Y
CPZ = cosh vz’ Z

CQW = cosh vgz* W

CQX = cosh ypz' X

XY =X'Y
X2 =X Z
WY =wY
Wz =W Z
with
W= sinh v,z
Vq /

X = vy sinh v,z
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sinh Vgz

Vg

Y =

Z = vg sinh vz



APPENDIX C

Symmetry of Compound Matrix

Because of the particular symmetry existing in the
layer matrix a , and those existing between a , E and
their inverses respectively, we can reveal some
interesting properties of a compound matrix}obtained
from these two kinds of matrices, In this appendix,
these properties will be developed'in somewhat rigorous
mathematical terms for the compound matrices of order
two which are used here. The equivalence of the third
and fourth components of some of Haskell's compound
matrices will consequently become apparent. Some of
the propérties derived 1in this appendix were used

directly in the main text.

The special types of symmetry properties for the

compound matrix can be summarized by two definitions:
(1) If two compound matrices A,B satisfy

Al =pB|¥

L]

where p is a constant coefficient
and i e fﬁ:

12 & 34 13 o 24 14 o 23
23 e 14 24 & 13 34 o 12 ,

then A and B are called 'skew-~symmetric'.
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(2) If two compound matrices A,B satisfy
Al =pB|§HECE
then A and B are called 'S5-complemental’.

When B=A and p=l1, such symmetric properties are
called 'self skew-symmetric' or 'self 5-complemental’.

When B = A' and p=(~1)*i+k+ q, where q 1s a constant
determined from A, such symmetric prbperties are called
'inverse skew-symmetric' or ‘'inverse S5-complemental’.
'Self skew-symmetry' is just a property indicating the

symmetry of a compound matrix about its own skew diago-

nal axis if it is expanded in 6 by 6 form.

The compound matrix alﬁf defined in Appendix B is
found to be self skew-symmetric as well as self 5-
complemental. The 5-complemental property actually
comes from the skew-symmetry of the corresponding sim-
ple matrix ay , i.e., % = @s-j5-i . Now we can see
that the third and fourth components of a |} must be
equivalent in some manner., For example, the self skew-
symmetry of a!}f'is a|% and its self 5-complement is

aldf . Hence

aliff=alff=alit=ald,

where the last equality comes from the self skew-
symmetry of @|df . Besides this, the compound

matrix @ is also inverse skew-symmetric as well as
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inverse 5-complemental with coefficient P= (=1)i+i+k+
Hence we have

a.-llié{ = (~1)iH+kH g Igz = (—1)i+i+kHl g | BohBok = (—1)i+ivk+g |
The compound matrix @ has extremely good symmetry

properties,

Similarly, we find that matrix E defined in equa-
tion (II-1-13) 1is inverse skew-symmetric with p = (-
1)t+i*+lq and q = 4kPyqug,/p? . But it possesses neither
the properties of self symmetry nor the property of
inverse 5~complemental. With further investigation,
this compound matrix is found to be inverse 5-
complemental only for some of its components, which are
ij=12, 34 k1=13, 24 for E-'|§ , and ij=13, 24 k1=12,
34 for £ with p equal to (-1)"*/*+ times g or.1l/q
respectively. Other such properties occur for ij=14, 23
with p=-q for £-!|§ and kl=14, 23 with p=-l/q for
E4 . For example, £7'|{f and E£|¥ are both inverse 5-
complemental. Since these two are also inverse skew=
symmetric, their third and fourth components are

equivalent, i.e., E-!|ff=g~Y ¥ F|l=rF|8 .

With the properties of compound ¢, E and E!
revealed, it is not difficult to find that Haskell's
matrices R and X which are composed of E-! and a's,
behave as E', and Z which is composed of a's, behaves

as a. In summary,
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(1) R or X are inverse skew-symmetric.,

(2) RIFRIZRIFRIBZR|A RS and RTIPRERTRRH
R~Y% R4 are inversé 5-complemental (or X).

(3) 7z is self skew-symmetric and 5-complemental.

(4) Z2 is inverse skew=-symmetric and 5-complemental.



|

APPENDIX D

Perturbation of Surface Wave Energy Integrals

In this appendix, we will evaluate é%RI}E by
using the variational principles. First, the eigenfﬁnc-
tions are perturbed by varying the wavenumber k ‘about
its stationary value. In such a ?erturbation state, the
stresses at the free surface are small but not zero,

and still satisfy

KN = RBI

Ry Rya Rig Ry || ¢
R21 Roz Raa Rag 1
Rai Raz Rag Raq || Ty,
Ry Ry Ry Ry || Ty,

w > o o -

where the vectors Ky and B, have been normalized by Uy,

The first two rows give

Ty,

“leRIE+RIE]/RIZ

T.,= [eR|B+RIB]R| (D-1)

Note that & is not the same ellipticity as defined in
equation (III-1-4), since the system'is no longer in an
eigen state. If the system ié really being character-
istically excited, then T, =7, =08 and wé have the same

ellipticities as those in equation (III-1-4).
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Return to the differential equation (II-1-11)

dT
d; =-pU, +k T,
daT. k2 : -
= (P =55 ) U, — kaT, (D-2)
dU. 2
dzz =—IcaU,.+-°;\—aT,
al, ®
= - —T
= k\Uz i,
where
£=4g(>\+g)
A+ 2u
- A
G_A+2u .

Multiply the first equation of (D-2) by U, and
integrate it with respect to z from 9 to infinity:

a

zdzU,]dz

[ =pUE+ kU, T, + T

2
[ -pUR + kU,T, - koU,T, + %—OTZE ] d=z

Replacing the integrals by the summation over layers

represented by /;'s,
. o
-Ulezl =2 =pn(leg)n + k(124)n = kon (I 1a)n + o® Xn_ {({ 3a)n , (D-3)
n . :

where because of the conservation of energy, the radia-
tion condition requires that CQI and T,, vanish at
great depth. Similarly, the second equation in (D-2)

can be integrated to become

2 2
“UnTr = 3 ontnz) (i = k0uli0dn + £adn = 2 (1), (0-4)
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Multiply equations (D-3) and (D=4) by «~? and mutually

subtract,
_wa ( UTlel - Ulezl )

= £ [ on=tn 3 YU 1da + pnllzadn = 32 Usodn = “=Uaada] o,

In this equation, the terms on the right are nothing
but the Lagrangian of Rayleigh waves as given by equa-

tion (III-1-13),
“Qz (UrlTrlmUlezl) = LR = 5)2]0 - }szl - 2]612 - Ia . (D'S)

Since ali of the eigenfunctions are normalized (recall
our definition of the energy integrals in equation
III-1-18), Us, =1 and U, =¢ . The terms inside the
parentheses on the left side of equation (D-5) can be
further expanded after substitution from equation (D-

1),

Ur Tr, = Uz Tz,
=ely, = Tz,
[e(eR B+ R + (R +RII ]/ RIH

=[e®RIERIB+2erR | ERIE+RIZRIE]/(RIZRIE,

(D-6)

)

-
7 -

where we have used

Since -y
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equation (D-6) becomes

_RI#  [erI{E+R|HT
' R\ RIERIE .

eT, - T,

-
Substitute into equation (D-=5),

o | BRI  [eRIF+R|HE
R|i§ R R|F

- =C¢Ja[o'"k2!1—2k[2_[3 .
Because the system slightly departs from the eigen

state, it follows that a perturbation in k results in

9 paz
2 akR |12

—&J_—
R\

=—2k11"'2[2 ,

where we have set R|{#~0 and consequently & is very
close to the value defined in equation (III-1-4), hence
only the dominant term -gEleg is left., The group
velocity as expressed in terms of integrais (Jeffreys,
1961) has the form

11+ 12k

U: C.{o ]

The result, i.e., the amplitude factor in terms of

energy integrals, is obtained

RIE ¢ _ 1 1

IS B

D pipe® 2(lLi+l/k) 2cUI, .
ok 12

(D-7)

For the Love waves, the derivation is similar.

Start with the differential equation
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L= (pkt-pu?)U
Jdz v .

Multiplying both sides by U, and integrating, yields

=Ty, = =wblog+ k?Iy + I | (D-8)
Then from
Ky = R B

=R [ 1, Ty 1",
the perturbed stress T, is
Ty, == Rgs /' Reg

Equation (D-=8) becomés

Again, the right side is the Love wave Lagrangian,
After taking the derivative with respect to k, and put-

ting Rg ~0 Wwe have

k Reg _ 1 __ 1
G, 2l 2cUl (D-9)
a7 L+ 68
where the Love group velocity is just
I
U= — (D-10)
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which is obtained by simply perturbing the Love wave

Lagrangian.



APPENDIX E

Description of the Eigenfunction programs

To implement the eigenfunction theory as developed
in chapter III, several FORTRAN computer programs have
been set up uéing a DEC PDP 11/70 minicomputer in the
department of Earth and Atmospheric Sciences, Saint
Louis University. This appendix gives a brief descrip-
tion of these programs in order to facilitate their

utilization and maintenance.,

Because of the restrictibn of core size (about 60K
bytes), we divided the computationbinto five separate
programs which communicate via intermediate data files.
The data files are stored in a high speed, large volume
disc, The designation skeleton is inherited frdm
Herrmann (1974, 1978b), altho?gh the theoretical and
numerical techniques are modified. These programs are
suited, especially, to short peribds (less than 1
second) and complicated structures, Figure 47 shows
this sequence of programs and their input/output,
Table 5 lists the information to‘be used when running

these programs.

(1) surface8l: %his program searches for disper-
sion values over the range of phase velocity between
0.88mn and gy £for some fixed set of periods, It is

suggested that these periods had better be arranged in
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¢ garth model, periods, etc.

surface8l > dispersion values.

l--><ipsrf8], -——> display dispersion curves.

reigen8l

leigen8l source depths, Q model.

—— gigenfunctions, Ae., gamma.

L*dpegn81 — display dispersion curves, 4,, , gamma.

. print out values of L,,, eigenfunctions,
deriv8l derivatives, etc.

wig8l source time function, seismic moment,
epicentral distances, time shift.

gle8l |———instrument, source mechanism.,

memmmmmwdisplay seismograms.

spec8l |e——— instrument, source mechanism.

+ display spectrum.

Figure 47. Flow chart of eigenfunction programs.
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TABLE 5

Information for Synthesizing Seismograms

I. Sampling Information:

1. sampling rate, dt (sec):

2, total sampling point:

3. frequency range (Hz):

II. Wave Type:
1. Rayleigh or Love?

2. component (Z,R,T,NS,EW)?

3. waveform (disp.,vel.,accel.)?

III. Source Model:

1. source depth (Km):

2. seismic moment (dyne-cm):

3. source mechanism (dip,slip,strike):

L. source time function:

IV. Earth model:

1. velocity models

2. Q model:

V. Receiver:

1. receiver position (r,Az):

2. original time shift (t0):

3. instrument (LP,SP,model):
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equally spaced frequency (inverse of period) so that a
FFT can be used to transform spectral responses to time
domain without using any sort of interpolation, The
other input parameters are the structure which consists
of the thickness of each layer, f—wave velocity, S-wave
velocity and density. The number of layers and modes

can be as large as 500.

As pointed out in section 2.4, the search of poles
is easier to carry out in the wavenumber-£frequency
plane than in the phase velocity-period plane, The
reason is that equation (II-4-6) can give reasonably
estimated steps to progress for a particular mode dur-
ing the pole searching in the k-w plane. Figure 48
describes such a searching procedure. Note that the
jump steps are frequency, wavenumber and mode depen-
dence, In some cases, however, the dispersion values
vary quite abruptly near the various P and S-wave layer
velocities as illustrated in Figures 49 and 58. These
figures display the dispersion‘curves of the CUS model
at the high frequency range. The sharp bends and kinks
result in very irregular pole spacing at a given fre-
quency, which causes difficulty in pole searching. To
overcome this, two more constraints to the values pro-
vided by equation (II-4-6) are needed:

Ak min = ( Kmax = %min )/( 200 + 200 frequency )
Ak oy = 0.8 (k| modemm — k | mode=m—1) | at previous freq

These serve as the lower and highér bounds for the



JUMPING METHOD

N

tn
,--_--_-._

#n.2

Aw
¢

. Ac
Second jump: k=

First jump:

which is restricted by

Brgn < 655 < Mk

Dbmin = ( Kmax = kmin )/( 200 + 200 frequency )

Ak oy = 0.8 * (k |nwnle=m -

k |made='m.-—1 ) | at previous freg

Figure 48. Jumping method for searching poles.
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. P
value of -ﬁAc from equation (II-4-6), i.e., lf'-;A01s
c
greater than Ak, or smaller than Ak, Ak;meeOr Akpm, Will
be used to make several small jumps after the first

: )
jump Ao . This algorithm has been proved to be very

c
efficient. For most models the pole is usually brack-
eted after not more than three or four searching jumps.,
The result can be displayed and checked by a plotting
program 'dpsrf8l'. All of the <calculations in this

program are performed in double precision.

(2) reigen8l (leigen8l): This program computes the
eigenfunctions and energy integréls which in turn give
the group velocity, amplitude factor and attenuation
coefficient, Reigen8l is for the P-SV case and leigen8gl
for SH. To save data file space, only the eigenfunction
values at the source depth are stored. The source depth
can be entered as several different values, and the
output data for different source depths are stored in
different output files. A Q model is input at this
stage. The attenuation «coefficients are determined
using the perturbation theory of Anderson et al (1965).
It is' not difficult to incorporate any sort of fre-
quency dependent Q by slightly modifying the subroutine
'gamma' 'in this program (Mitchell, 1989, 1981). The
partial derivatives of phase velocity at different
- layer boundaries can also be stored for further study.
To check the result, one can either print out Ehe value

of the Lagrangian for each dispersion pair or use the
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program 'dpegn8l' to plot group velbcity, amplitude
factor, etc. For good results, the curves plotted
should be smooth, such as those shown in Figure 51. All
of the calculations in these programs are done in dou-

ble precision,

(3) wig8l: This program computes the spectra fof
stations at a given set of epicentral distances. A par-
ticular source time function needs be specified here;
In order to be able to treat long duration time series,
a separate program 'bigfft' which executes FFT is
involved. These two independent programs are connected
by a 'system'call'. Using this, the longest time series
which can be created is 8192 points long, whicﬁ is.the
largest dimension allowed in program 'bigfft', In
other programs only a vector with length of at most
1824 points is permitted., A lineqr intefpolation is
applied to generate enough data for spectra before tak-
ing the inverse Fourier transform, if necessary. The
spectral data corresponding to different fuﬁdamental
source types as listed in section 5.1 are generated and
stored. The contributions from different modes can be
separated as those used for higher mode study (Cheng

and Mitchell, 1981).

(4) gle8l (spec8l): The program 'gle8l' reads the
spectra data created in the previous program and gen-

erates the seismograms for each component at each
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receiver location after calling ‘'bigfft' to take
inverse FFT. The seismogram is then displayed by a
plotter. The program 'spec8l' just reads and plots the
spectra data. The focal mechanisms, as well as the
receiver azimuths, are entered to take into account the
directivity dependence. Several instrument responses,
long and short periods, are included to take into

account the instrument effect.
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COMPUTER PROGRAMS

The computer programs listed here represent substantial improvements
to those given by Herrmann (1978b). All programs are written in
FORTRAN 77 and are run on a PDP 11/70 under the UNIX* operating system.
This system makes use of the separate insﬁruction and Data space
feature of the PDP 11/70 processor. Thus éven though the PDP 11/70
is a 16 bit minicomputer, the text and data spaces can each be as
large as 64 K bytes. However, because of the size limitations of
even this machine, one program of Herrmann (1978b), wiggle, was
split into two programs, wig8l and gle8l. Double precision is
used: which means thatba floating point number uses 64 bits, or
has about 16 significant figures.

The only non-standard usage is the
call system ('bigfft', kturn)

Under UNIX, this permits one program to initiate another program
and waits until that program completes before proceeding. The
program bigfft performs a Fast Fourier Transform of length 2n by
performing a Fast Fourier Transform of length n using the constraint
that tHe‘time series is purely real. The analog of "call system"
may not exist on other computers, but then those computers may be
more than 16 bit machines and hence the subterfuge used here may be
removed by replacing the sequence of writing, reading and closing

N

temporary files with array access and the '"call system' by a

%UNIX is a trademark of Bell Laboratories.



"call bigfft" where "bigfft'" is now a subroutine rather than a

separate program.

The plotting programs make use of subroutine calls to a

CALCOMP* plotter.

CALL
CALL

CALL FACTOR
CALL
CALL
CALL

NEWPEN
SYMBOL
SYMBOL

CALL NUMBER

CALL

CALL

CALL

*CALCOMP is a trademark.

These are

PLOTS (0, 0, LDEV)
PLOT (X, Y, *IPEN)

(FACT)

(INP)

(X, Y, HEIGHT, ICHAR, ANGLE, + NCHAR)
(X, Y, HEIGHT, INTEQ, ANGLE, -LCODE)

(X, Y, HEIGHT, FLOATNUMB,

SCALE (ARRAY, AXLEN, NPTS, *INC)

LINE (XARRAY, YARRAY, NPTS, INC,

open plotter .
move plotter to X,Y
with pen up (IPEN=
+3) or pen down
(IPEN=%2) and reset
origin at new position
1f IPEN=negative
multiply all
movements by FACT
use pen INP

write
text array
plot symbol INTEQ with
pen up/down, ICODE=-1/-1
during move
ANGLE, *NDEC)
write number at X, Y
define
FIRSTV ARRAY (NPTS+1)
DELTAV ARRAY (NPTS +
INC + INC +1)

AXIS (X, Y, TITLE, *NCHAR, AXLEN, ANGLE, FIRSTV, DELTAV)

plot axis with label
LINTYP, INTEQ)

draw line with/without
symbol at each point
FIRSTV and DELTAV

must be defined for each
array
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Eigenfunction Programs

surface8l .

dpsrf8l .
reigen8l.
leigen81.
dpegn8l
deriv8l .
wig8l .
gle81 .
spec8l.
bigfft.

.

19
2k

. b3

52
57
59
72
86

.100
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program surface®l. §
£77 -1 ~12 surfaceBl. £ o surfacedl

This program calculates the dispersion values for any
layered model, any frequency, and any mode.

This program will accept one liquid layer at the surface.
In such case ellipticity of rayleigh wave is that at the
top of solid array. Love wave communications ignore
liquid layer.

Program developed by Robert B Herrmann Saint lLouis
univ. Nov 1971, and revised by C. Y. Wang on Oct 1981

All processes ares performed in the wavenumber—-frequency
domain.

CCCEf:fCCCL‘.’CCIICCCCCCGC’:f.fCCECCCCCCCCCCCCCCCCZCCCCCCCCCCCCCCCCCCC

INPUT:

1. mmax,mode (eg. 2, 1000)

~mmay: 20 number of layers including halfspace
20 end program
=0 use previous model with new options
~mode: number of modes for which dispersion curves
are desired. (1000 is the maximum)

2. d(iY,adi),blid,rho(i) (eg. 40.0,6.15,3.55, 2.8
i=1, mmax 8.09,4.67,3. 3 )
~-d{i}: layer thickness (km)
~ali}; P wave velocity (km/sec)
-b(i): S wave velocity (km/sec)
-rhod{i}; density (gm/ocm3)

3 digphl,igphr,icut,idispl, idispr.ipunch
(E‘g. 1:1;111:1/113.0)

~igphl =1 Love wave perviod squation plot
» =0 not plot
~igphr =1 Reyleigh wave period equation plot
=0 not plot
—-icut =1 find the cutoff periods of Love and
Rayleigh waves.
=0 not
~idispl =1 find the dispersion values and amplitude
factor for Love wave
=0 not

~idispr =1 find the dispersion values, amplitude
factor and ellipticity #for Rayleigh wave
=G not
~ipunch =1 store and print the output of dispersion
values.



10
20
20

40

=0 store the dispersion values only
=~-1 print the dispersion values only

4. if igphl or igphvy =i}
kk,cl,c2 de
t(i) i=1, kk {eg. 10,3.95,8.1,0. 1
1,2:3, 4,5, 6,7,8,9,10 )
~kk: number of periods along abscissa
~¢1l: lower phase velocity limit
—-¢2: upper phase velocity limit
~de: phase velocity increment

~£(i): periods for which period equation is computted

5. if dcut =1
kmax, ti.dt. cl (eg 4,18. 0,-0. 2, 4. 467)

~kmax: numbher of cutoff periods to be found for ¢l

e initial period of search

~dt: periopd increment (can be negative)

~cl: phase velocity for which kmax cutoffs are desired

&, if idispl ovr idispr =1

kmax, t1l,dt, cd

it ti=0 0

t(i}Y i=1, kmax (eg. 10,0.0,0.0,3. 5,0 005
1,1.8%,1.5%,1.75,2.0,2.25, 2 5,2.75,/3.0,3. 9 )

~kmax: number of periods for which phase velocity
to be found
~t1: =0.0 the arvay t(i) i=1, kmax are read in
20.0¢ initial period
~dt: period increment t(id=ti1+(i~-1)%dt will

,be generated
~¢l: initial phase velocity guess. better =0.8Bx#b(1).

~£ (it A(only when t1=0.Q)
kmax arvay of periods at which dispersion are
calculated.

7. if dpunch =0

name of Love wave output file (if idispl =1)
name of Rayleigh wave output file (if idispr =1)

8. stop the program (use ~1,0)

or go back to I for other models,

1o ol o o M O i o o i b VW O ol S Ol o VA S A O o o ol o o o o ool il O o o o o o o vl o oo ol it o

common d{3CG0), a(3C00), b(300), rho(300), mmax, ipunch
common bt {4096}, c (300}, mode, 11w, twopi

format(ih , Bx, 4Ff10. 4)

formatilih 15y, 2Ff10. 4)

format ("W E )

format(/, 1h ,1%y¥, ‘crustal model lth )
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[n]

S0

1OG

300

400

format(ih 7%, ¢ thick p—~vel s-vel density’'//)

twopi=2, #3. 141392453

writal{d, #) ‘enter mmax{layers), mode(modes)’

read (3, 4 :mmax, mode

rmax = number of layers to be vead irn, including
the halfspace.

mode = number of modes for which digspsrsion curves are
desired can be as large as 1000,

ifimmax} 400, 300, 200

continue

l=mmax-~1 .

d = thickness of layer in kilometers

a = compressional wave velocity in km/sec

b = fransverse wave velocity in km/sec

rho = density in gm/cc

write(é, ¥) ‘enter d.a,b,vho’

do R20 i=1,1

read (S, #)} dli),a(id, b(iY,rholi)

continue

raad{3, % almmax}), b{mmax), rho{mmax}

write (&, 20}

write(é& 40)

writel(é&, 301

1lw=1i

ifib{l) le G . 0O) llw=2

do 240 i=1.1

writel(&, 10 diid,alil, blid,.rho(i)}

write(&, 20) al{mmax) b{mmax), rho(mmax)

continue

d(mmax)}=0.0

writel(b, ) "igphl, igphr,icut, idispl, idispr.ipunch’

igphl gt O calls love wave dispersion plo¥

igphy gt O c¢alles rayleigh wave dispersion plot

icut gt ¢ ralls seavch for love and rayleigh higher

mode cutoff

idispl 2% © love wave dispersion curve
idispr g% O rayl wave dispersion curve
ipunch #2gq 1 store and print the dispersion values

-1 print the dispersion values only

read (3,43 igphl,igphvr,icut,idispl, idispr, ipunch
if{igphl. g% C. ov. igphr. gt. 0) call gphdis(igphl, igphm}
iflicut, gt. 0 call cutofs

if(idispl. gt. O, or. idispr.g%.0) call disper(idispl,idispr)
go Lo 100

continue

stop

and

H
q
rqg O s=tore the dispersion values only
1
3

swbroutine gphdisCigphl, igphv)
doubleprecisinon wvno, omega
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common d(ﬁoo),a(SOO).b(SOO),rho(SOO):mmaxe1punch
common £(4094), c (300}, mode, Lluw twopi
character#l num(iC), ks (&0), kx (&0)
data num/ 17, ‘2", 3,47, '6, T 827, e, N/
This subroutine graphically displays the sign of the
love or vayleigh wave period equation in the c¢—t plane.
The dispersion curve is the line of zervoes.
aphdis reads in up tp 59 different periods to form
abscissa of plot. :
The ordinate varies from ¢l teo ¢2 in 1ncrements of dc
kk is the number of abscissa value%
¢l is less than c¢2
dc is positive
10 format('\§")
20 format(Sy, ‘period for abscissa of following graph’//)
3¢ format{lx, 12013, f7.2))
40 format(19x, ‘plot of love function’//)
30 format(1%x, ‘plot of vrayleigh function’//)
&0 format(2x, £8. 4, 59(al, al))
write(h, #) ‘gphdis—kik, cmin, cmax, dc’
read(3, %}  kk.cl,c2, dc
write(&, #) ‘enter periods’
read (3, #)  (ECi), i=1, kk}
if(kk. gt. B9F kk = 59

iflde. 1%.0.0) do = -d¢
iflcl. 1% ¢c2) go to 10O
dum = ¢l
cl = ¢2
cad = dum

100 continue
write (&, 103
writel(h, 200
write(H, 30 (i, (1), i=1, kk)
do 700 ifunc = 1,32
ifidec. eq. 0.G) go te 700
go to (2G0,300!, ifunc

200 if(igphl. 1le. 0) go to 700
write(h, 10
write (s, 40)
go to 400

300 if(igphr. le. 0} go to 700
writelé&, 10)
write (&, 30}

400 cc = 2

500 do 60Q i=1,kk
omaga=dble(twopi)dble(t(id)
wvno=omaga/dble(cc)

del = dltar{wvno, omega, ifunc)
1 = mmax
116 = 1/10

1 = 1 —~ 110%#10
ky{irs=nym(l}
ke (iy="4%"
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if{del. 1. 0.0) ks(iy=", -
if(dal. 1%.0.0) kx({ij)=" *
600 continue
write(sd 400 co (hs(1), kx (1), 1=1, kk)
£ o®m oge - de '
if{cec.ge ¢l go to 500
700 continue
return
and
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subroutine cutoff
double precision wWVNGo, omega, c¢
common d(SOO),a(BOO),b(SOO),rho(SOO):mmax,ipunch
cammon £(40%6), c (300), mode, 11w, twopi
kmax = number of cutoff periods %o be found for pbhase
velocity ci.
t1 initial period in search
dt = period increment negative if starting at high
period and geing toward shorter period
¢l = phase velocity for which kmax cutoffs are being found
this routine finds both love and rayleigh cutoffs
10 format('\f'//) 4 '
20 format(///16x, ‘higher mode cutoff periods "/ /17x,
1 love v 23%x, 7 rayleigh //72(11x, ‘period’, 10x,
2 "ph vel i1//7) :
30 format(ih 1 7xe #1004, 6%, £10. 4, 7x, F10. 4, 6x, £10. 4)
write(& #) ‘cutoff-enter kmax,tl,dt,ci-”
read (3, %) kmax, t1,dt,c}
ce=dble(cl)
write(é, 10)
write (& 200
th=¢1
do 7C0 ifunew=i, 2
do &00 =1, kmay
tcut=0. O
Ti=tt{
omega=dble(bwopi)/dble(tl)
wvno=omagalcc
dell = dltar(wvno, omega, ifunc)
10¢ continue
t2 = €1 + d¢
if(%2. 1e.0.0) go %o 700
omzga=dble(twopi/dble(t2)
wvno=gmega/ce
del2=dltar(wvno, omega, i func) :
'iF(gign(i.,dell).ne.sign(l.,delﬁ)) go Lo 200
t1 = 2
dell = 4812
go to 106G
200 ifiabs (&1 - Y o= GUQ001) 500, 500, 300
300 £2 = (%1 + £2) =% 0.5

i}
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400

200

600
700

omega=dble(twopi)/dble(t3d)
gvno=omega/cc
dnl“ = dltar(wvno. omegaplﬁunc)
iflsignii. ,dell) ne, sign(l.,deld)) gn %o 400
t1 = 3

continus

tcut G 5#(E1+%2)

if{t2. 1e.0.0) go to 700

foks=

ifCifunc. eq. 1) t(g)=tcut
if(ifunc, eq. 2) t{j+300)=tcut
continue

continus
write(H, 30 (HC 3, cl, £y+500), ct, y=1, kk)
return :
end

subroutine disper(idispl, idispr)

double precision omegaC, omegal

douvble precision eroot(500), cphase(300)

common 4 (3001, a(H00), b(300), vho (300, mmax, ipunch

common £(409&), c (500, mode, 1lw, bwopi

commons/stor/ evoot(500), cphase(500), nlost, index, nrootl
character#23 names

the vroot determination section is one of interval ha1v1ng
once a zero crossing has been found.

the number of modes i3 allowed to he as large as 300,
and the number of periods as 40%6.

ti = initial starting period :
kmax = number of period s for which phase velocity is to
be determined

if t1 = O program reads in avray of (i} periods instead
nf computing them

dt = period increment. next period 2 = $1 + d¢t

£l = initial phase wvelocity guess. make surse it is
oukside desirved resuli

format(a)l

format(ix, ’ improper initial value no zero found "
write(h, #) ‘enter kmax,tl,dt,cl ; t1<=0 to vead in avray’
read{3, %} kmax, ti,dt, cmin

ifFCt1.g%.0.0) go to 100

write(s&, #) ‘dispev—enter kmax periods’

read(3, %} () y=1, kmax)

go to 200



100 £(1) = t1
do 13C i =2, kmax

150 t¢(i) = £{i-1) + d¢

200 continu=
if(ipunch. 1% . G) go to 400
if(idispl. le. O} go to 300
write(&, #) ‘enter name of Love wave output file:
read (3, 3} names
open(ilFile=namea,statusm'new’,Formx'unFormatted’)
rewind 1

300 continue
if(idispr. le. 0} go to 400
write(d, #) ‘enter name of Rayleigh wave output file:
read (S, 53 names
_open(g,Fileﬁnames,statugn’nem’,Fovmm’unﬁormatted’)
regind 2

AGOC continue
open(E,Filez’tmparP.d’,statugs’acratch’,fovmn’unPormattad’)
do 2000 ifunc=1,2
ii = 1func
nlost = O
index G
do 300 i=1, 300
c(i)=0. 0
eroot(i)=0 0
cphase(i)=0.0

500 continus
rewind 3
if(ifunc. eq. 1. and. idispl. le. 0} go to 200C
if(ifunc. eq. 2. and. idispr. le. 0) go to 2000
nrootl=1G00
do 1800 k = 1, kmax
t1 = t{k}
omegal=dble(twopi)/dble(tl)
ifik. gt 1) pmegaO=dble (twopi)/dble(t{k—-1)?
index=index-+1

CXXXEXXK
kmode=C
call poles(ii,omegad, omegal, cmin’
kmnde=nrootl
CXXXYAKNK

it(k. eq. 1. and. kmode, eq. Q) writeléH, 100
if(k. anq. 1. and. kmode. eq. ©) go to 000
if(k. eq. 1} lmode=kmode
write(3) ifunc, kmode, £1 -
do 1730 i=1, kmode
co=pmegal/eront (i)
write(3: c«

175C¢ continue

' im=-1
tmp=0.0
ifik. eq. kmax) write(3) i,1i,tmp

1800 continue

2

7

41
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18&0

1900

2000

10 format(///13x, Love wave

1

call output(ifunc, Imode)
iflipunch. 1t. 0} go to 2000
write(ifunc) mmax

do 1810 i=1,mmax
write(i1funcy dlid,a(id, bCid,rhaoli)
continue

writel(ifunc) kmax

raylind 2

continus

read(3: ifun, kmoda, t1
write(ifunc) ifun, kmode, t1
if{ifun. le. Q) go to 1900
do 1860 i=1, kmode

read(3y cO

writel{ifunc) 0

continue

go to 1850

continue

close(ifunc)

continue

close(D, status="delete’}
return

end

sybroutine outputlifunc, lmode)

common d(500), a(S00), b(500), rho (500}, mmax, ipunch
common £{409&}), ¢ {300), mode, 11w, twopi

mode #°,13//21x,

! period phase vel )

20 formatilh 12y, 13 1x, #1510, 2x, £15. 109

20 formak(///14x, ‘Rayleigh wave

1

que #7,i3//21x,

’ pegriod phase vel"’)

8¢ format(/\NF)

106

+*

write (4, 30)
write(&, &)
Imnde

number of modes at the lowest period

nm=0

cl=b (mmax’

continue

nm=nm+1

ifinm gt lmode? go to &00
iflipunch. na. G and. ifunc. eq. 1} write(& 107 nm
itlipunch. ne. ¢ and. ifunc. eq. &) write(s, 30 nm
rewind 3

nE=0

do 200 i=1, 5300

c(i)=0.0

continus

k k=0

continua

read{3) ifun, kmode, t0C

4

}
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300

&00

2000

20

if(ifun) 450,300, 300
continue

nt=nt+1i

do 400 i=1, kmode

read(3) ol

i#{i. ne. nmr g2 bo 400
cint =g

kk=nt

continus

go to 250

continue

if(ipunch. eq. O) geo to 100
write(s, 200 (i b(id,c(id,i=1, kk?
go to 100 ‘
continue

return

and
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subroutine poles(ifunc, amegal, omega, cmini

double precision eroot(500), cphase(300)

double preciszion omegaQ, omega, dk, domega, dkO, tadd
double precision wvan, wymx, cl, €2, ¢3, ¢4 s, & vphase, dc
double precision wvm(300),cl0

cammon 4(500), a(500), b{S00), vho (500}, mmax, ipunch
common perd {40961, c (500}, mode, Llw, twopi '
rommeonsshor/ eroot(S00), cphase(S00), nlost, index: nrootl
this routine finds the vroots of period equation using
regular halving method to initialize the first two
frequencies, then followed by Jumping method.

epi = 1l.a-B

freq = omega/twopl

wymy = omega/dblelcmin)
wymn = omega/dbleib(mmax))

nmx=200 + {(freg*l00)

di = {wvmy-=wvmn)/ nms

if(nlost. eq. 10C1) go to 2000

ifdindax, gt. 27 go to 3000

continue

find the poles vsing the regular halving method

nmy is chosen for & 40 km crustal model. for shallower

thickness a proportionately emaller nmyx can be vsed

saarch for vookts of period equation

ifl{index. gt. 2) write(bs, #) ‘—at period=’, twopi/omega,
* return halving method. '

do 80 i=1llw, mmax

wvm(id=omagasdble(b(i))

continus

nroot = &

€2 = wvmy

del2 = dltar(cz2, omega, ifunc)



x

lyr=llw

3=l 4

do 3C0 i=1, nmx

Jy=gg-l

ity ). ne. Q) go Lo 500

clQ = wvmx—i%dk

1f{i. 2q. nmx} ¢10=uvmn+0. Ol#dk
Jy =1

bk = 1§

Cif(ciC gt wvm(lyr?)) go to 20

{0

1006

150

200
230G

350

4G0
300
910

kk and 45 represent & denser seraching when phase velocity
= 9 wave velocity., Their values can be changed as kk=3%lyr
J =8

kk = 10 C#(al(lyr+iy/allyr))+Q S#lyr

lyv = lyrv+il

o= 3

continue

dkO = dk/Fleat{kk:

do 400 y=1. 4y

do 400 k=1, kk

ifinroot. eq. mode?) go to S1C

Jk = kk#{gy-1)+k

¢l = ci0+dk—dkO%float( k)

ifdct. 1t wvmn) go to 510

dell = dltar(cl, omega, ifunc)

if{sign{l. O, delll#sign(l. O, del2). ge. 0.0) go to 350
nroot = aroot + 1

cd = ¢ :

deld = delld

do 200 ii=1,15

€3 = O S#(cl+cd)

delld = dltar(c3 omega, ifunc)

ifisign(l O, delil#¥sign(l. O, del3). ge. 0. 0) go to 100
deld = dal3

cd = 3

g to 135G

dell = de13

el = ¢3

continue

iflabs(od-ci) 1L . 2pi} go to 2506

continueg

continue

cd = O S#(cl+cd) :

iflindex. eq. 1) vphase(nrootl=omegascd

ifinlost. eq. 1) vphase(nroot)=omega/c3

erootinrnot) = o3
2 = ¢l

deld = dell
continus
continue
continua
nlost=nlost+1000C
go Yo 1230
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300G continue
the jumping method.
if thisz wmethod fairls, the control will veturn
tom the regular halving method.
XX XXX
nroot = O
ifinrontl. eq. O go to 1200
dk0=0. 25*d¥k
domega = omegal-omega
eroot{nrootl+l)=wvmm
ifinroonti. eq mode? erooﬁ(nroot1+1)meromt(nrmotl)wﬁ.*dk
nlast = 0
do 120G i=1,nrootl
g = srootli}
vphase = omegal/s
£ = -~damega/vphase
de = vphase-cphase(i)
tadd = -dc#g/vphase
dc = g-eroot(i+l)
¢l = dabs(tadd)/tadd
ifii.eq 1) go to 320
ifidabs (tadd). 1t. dkC) tadd=ci#dkl
ifidaba(tadd). gt. dc) tadd=cix#0. Ssdc
continue
<2 = gl
notrl 5
i4rig

43
nl
<

[{I ¢}

G
iF(ilgt.1.and.c9.ge.eromt(i~1)) itrig=l
if(itrig. eq. O} go to B30
ifidabs (tadd). 1¢. dk0) tadd=clx>dkO
1 vroots are duplicated, a covrvection might be done here.
2 = eronk{i-13-0 l#abs{dc)
nctrl = 10
530 conbinue

-
F

ca+tadd
ihalf 20
neont O

550 if(c2 le. wvmn) go to 1230
del2 = dltar(c2 omega, ifunc)
ntest = O

00 iflcl. 12 wvmn) gon to BOOQ
deli = dltar(ci, omega, ifunc)
i?iaign(i.oldell)*sign(i.o;dela).le.0,0) go to 80
ntest = ntest+l
ifintest. ge. nctrl) go %o &850

B

<

dpld = dell
Ce = ¢l
vl = ril+tadd
go to H00
450 nront = ncontrd

an Lo (700, 720, 750, ncont
700 continus
This i: another kind of Jumping procedure, whigh 1%

..11»..



a remedy when the first yjumping method fails.
ithalf = 20

tadd = o—de /a0, d+00
gy = G
petrl = &40

if(i.eq. 1) nctrl = 105
ifCitrig. eq. 1) c2=eroot(i-1)-0. 7#dk
go to 744
720 continue
if(itrig. eq. 1) go %o 730
if{i.eq. mode) go %to 1200 :
This is the thind kind of jumping procedure.
tadd = 0. 25%%
ce = g+Ladd
if(i.eq 1) go to 730
if(c2. 1% evoot(i~1)}) go to 730
tadd = —abs(s+L~eroot(i-1))/4.
c? = eroot(i-1)+tadd
730 continue

nctrl = 3
: ihalf = 100
740 ¢l = r2+tadd
go te 350

750 nlost = nlost+i
If all jumping methods fail, it goes back to the regular
halving method.
go to 2000

800 cl = wvmn+0, Olxdk
dell = dlitar(cl, omega, ifunc)
ifisign(l.0,delly#sign(l.0,del2) le 0. 0) go %o 850
go Lo 12306

850 ¢4 = oo
gald = dell
do 1000 ii=1, ihalf

o3 = (. 9% (ci+cd)
deld = dltar(c3, omega. ifunc)
iflsign(i. O, dellild4sign(l. O, del3d) .ge. ¢.0) go to 200
deld = delld
4 = 3
gon to PI0
P00 dwll = deld
cl = 3

980 ceontinue
ifiabsicd-cly. 1t opi) go to 1030
1000 continys
1050 continus
cd = O Ba{clrcd)
nroot = nrpot+l
grpot{nrootr = ¢3
cphaseinroot) = vphase
1200 continuse
1250 continuse
ifinroot. gt. nrootls nroot=nrootl
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3

nrooti=nroot
return
anid
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function dltar(wvno:, omega: kk)

double precision wvno, omega

common 4 (500), a(500), b(300), rho(500), mmax, ipunch
common t(409&), £ (300), mode, 11w, twopi

go to (10,200, kk

love wave periocd equation
dltar = dltari(wvno, nmega)
refurn

rayleigh wave peviod egquation
dltar = dltard(wvno,omega)l
return

end

te wm e mr wm em ae e ww m wm ms e s e s e e e e e SR T [

function dltarl(wvno, omega’

double precision »noT, ynor, wvno, omeqa

double precision wvno, xkb, rb,el, e, xmu, q» rhol, betal
double precision sinq,cosq,g.z,exqp,exqm,EIQ,eEO
haskell—-thompson love wave formulation from halfspace
to suvrface, :

common 4(500), a(S00), b(500), rho {300}, mmax, ipunch
common d1 (40963, d2(500), mode, 11w, twopi
WYNo2=wynokwvng

batal=dble(b{mmaxi)

rhol=dblel(rho{mmax))

ykb=omega/betal

rh = dsgqrt(dabs(wenoZ-xkb#xkb})

pi=rholsrb

a2=1. d+00/(betalxbetal)

mmmi = mmax - 1
do H0Q m=mmml, Llu, ~1

betal=dble(blimi?
rhol=dble(rho(m))
ymu=rhol#betalstbetal
skb=omegasbetal

rh o= degqet(dabs (wenoZ-xkbixkbi)
g = dble(dim))4rhb

it (wvno-xkby 1C0, 200, 30C
sing = dsindq?

y = singdrh

1 = —pbh#sing

cosq = doosiq)

go to 30OC

cosg=l, Od+Q0
y=dblel(d{m};

- 1“3 .
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z=(. Od+00
go to 500

300 continue
ifi{gq. gt. 40. ) go to 4GO
exqp=dexp(q)
exqm=1. /fexqp
sing = (exqp-exqm?}/2.
y = sing/srh
: = sing#rh
tosg = (exgqp + exqmi/2.
go to S50G

400 continue .
y = 0. 5d4+00/7b
z = G, 5d+00%rb
cosq = 0O, 5d4+00

300 continue
elO=el#cosqgtredsdxmuysty
e20=elty/ xmuteitcosq
xnor=dabs(el10)
ynor=dabsg (20}
if{ynor. gt. xner) xnor=ynor
if{xnor, 1t. 1. d-30) xnor=1. Gd+00
gl=el0/xnor
e2=20/xnor

600 continue
dlitari=el
refturn
end

#
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function ditard4(wvno, omga?

double precision =2(5),2e(9),ca(B, 3}

double precision wvno, omga, omega. wvnod, thol
double precision xka, xkb,ra, vb, t: gam:, gammk, gammil
double precieion sxa,p,q.dpth, w, wh cosp, cv
double precision alicpecq Cpy,CPpz, CqQu: X, 8y, X2, WY, W
comwmon 4(500), a(500), b(300), tho (300, mmax, ipunch
common par (4094), (500}, mode, 11lu, twopi
common/aovrflw/ aC.cpocq.epy . Cpz, cqQu, COx, XY, XZ, Wy, w2
GMRga=0mga

if(omega. 1t 1. CGd-3) omega=1, 0d-9
wvRo2EuvnoRduvnn

xka=omega/dble(a(mmax))

xkb=omegasdble(b{mmayx))
ra=dsqri{dabs(wvnol-xkas#xkal)

rh=dsqri{dabs (wvno2~xkb*xkb))

£ = dble(b(mmax)) omega

gammk = 2. #t¥g

gam = gammk*wvno

gamml = gam - 1.

rhol=dblel(rho(mnax?)
alil=rhol#rhol#{(gammi#gamml~gam#tgammk#ras#rb)

- {4 -
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100

200

300
50C

600

g(2)=—-rhol¥*¥ra
e{3i=rhol*{gammi-gammk#*ra#rb)
a(4d)=rhol#rb

g {S)i=wvno2-ra%rd

matrix multiplication from bottom layer upward
mmml = mmax-1 '
do 50C m = mmmi, 1lw, -1

xka = omega/dblelalim})

xkb = omegasdblel(bm))

t = dhle(b(m))/omega

gammk = 2. #L@»f

gam = gammk¥*wvnoz

ra = dsqri(dabs(wvno2-xka%¥xkar)

rb = dsgri(dabs(wvno2-xkb#xkb1})
dpth=dble(d(m?}

rhol=dbla(rho{m})

prra%dpth

g=rb#dpth

hata=b(m)

rall vav(p,q«ra,rh;mvno,xka,xkb,dpth,w,cosp,exa,beta)
call dnka(ca,wvnoz, gam, gammk, rhol)

do 20¢ i=1,5

cr=0, 0d+00

‘do 100 j=1,5

cr=cr+e( jiscaly, i}
continue

ge(il=cr

continue

call normciee, exal

do 30C i = 1,9
el(i)=ee(i)

conftinue

continuse

wh = 0.¢C

if{1llw. 2q. 1} go Lo &GO
xka = omega/dblelal(l})
ra = degri(dabs (wvno2-xkatxkal)

dpth=dble(d{1}}

vhol=dble(rho(l}

p = ra*dpth

bata = b{1)

call varip.q ra,vb,wvno, xka, xkb, dpth,w. cosp, exa, beta)
wO=~rhol#*w/cosp

continue

dltard=e (1) +wl#e(2)

return

By

R [ P T T U L e T ]

subroutine var(p, q ra,vb, wyno, xka, xkb, dpth,w. cosp, exa, beta)
double precision p,q.ra,vb,wvno, xka, xkb, dpth
double precision w, %, Y, z,cosp,cosq,sinp,sing

- 15 -



double precision exa,expp, expm, exqp, exqm
double precision a0, cpecq/ocpy,cpz,cqur cqx, Xy, X2, wy, w2
common/ovrfluw/ ald,cpeq,Cpy, cpz, g, £QX. XY, X2Z: WY, we
axa=C, 0d+00
a0=1. Gd+G0
if{wvno-xkal) 1560, 200, 300
100 sinp=dsin(p}
w=sinp/ra
g=-ra#sinp
cosp=dcas(p)
go to 300
200 cosp=1. Gd+00
w=dpth
=0, CGd+00
go to BGO
300 if(p.gt. 40.0) go to 400
expp=deaxp(p}
axpm=1. fexpp
sinp=(expp-expm)4G. 54+00
cosp=(expp+axpm}*0 3d+00C
w=sinp/ra
x=ra%¥sing
go to 500
400 exa=p
x=ra#0. Sd+0Q0
w=0, 3d+00/ra
cosp=0. 54+0C
a0=0. 0d+Q0
if(exa. 1%. 70.0) aC=1. /dexp(exa)
500 continue
ifibeta. 1t. 1 e-5) return
iflwvno~-xkb) &G0, 700, BOO
600 sinq=dsin(g} =
r=-rh#sing
y=sing/vbh
cosq=dens(q)
go to 10GO
700 cosq=1. 0d+Q0
y=dpth
1=0, Od+QG
90 to 1000
800 ifl(q.g%.50.0) go to 200
exqp=dexp(q)}
exgm=1. /exqp
sing={(exgp-exqm)*Q. 3d+00
cosq=(exgptrexqm)*0. 3d+00
y=sing/rh
1Erb#sing
go to 1600
00 y=C, Sd+00/vh
1=0 Sd+00%vh
cosq=0. 3d4+00
pra=gra+qg
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1000

10

a0=0. 0d+G0
if(ara. 1t 70. Gy aO=1. /dexplexa)
continus
cprqTcospHcosg
CPpY=Ccospiy
CPpI=COSpHL
Xy=xHy

Xz=x#7

wy =Wy

WE=WHE
CQW=CcosqH*u
cqx=cosqix
raturn

end '
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subroutine normci{ee, eax)

This routine is an important step fto control over— ov
underflow.

The Haskell or Dunkin vectors are novmalized before
the layer matrix stacking.

Note that some precision will be lost during normallzatlon.

double precision es{3),ex, tl, ¢t

ox = Q 0d+00

£1 = 0. 0d+00

do 1CG i = 1,95

if{dabs{ee{i)). gt. t1} t1 = dabs(ee(i})}
continue
ifltl. 1%, 1 d-
do 20 1 =1,b
t2=pe (i}
ta=t2/4%1
aal{li=t3
continue
ex=dlogl{tl)
refturn

end

-30) t1=1. d+00
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subroutine dnkalca, wwnod, gam, gammk, vho)

double precision cal(3 9}, wvno2d, gam, gammk, rho

gouble precision gamml, twgml, gmgmk, gmgmi, gmisq, vhoz, L
double precisicn a0, cpeq:ecpy,Ccpz,cqu, CqX, XY x2 ,wg,wz,aOpq
common/ ovrflw / aC.cpcg, CpyY, CPp2r CQun CqXs XY X T, WY, w2
gammi = gam—1

twugml=gamtgammi

gmgmk=gam#*gammk

gmgmli=gam<tgammi

gmisg=gamml*gamml

rho2=rha%rho

e



aCpgq=al—~cpraq

cal{l, 1)=~cpcq—2. sgmgmi#alpq-gmgmk#x2-wvnoz#gmlsgruwy
call,2r=(wvno@#%cpy~cqx)/rho

call, 3i=-(tugmltaGpq+rgammk#x z+wvno@Ftgamml#twy)/Tho
cal(l, 4y={cpz~wvno2+uqw)/rho

cal(l, S5)=—(2. swvno2%aCpq+x ztwvno2#wvnodstwy) /rho2
ra(2, 1)={gmgmk#cpz—gmlisq#cquwl)#rho

ca{2, 2)=cpoyg

ca(2, 3)=gammkd¥cpz—gammlitcqu .

calz, 4)=—uz

cal2, Si=call, 4)

cal(d, 1y={gmisq¥cpy~gmgmk*cgx)*¥rho

cald, 2)=-xy

cald, Il=gammlidtcpy—gammkicqx

cald, 4)=cald, 2}

cald, 3r=call, 2}

calB, 1)=-(2, sgmgmksgmliag*aOpgromamk*gmgmkstxz+

#* gmlisqé¥gmlsqiwyl#rhol

cald, 2y=ca(d, 1)

cal(d 3y=-(gammk*gammlittwgml*aldprgam¥gammkigammkstx z+
#* gammi®gmisq#wy)*rho

cal(d, 4r=ca(2, 1)
ca(d, B8)=call, 1}
=2, *yvno
cal(3, 1i=t#ca(B, 3
cal3, 2)=t%cald4, 3}
cal(3, 31=a0+d. #(cpecyg~call, 1))
cal(3, 4 )={%ca(d 3)
call Si=t#¥call, 3
return ‘
end

€ 4R
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$£77 —1i ~12 dpsrf. # ~o dpsrf ~lcalcompl&

plot dispersion curve
get data from surfaceBl

dimansion

£ (2048}, v{2048), mode (300)

dimengion d(500)., a(300), b (500, rho (300
character#=20 namas
character*4 yorn

format(a:

format(4Ff12. 95)
pi=2. #3. 141592453

write (& %)
write(&, #)
read (3, %}
write(sh, )
urite(d, ¥)

’ !

‘Rayleigh(1) or Love(&):
llrr

/ f

‘anter the input file name

read (5, 3) names

open(i:Filewnames,status=’old’:Formw'unFormatted’)

write(é&, &)

{(from surfaceldl):

‘how many modes and which modes wanted? (3,1,3.5)°

write (&, %)

‘(if all modes wanted, answer 1,0 )’

read (5, %} nmode, (mode(i}, i=1, nmode)

it {mode{l)
nmode=30C

.ne. 0) go to 40

do 30 i=1, 500

mode {1 )=1
continue
continue
write (&, &)
writel{é&, #)
road(5, %)

‘plot C-perd(l} C-freq(<d)
! K-fregq(d) freg-Kib)
ipy

call plots(0, 0,7)

write(&, #)
read (3, #)}

‘enter ipen: ’
ipen

call newpenlipen?

yorn="y’

call plot(2. 5,2 1,3}

write(&, %)
write(b&, #)

do &00 kk=

Towind 1

4 s

‘model:
i, nmode

raad(l) nmax
do 50 ii=]l, nmax

read (i) d¢
continus
ifikk, eq. 1

continue

iid,aCiid, b(ii), rholii)

K—-C(3)

B

c-Ke4)

Yy write(d 15) (d(id,a(id,bli), rholi), i=1,nmax)
raadil} npervr

ident=model{kk)

nt=0



200

483

486

487

428
200

600

#
#
a

itrig=0

continue

read(1} ifunc, kmode, 1
if(ifunc. 1t 0) go to 400
if{kmade. le. 0) go to 200

nt=nt+1
do 30C i=1, kmode
read(l} cO

wvnoQ=2. #3, 1415924653/ (cG#t1)
if(i. ne. ident) go to 300
itrig=1

nn=nt

tinn)=t1l

vinn)=cQ

continue

go to R0C

continue

iflitrig. eq. 0. and. nmode. eq. 300} go %o &00

do 500 i=1,nn

go to (500, 482, 487, 488, 483, 48B&) 1 ipyg

tCidy=1./76C1)

go %o 300

tCiy=1. /76(i)
viidz=piat(i}/v(i)
go to S00

tmp=1. /£ (1)
tlid=pigtmp/viil
viid=tmp

go to S500

tmp=vii)
viid=piACtidavii))
tCidy=Hmp

go to S00
Elid=pi it (itsv(il)
continue

call disp(yorn,itrig, kk,ipg.,ident, nn, ¥, v

continus

call plos(0.0,8.0, 9%9%)
close(i)

close(2)

write(& #) “jJjob finished’
stop

and

subroutine disp(yorn, itrig, kk, ipg,
dimenzion x{(1),y{l)
character¥d yorn. nory
character#ll alpha(2, &), alp,bet
data alpha/
0 (km/sec) " ‘T (sec) Y C
‘K (rad/k¥my 'C (km/sec)’, 'C
K (rad/Skm)y TR (Hz) VIR &
ifditrig. eq. Q)

ident, nrn, x,y4?

(km/Zsec)’, 'f
{km/sec)’s 'K

(Hz)

IR

(Hz) ‘Y
(rad/km)
(rad/km) ‘

/



& write(k, %) ‘mode 7, ident, / is not generated. ’
if{itrig eq. 0} refurn

alp=alphall, ipg)

bet=alpha(2,ipg?

ifi{ynrn.aq. ‘n‘) go %o 100

yorn='n’

xlen=g, G

ylen=4. 5

xmin=1, +37

smax=-1, e+37

ymin=1. e+37

ymax=-1. e+37

do B8O i=1,nn

if{x(i). ge. xmax} xmax=x{(i)

i#{x(i). le. xmin) xmin=x(i)

if(y(i). ge. ymax) ymax=yli)

ifCy(iy. le.ymin} ymin=y (i)

80 continue

write(&, #) ‘ymin=‘,ymin, ' ymax=', ymax
it(ipg. ge. 9) write(é, %) ' -y value in log sacle’
write(k, #) ‘xmin=‘, xmin, ' xmax=", xmax

write(& #) 7

write(s& #) ‘enter gmin,gmax:ginc,xmin,xmax,xinc’
iflipg.ae. 9) writelb, #) ' ~y ghould be integer. ’
read (5, %) yO,yl,yinc, x0, x1l, xinc
xinut={(x1~-x0)/xlen

yinut=(yl-y0)/ylen

100 continue

if(kk.ne. 1) go to 500

write(&, #) ‘plot axis? (y/n)’

read(3, 5! nory

] format(al
write(h, ) 7
write (A, #) ‘walt, It is processing. ’

ifinory. ne. ‘y’} go to 500

call plot{xlen, 0. 0, 2}

call plot(xlen, ylen:2)

call plot(d G iylen, 22

rall plot(0.0,C 0,2}

call plot(0Q. 0, -0 03,2)

if¢x0. 16. 0. 0) xshif=-0 25

if(x0.ge. 0.0) »shif=-0.13

if(x0. ge. 10. Q) xshif=-0 23

if{xinc. ge. 0. 1) call number (xshif, ~0.17,0. 1, x0,0. 0, 1)
if(xinc. 1t. 0. 1
#call number(xshif~0. 04, ~0. 14,0.0%9, x0, 0. 0. 2)
grid=xinc/xinut

xi=1.

200 xx=xi¥grid

iftabs(xx). gt. xlen+0. 02) go to 250

call plot(xx,C 0, 3)

call plot(xx,~0. 05, )

xeym=x0O+rinc#*yxi

fay



ifixsym 1t 0. 0) xshif=—0.25
ifi{xsym. ge. 0. 0) xshif=-0.13
if(xeym ge. 10.0) xshif=—0 203
if(xsym. ge, 100, 0) xshif=-0. 33
if(xinc. ge. O 1)
#call number(xx+xshif, ~0.17,0. 1, xsym, 0. 0, 1)
if(xinc. 1t.0. 1)
#call number(xx+xshif-0. 04, ~0. 16, 0. 09, xsym: Q. 0., 2
xi = xi+l,
go to 200
250 continue
call symbol(2. 5, -0.4,0. 16,bet,0 0,119
call plot(0.0,0. 0,3}
call plot(-0.05, 0. G 2)
iflipg. ge. 9) go to 260
if(y0. 1. 0.0) xshif=—0. 45
if{y0. ge. 0. 0) xshif=-0 035
if(yO. ge. 10. 0} xshif=-0. 45
ifl{yinc. ge. G. 1)
#call number(xshif, -0. 0% 0.1,y0,0.0,1)
iflyinc. 1t. 0 1)
#call number(xshif~0. 03, ~0. Oo:O 0%, y0. 0. 0, 2)
go to 270
260 continue
call number(-0. 34, -0 046,0.1,10.0,0. 0,1}
call number(-0.1&, 0.02,0. 04, y0, 0.0, -1)
270 continue
grid=yinc/yinut
xi=1,
300 xx=xi#grid
iflabs{xx). gt. ylen+0. 02} go to 400
call plot(0. 0, xx,3)
call plot(~0.08 xx, &)
call plot(0. 0, xx, 3
ssym=yO+yinc#xi
if(ipg. ge. 9 go to 310
if{xsym. 1t. 0. 0} xshif=—C 43
if(xsym. ge. 0. O} xshif=-0 35
if(xsym. ge. 10.0) xshif=-0. 45
if{xsym ge. 100. 0) xshif=-0. 55
iflyinc, ge. 0. 1)
#call number(xshif, xx~0.05,0. 1, xsym, G. O 1)
ifCyine. 1. 0. 1)
#call number(xshif-0, 04, xx—0. 053, 0. O?:xsgm,o G2
go to 220
310 continue
call number (-0, 34, xx=0.06,0.1,10.0,0, 0, -1}
call number(~0. 1&, xx+0. 02, 0. &) xsym, 0. 0, —1)
320 continue
xi = xi+l,
go to 2C0
400 continue
call symbol(—~0. 5%, 1.5 0. 16,alp,%0.0,11)



50¢ continue
do 550 i=1l,nn ‘
ifyCir. gty y (id=yl
if(x(id. gt x1)» x(id=xl
ifCyCid. 16, yO) y(ir=y0
ifix(i). 1. xOy x{(i)=x0

58C continue
xinn+1)=x0
x (nn+2)=xinut
y {nn+1}r=y0
q(nn+2)ﬂginut
call 1ine{x: U nn. 11010)
return
and
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~Teigen81.F._
£77 ~i ~1& reigenai.F -0 reigengl

Thisg program calculates the gpigenfunctions of
Rayleigh wave for any plane multi-layered model.

Body wave Q model can be included.

The propagator“matrix: instead of numerical—-integration
method is used: in which the Haskell rather than
Markrider formalisms arevconcered.

Such a revision was developed to cover a large rvange of
frequencies, %4y 200 Hiz, and to improve the calculation
efficiency. The layer thickness is nol limitted.

For the sake of szpace saving:, only the values of
pigenfunctions at the source depths are stored.
However, several files with different source depths
can be set up.

~0ct 10, 1981

double precision sumiO, sumil, sumi, sumi3

dimension nos(iOO),dphs(iOO),dphq(lOO):qa(lOO),qb(iOO)
dimension depth(100)

common/model/ d(iOO),a(ioo),b(iOO),rho(loo),qai(lOO),

% qbi(lOO).xmu(lOO),xlam(lOO),mmax,ll
common/eigfun/ ur(iOO):uz(lOO);tz(IOO).tr(iOO);qu(4),

* dcda(iOO);dcdh(1007,dcdr(100)
common/sumi/ aumiO,sumil.sumizfsumia,Flagv,are.ugr

character®l dd
character#B0 names
format(a)
Format(/ﬁx,’M’,4x,’DPTH’.2x,’ D ‘v 3x, ¢ A& 3x, " B Y
#* 3y, ¢ RHO) 3%, 7 QA 7 4x ] QB ‘. 4x, MU t,Bx, TLMDAT)
Fovmat(ia,1x;5f7.2,2F8.2.2F7.2)
format{3x, ‘—~source is on the top of this layer. ‘Y
3 ¢ source depth=", & &)
Format(ia,1x;F?.2,7x,3f7.a;2F8.2,2F7.2)
format(3x, ‘—source 19 inside the half space.

* * gource depth=', f&. &)
form at{‘at the source depth = /, F&. & 7 km ‘)
write (&, ) .

#* ‘anter the input file name: (from surface8l)’

read(s, 3) names
open(l:PiIEﬂnameslﬁtatUSﬂ’old',Formu’unFormattad’)
regind 1
mpen(ﬁ;?iIEﬁ’tmp.1’,statu5='5cratch’;Fmrmn’unFormatted’)
reagind 3

onter source depbths and Q-modal:
. p



write (b, #) ‘enter the source depths:’
write (A #2

+ “ton of source depths, svadpnllls svodphidl, o3
write (&, )

% ‘gdu jf no of source depths is negative, neo putpul’
writel(&s, ) fileg will be genervated. s
Thie can be used as dividing layers.
veoad (9, %) kks, (dphs(i), i=1, iabs(kks))
ke=abs (kks)
write(é&, #) ‘enter Q-model here(l), from a File(2), '
write(d, #) ‘or NOT considered(3):’
read {5, %} kk
kq=1
go to (100,110,17CG) kk

100 continue

write(d, #)

* ‘enter d(i), Gali), @b(i) wuse d(iy=0.0 for halfspace’

icode=3
. gu to 120
110 continue
write(d, 4) ‘enter the name of the Ffile storing Q-model: ’
read(3, 3 names
open<21F11e=ﬁames,statusn’old’,Fermx’Formatted’)
rewind 2 '
irpde=2
120 continue
i=1
base=G. Q
140 continueg _
vead{icode, %) dqG,qa(i), gb(i)
if(dqO0. 1e. 0.0} go to 130
base=hase+dql :
dphq(ild=base
i=i+1
go to 140G
190 kog=i
do 1&C i=1,100
galliy=qalkq?
abl (iy=qb (kg
1640 cuntinue
170 continug
write (&, #) 'Store the derivatives® (y/nd:’
read (3, 53 dd
if{dd. eq. ‘'n’) go tao 170
write(b, %) ‘enter the output file name for derivatives: '
read (3, 3 names
open(?:filewnames,Statusn’nem’,Formm’unFormatted’)
: rewind @
175 continue
dao 180 i=1, 100
dapth (i)=10000000. O
18C¢ continue



o n

120

200
210

230
240

osbtain the earth model;

read (1) mmax

write(& 10}

hase=Q. G

depth(l)=0 0O

do 190 1i=1,wmay

read (1) d(id,a(id, bli), rho(i)
base=hbase+rd (i)
depth(i+l)=base
xmu(i)=rho(i)*b(i)%b(i)
xlam(i)crho(i)*(a(i)%a(i)~2,%b(i)*b(i)}
continue

insert the G~model into the velocity model.
insert the source depth as an interface of layers.

kgs=kgthks~1

do 330G kO=1,kqs

dphO=dphg (kC)

js=kO—kq+1l

if (k0. ge. ka? dphO=dphs(is)
do 200 i=1l,mmax

k=i

iF(dphO.eq.depﬁh(i)) go to 2350
iF(dphO.gt.depth(i).and.dpho.lt.depth(i+1)) go to 210
continus

kil=k+1

dphki=depth(kl)

do 220 i=mmax, k.1

il=i+1

dgiily=d{i)

a(iiy=ati)

b(ily=b(i)

rho(il)=rholi}

yomu (ily=xmulis
ylam(il)=xlam(i)
depthliir=depth(i}

it(kO. ge. ka? qal(il)=qal(i)
i#(k0O. ge. kg qb1 (i1)=qbl1(i)}
conbinus

d(k=dphC~depth (k)
d(kir=dphki-~dphO
depth(ki?=depth(k)+d(k)

mma x=mma -+l

if(kC. ge. kq) go Lo 240

PP (k0. eq. 1) nss=

do 230 y=ns. k

gal ()y=qalkd)
bl (gpr=ab kG
continue
ns=ki
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1

290

260
270
280
300

310

400

-+

%

go to 2860
continue
if(kO. ge. kq} go to 270
1$0(k0. 2q. 1) ns=l
do 260 i=ns, k—1
qal (i)=qa(k0?
qb1(i)=qb(kO}
continue

na=k

nos(is)=ns
continue

J=1

do 310 i=1,mmax-1

write (s 200 i,depth(i),d(i),a(i),b(i).rho(i)¢qai(ih

gbl(iy, xmuli), xlam{i)}

if{i. ne. nos(y)’ go to 310
write(&, 30) dphs(y)

=yt

continue

i=mmas

writel(&, 40)

i,depth(i),a(i),b(i),rho(i);qaifi);qb
it(nos(y). eq. mmax) write(&, 50) dphs{ )}

if(dd. eq. 'y’

1¢id, xmutid, xlam(i)

write (9! mmax,Cd(i)/a(i>;b(i).vho(i),i=1,mmax)

wrikel& #y 7
writel(s, #) ‘wait, ’
11l=1

ig(b(1l). 1. C O 11=2
read (1} nper
continue

read in Lthe dispersion values

read(1l) ifunc, mode, &

write(3) i1func, mode, %

idldd. eq. 'y’ write(?) ifunc,mode, ¥

if(ifung. 1%. 07 go to 700
if(mode. le. 0 go Ho 400
do &00 k=1,mode

read(1l) <

main part.

omega=b, 2B31853/1%
wvno=omaga/t

call sviunc{omega.,wvno)
call energyl{omega, wvno)
onagad=omegatomeqa
pvomgesyvno¥oms gas

do 450 i=11l, mmax
ur(id=ur(ilfuvno
frliy=tz{i)4omagad



ol

triit=ftr{i)*wvomga
450 vcontinue
1Pk ne. ) call gammap(omega. Wvno, gamma)
ifidd. eq. "n "} go to 310
output the derivatives.
xil=sumid
xil=sumil
xid=sumiz
$i3=sumi3
write (9) Lub(ly, vuCi3), e, ugr, xi0, xil, xi2, xi3, are, flagr
do 800 i=1, mmay
write(9) depth(id,urdidt,uz (i), bz i), tedi),
4+ deda(iy,dedb (i), dedr (i)
500 continue
510 continue
do 5&6C i=1, ks
J¥nos (i}
urs=ur ("
wrea=uz (i
durs=—wvaoduza+tr ( )/ xmulj?
duyzre={wvno*xlam( jr#urs+tz () )/ (xlami i+ #xmu )
urGs=uyr(1l)

output

write(32) wvno,ur0,are, ugr, gammna
writed3) urs,durs.uzs, duzs

560 continueg

&0C continueg |
go to 400

700 continue

putput the eigenfunction files for different spurce depths

ifikks. le. ¢) go to 930

do 200 i=1, ks

rewind 3

write (& #)
4 ‘anter tha name of output file storing the eigenfunctions’
writel(bd A0 dphs (i)

read (3, 3 names
open(d:Fileunamaz,status=’new’;Formm'unﬁormatted’)
rewind 4 :

write(d)
# mmax,(d(J),a(J):b(J).rho(J).qai(J),qbi(J),JWI,mmax)
write(d) nper,dphs (i}

800 continue

read(3) ifunc, mode,

writel(dy ifunc,mode, t

if(ifunc. 1%.0) go to 870

ifimade. le. 0) go Yo B0O

do 860 k=1, mode

do 830G =1, ks

- 28 -
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160

read(3) qalyr, gblyd,dphg(y), depth( ), dcdalys
read(3) ur (vl uz ), b20y)

continus

write(dy gqadit,qb(ii, dphq(i),depth(i), dcdali)
wrrteddr upddl, brdid, vz i) tbz01)

continus

gu to &HOO

continue

close(4d)

continue

continua

close(l;

close(d)

close(l3 status>'deoleka )

writel(sd, ®y 7

writel{&, #) “reigenB8l finished’

writel(s&, #) 7

stop

and

subroutine gammap (omega, Wvro, gamma)
This routine finds the attenuvation gamma value of
surface wave.

common/model s  dC100Y, a(100), b(100), rho (100}, qal (100),

O ‘ gbl1C100), xmu(100), x1am(1G0), mmax, 11
commonseigfun/ ur (1001, uz (100, £z (100}, tv (100), vud {4y,
# dcda(100), dcdb (1C0), dcdr (100)
x=0. 0 ‘

do 100G i=11l, mmax
y=x+dcdalid#alil/qal{i)+dedb(id#b(i)/qbl (i)
continus

CEOMega S uvng

gamma=0. S*wvno#/ o

Teturn

and

subroutine svfunciomaga, wvno?
This rtowtine combines the Hagkell vector from sub down
Dunkin vector frem sub up to form the eigenfunctlions

double precision exe(100),exa(l00), ext, fact
common/maodel/  d(100), a(100),b(100), tho(100), qal (100},

#* ab1(100), xmu (100}, x1am(1CGO}, mmax, 11
commonSeigfun/ ur (100, uz (100X, tz (100}, tvr (100}, vul 4y,

# deda(l00), dedb (100, dedr (100)
common/dunk/ uu (100, 5), exes exa

commonshask/ vy (100, 4)
common/wabar/ watevrO, kérig

and



g

n

100

%+

4

%

4

A

ktrig=1

call vpiomega,wvno, f1)
ktrig=0

call down{omega, wvno)
WYNOES WV N OV
omegasTomega¥omen
f3x=ou(ll, 4)
puGlly=wvno*uu(ll, 3)/Ff5
sud(2¥=1. 0

wul(3)=f7 is actually the period equation.
uuQ(3r=*fr

wuQldl=tr should be zero.
vyl (g4 )=Ffy

ur{lli=uu(ll, 3)Y/48
wz{lli=1 0
tz(ll)y=rwatero
tr(11y=0.0

do 200 i1=1l+1. mmax

g::
5]

1i=i~1
wul = :

v (it 28#uo (i, Titvv(il, Ideou(i, 2 +vv{il, d¥#uuli, )
gy =

=vvOid, Idsuudi, Tr~vw (il 3xsouedi, 3Vswvnod+vviil, 4)%uui, 4)
vuz =

=wev (il D)o (i, 23 +vwv (it @ r#uu i, 3 srwvno2+vv (il 4y%uuli, B)
vud = ‘

=vwviil, Dyauuld, Br-vwiil, 2¥#0uli, 4) ~vv({il, 3)y#uu(i, 5)
axt=0, 0O

do 100 k=11,1i1
ext=ext+axalki-exe (k)
continue

fact=0. 0 :
iflext gt ~BO. 0! fact=dexplext)
ur(ilt=yulsfact/£5

wr Cl)=yud#tfact/F5

bz (id=yulsfact/#5
triil=uudifact/£5
continue

return

and

subroutine up(omega, wwno, fr)
This roufine finds the values of the Dunkin vectors ak
2ach layer boundaries from bottom layer upward,

dimension eed(S) _

double precision 2xe(100), exa(100), ext, ex2, p, g, rab, dept

double precision wd,wra,wcosd?, weindd

common/models  dC100, a(100), b(100). tho{100), qal (100},
qb1{100), xmu(100), x»Tam(1C0), mmax, 11

commuon/dunk /s uus(iCO, Sk exe, exa

- 30 —



common/save/ dd (5, 5), aa(4, 4}, exl, ex2
common/aamatx/ ww(l00), xx (100}, yy(10G0), 2z (1CO),
* cospp(100)icosqq¢l0D)
common/water/ waterd, ktrig
common/angerw/ wid, wra,wcosd2, wsindd
WVNo2swvnodwvno

ska=omegasa(mmax)

xkb=omega/b(mmax’
ra=sqri(abs{wvno2-xka%*xka))
rh=asqrt(abs(wvne2~xkb#*xkb)?}

t = b(mmax)/omega

qammi = 2. #t#tE
gam = gammkHwvnod
gammli = gam — 1.

iflwvno. 1%, xka) write(&, #*) 7 imaginary nua’

iflwvno. 1t xkb} writel(é&, #) ’ imaginary nub’

vui{mmax, 1)=wvnol-ra#rb

vu{mmay, 2)=-rho(mmaxY*rb

vy (mmax, Z)=rho(mmax ¥ (gamml—-gammsrasrh)

vwi{mmax, 4)=rho(mmax)#ra

wudmmax, B)=rho(mmax)%¥rho(mmax)*(gamml*gamml~gamtgammkérastrb)
matriy multiplication frem bottom layer upward

mmx I=mmax—1

do 40C¢ k=mmxl, 11, -1

ki=k+1
dpths=d(k:?
rka = omsga/alk)

xkb omegasb (k)

"t = b(k)/omega

gammk = 2. H#t#t

gam = gammkFwvnod
ra=abs (wvno2-xkastxka?
rab=dble{ra)
rab=dsqrt(rab)
dept=dbleldpth’
parab*dept
ra=sngl(rab)

rb=abs (wvnod—~xkb*xkb)
rab=dblel{rb)
rab=dsqrt(rab)
g=rab¥*dept
“rh=sngliraby

call vavrik,p:q.ra,vb,wvno, xka, xkb, dpth?
call dnka(mvnnalanm,qammk,rha(k3)
exalki=ex2

do 200 i=1,5

ce=0, G

do 106G =1,5
co=co+dd (i, gr#uuikl, g
continue

pal(it=cy

continua

tall normc(eeC, vab)
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exe(kl)=axit+trab
do 300 i=1,5
wulk, i =eel(i)
300 continue
40 continue
waberd=d G
if(11, en. 1) go to 3OQ
xkamomegasall)
ra=abs (wvno2-xka#txka)
rab=dble(ra}
rab=dsqrt(rab)
wra=rab
dept=dble(d (1)}
p=rab#dapt
ra=snglirab)
call var{100,p. 0. G, ra, 0 O, wvno, xka, ¢ 0. d(1))
water( describes the surface water layer effect
waterG=rho(1)*ww (100} /cospp(100)
iflktrig. eq. 0) go to S00
prepare for subrouling wenerg which tekes the energy
integral over water layer.
g=a, #exd
rab=0Q, 0
iflq. gt ~-80.0 and. q. 1t. 80. 0) rab=1. /dexp ()
wd=rab%*dept '
weosd@=2, #coappt 100 #cospp (100)
pEel, #p
Ta=2, dwra
call wvari1QQ,p, G O ra, 0 0,wvno, xka, 6.0, d01))
qEexdd-q
Tab=0. ¢
iflg.gt. -80. ) rab=dexp(q)
wein2d=rabfouw{ 100}
if{wvno. 1L xkal wra=-wra
500 continue
Praou(ll, S)rwaterGiuu(ll, 4)
refurn
and
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aubroutine downd{omega, Wvno
This routine finds fthe wvalues of the Haskell vectors at
gacrh layer boundaries from top layer downward.

dimension aa0(%)
double precizion exe(l00), exa(100), exl,ex
commonsmodel/  d(100:, @100, b {100, rho (100, qal (100),

% qb1 (100}, xmu(10C), x1am(100), mmax, 11
common/dunk/ wullo0, 3, exerexa
comman/hask/ vy (1CG0, 4)
commonsSsave/ dd (3, 8)aald, 4y, exl, axd

commonsaamatx/ ww (100}, xxy (100, yy(1GOY, 22(100G),
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100

400
500

#* cospp (100, cosqq (100}
WYNoE=wvnoiwvno

do 100 y=1,4

v (1D, =00
continue

vwill, 4y=1.0G
aa{sHi=0. 0

mmy I=mmay-—-1

do S00 k=11,nmmx1
ki=k—1

if(k. 2q. 117} ki=11l
t=b(ki/omega
gammk=2, ¥Lt#E
gam=gammk¥$wvno
w=tgw (k)

y=yx (k)

gy ko)

pmzr (k)
cosp=cospp (k)
cosq=cosqq (k)

call hska(w,x,g,z,cosp,cosq,wvnoalgam,gammk;rho(k))
do 300 y=1.,4
ce=0, 0

4o 200 i=1.,4

co=cervv ki, id#aali, §)

continue

aaQ(yi=cc

continue

call normc(aad, exz)
exa(ki=exalk)+ex2
do 400 i=1,4

vwik, ir=aaQ(i?
continue

continus

raturn

end

subroutine vavri{m, pp,gq, ra, vb,wvno, xka, skb, dpth)

Thie Toutine caleulates the values of explpl,explnl.
Since exp (BB ™~ 10, ##+38, the exponential power terms p q
must be controlled to prevent possible overflow

double precision sxa, ex, pp, qa: qpp. gmp
,double precision eXpp, @Xpm, @xqp. exqm, £inp, Cosp, sing, cnsq

commondsave/ dd(S, 3, aa(d4,4), exa:ax
common/aamatx/ wO(100), xOC100), yO(100), 20(100),
* cosp0(100}), cosq0(100)

common/ovrfiw/ a0, cpecq,cpy, Cpz, cq, Cqx, XY, X2, WY, w2
ex=0. ¢

aC=1.0

ifluvno-xka) 100,200, 300



300

400

300

500

700

80C

F00

sinp=dsin(pp)}
w=sinp/dhle{ra)
s=-dbla{ral¥sing
cesp=dcos{pp)

o Lo 5CGO

coep=l, Od+0

w=dp th

w0, O

go to 5060

if(pp.gt. 40. 0} go to 400
expp=dexp{pp)

expm=1, faxpp
sinp=(expp-oxpm}*Q, 5
cosp=(expptrexpmi#CG. 9
wesinp/dble(rar
x=dblelral#sinp

go to 500

ex=pp

r=ra#@. 3

w=0. 5/ra

cosp=0, 3

a=0. ¢

iflex. 1. 75. 0 a0=1. fdexp
continue

if{m eq. 100) go to 1100
iflwvno-xkb} 400, 700, 8OO
sinq=dsin{qq)
1s=a—-dble(rbi#sing

y=sing/dblel{rt)

rosg=dcos (qq)

go to J0OOG

cosgq=il. Gd+0

y=dpth

1=3. O

go to 200
ifiqg. gt. 40 0} go to 10Q0
gxgp=dexp{qq)

exqm=1. /exqp
sing=(exqp-axqm}#3. 5
cosq={exgp+exqmd¥0. 5
ys=sing/dble(vb)
r=dble(rbli#tsing
CpUg=Ccosp¥cosg
cpy=cospy
CpI=cosp#z
Cquw=cosqg*u
cqXx=Ccosqix

Xysxsy

X2sEXHY

iy =y

wy=wHz o
cosq=al4cosg

1=a0%z

{(ex}
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100G

110C

10

y=al#y

eya=ey

oo to 1100

Qerp=qq+pp

qmp=gq-np

gigqp=0. O

if{absi{gmp). 1t . 60. ) exqp=dexp (qmp)
gxqm=0, O

ifigpp. Lt. 60. } exqm=1. /dexp(qpp)
sing=(exqp—exqm)*0, 3
cosq=(exgprexgqm)#0, 5
y=sing/dble(rb}

r=dble(rbl4sing

21=17h#0, 5
yy=0. 3/rb
ccosg=0 3
gxa=gntqy
ao=0. O
iflexa. 1L, 75 0 a0=1. /dexp(exa)
cpCgECcospRce '
Lpy=cospiyy

cpr=cosp¥#zz

XY= xRy

LIEXRIL

wyEwHyy

WIsWHI?

COWSCCDs QY

cqr=ccosqgiEy

continue

wO(m)=w
AO{my=x
gO (i) =y
10lm) =12

cospCimi=cosp
cosqOimi=cosq
refurn

snd

subroutine normc(ee, ex’

This routine is an important step to control over— or
under flou. » ’

The Hazkell ur Dunkin vectors are normalized before

the layer matrix stacking.

Mote that socme precision will be lost during normalization.

dimension eeo ()

double nrecision ex, tl, £2
0 = 0. ¢

do 10 1 = 1
iflabs(eali
continue

5
}).oghl 50) t0 = abs(eeli))
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ti=dble (50O

ifiv1. 161, d=-30) (i1, d+00
do 20 1 =1,9 '
tE=dblefee(i))

FRECh BN o

eal{i)=angl (£2)

continue

ex=dlog{(tl)

return

end

subroutine hska(w, X, 4y, z,cosp, cosg, wvno2, gam, gammk, Tho}
double precision exl,exd

commonssave/ dd(5, 3),aa(d, 4), exl, exd

gamml = gam-—1,

temp = x—-wvno2#y

aa(2,3) = ftemp/rho

temp = Lemp¥*gammi

aatd, 3y = temp-y

aald, 1) = ~{gammizy+gam#aa(4, 3))*rho
aalz, 1) = -—wvnod*aa(4d, 3I)

temp = cosg-cosp

ga(l,3) = temp/vho

dal2. 4 = —~wvnolP#*aall, 3
aald: 21 = vho*gampmk#*gamml=*temp
aa(3, 1} = ~wvnoR#aa(d, 2)

temp = Lemp¥#gam

aai{l, 1) = cosgq—temp

galz, 2 = cosp+temp

aal3, 3} = aa(ad,2)

i

aald, 4) aaf{i, 1}

temp = r-wvno#w

Aaa(l, 4) = temp/rho

aali, 2! = ~w-gammk*temp

aal3, 4) = —~wvno*aal(l, 2)

aa(3,2) rhos(gam#taa(l, 2)~gamml*uw)
raburn

2nd

1

#

£

i

subroutineg dnkalwvno®, gam: gammk, rho?

double precision exl, ex2

commonSsave/s dd(3, 5), aal(4, 4), exl, exd
common/ovrflu/ al, cpoq o cpy,cpzocqu,ecar, Xy, X2, Wy, W2
gamml = gam-—-1,

tuwgmi=gam+gammi

gmgmk=gam#gammi

gmgml=gam*gammi

gmisg=gamml#*gammi

rhod=rhedrho
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aCpg=al-cprcq

dd (1, 1)=cpeq—2. *gmgmi*aOpq—gmgmk3txz—wvnod#gmlsqituy
dd {2, 1)={gmlsq¥cqu-gmgmk#cpzi*rho

dd (2, 1=~ (gammksgamml#*twgml*abpqrgam*gammk*gammk#*xz+
t gammi#gmlisg#uyl#rho

dd (4, 1)=(gmgmk#*cqx-gmisqécpyl#rho

dd (5, 1i=-(2. #gmgmk#tgmlsq#*aOpqrgmomkitgmgmk#xz-+
#* gmlsq*gmlsgiwy)¥rho

dd (1, 2)={cgx~wvnoekcpy)/rho

dd (2. 2}=cpcq-

dd (3, 2r=gammk#cqgx—-gammleEcpy

dd (4, 2)=-xy

dd (5, 2)=dd (4, 1)

dd (1, 4r=(wvno2%cqu-cpz)/rho

dd (2, 4)=—wz

dd (3 4r)=gammlidcqu-gammk#cpz

dd (4, 4r=dd (2, 2}

ded (3, §ry=dd (2, 1}

dd (1, B)== (2. #uvno2#alpq+xztwvnodtwvnol#wy) /rhod
dd (2, B)=dd {1, 4}

dd (3, Bi=—(twgml*alpgrgammkdx z+wvnotgammi¥wy)/rho
dd (4, 3)=dd (1, &)

dd (S, Sy=dd (1, 13

t=-2, *uwvnod

dd (1, Sy=68dd (3, 5

dd (2, 3r=4t#dd (3, 4)

dd (32, 3)=a0+2, #(cpoq~dd(l, 1))

da (4, 3)=6#dd (3, )

g (9, 3)=txdd (3, 1)

return

end

subroutine energylomega, wvno)
This routine takss the energy integral by an analytic
way wsing the sigenfuntions found abowve.

doublse precision wvnoQO, omegal

double precision wvnod, omegaz, wvomg?, sum, xka, xxb, ra, rb
double precision dpth,daa,dbb,drho.dlam, dlamy, dou
double precision wruv,urtz,uzuz,vzte, trtr, urduz, vzdur
double precision durdur,duzduz,dldl,dldm, dldk,dldr
double precision s2umiC,sumil, sumiz, sumi3

double vomplex t(4,4), ¢4(4,4), PF (& ppid)

double complex nua,nub,cl, ¢

common/coet/ tott, £F, pp

rommon/medel/ 4100, a(100), (100, rhno(100), qal (100},

“ qb1¢10C), xmu (100}, x1am(100), mmax, 11
common/eigfun/ vull00, 4y, vu0(4), decda (100}, dedb (100},
* dedr (100)
common/Ssumi/ 0 sumid, sumil, sumid, sumid, flagr. are, ugr

wvnoC=dble (wvno)
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omegaC=dble(omegal
omagad=opmegaOx*omegal
wvomg2=pvnoOtomegas
wvno2=zwvnoOfuvnoel

sumiQ=0, Od+00

Lumi1=0, Gd+00

sumi=0, Gd+00

aumi3=C. CGd+00

do 300 k=11, mmax

ki=k+1

klc=k

if{k. eq. mmax) kk=101
daa=dble(alk))

dbb=dble(b (k})
drho=dblalrho(k))
dlam=dblal(xiamlik)}?
dmus=di le Cxmu k)
dlamu=dlam+2. +dmu
dpth=dblal(d(lk))

rka=cmegal/daa

ykb=opmegaG/dbb
gammk=dbb/omegal

gammk=2. #tgammk*gammk
gam=gammk*uvnoa

ra=dsqrt(dabs (wvno2-xka*¥xka)l)
rb=dsgritidabs{wvno2-xkb#xkb))
if(va. 1% 1. d-6) ra=1l. d-6é
if(rb. 1t 1. d~&3 vb=1l. d-&
nuva=demplx(ra, 0. 0}
nub=dcmplx{rb, . O
if(wvnoO. 1t. xka) nuasdcmplx(Q. O: ra)
iflwvnoC. 1t xkb} nub=decmplx(Q. G, rb}
call tminus(nua, nub,wvno2, gam, gammk. drha)
call tplusinua,nub, wvno2, gam, gammk, drho)
call intval(kk, nua, nub, dpth)
do 200 i=1.2

i@=i+2

e1=0. G

cet=Q, G

do 1Q0 ;=1,4

ci=gl+ibii, gisuullkl, §)
cE=gdrt e (i, grduuik, )
conbinus

pplid=cl

pplid=c?

tontinue
urur=sumikk, 1, 1) #uvno?
urtz=gum{kk, 1, 3}%wvomgs
vzuz=sumikk, 2, 2)
vztr=sumikk, 2, 4)%uvomge
tztz=sumikk, 2, 3)¥omegadtomegaz
triv=sumikk, 4, 4)#wuvomg2tuvomgs
urduz=(wvnoQ#dlamtururturtz)/dlamu
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300

400

*
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“*

yzdur=—wvnoOfuzuz+uztr/dmu :
durdurﬂwvnoa%uzuzwg.*wvnoO*uztr/dmu+trtv!(dmu*dmu)
duzduzn{wvnag*d1am*dlam*urur+2.*wvna@*dlam%urtz+
tztzi/(dlamus¥dlamu)
aumiO=sumiO+rdrho®{uzyz+urur)
symii=sumil+dlamusturur+dmu*uzuz
sumi2=sumni2+dmuruzdur—dlam#*urduz
sumid=sumid+dlamusduzduz+rdmu*durdur
dldl=-wvno2#urur+2. #wvnoO*urduz-duzduz

dldmnwwvnoe*(g.*urur+uzuz)w2.*wvnoo%uzdur"(z.%duzduz+durdur)

dldr=omegaz#(urur+uzuz) ‘

drda(k)=2. #drho*daasomegaO#dldl/wvnod
dedb(k)=2. #drho*dbb%omegaO# (dldm-2. #d1d41)/wvnod
drdr(k)=dldr+dlam#dldl/drho+dmukdldm/drho
dedr(k)=dedr (k) *omegaO/wvnoe

continue

if(b(1). le.C.0) call wenerg(wvnoQ)

dldk=-2 #(wvnoC*sumil+sumi)

do 400 k=11,mmax

dedalk)=dcda(k}/dldk

dedb(k)y=dcdb (k) dldk

dodr(k)=dedr (k) /dldk

continue
F]agr=omega2%sumiO"wvnoﬁ*sumi1"2.*uvno*sumiR—sumiS
ugv:(mvnoo%sumi1+9umi2)/(0megao*sumi0)
are=wvnal/ (2. ¥omegal#ugr¥sumiC)

raturn

end

function sumCkk, i, §)

The analytic forms of the solution of integral:

Integral U#U dz = T-matrix #* eigenfnction # integral-coefs

double precision sum
double complex t(4 4 €64, 4), #FL&), pp 4D
double complax sumQ, suml, sum®, sum3, sumd, sumd, sumb
common/coed®/ L, t%, FFopp
if(kk.eq 101) go to 100
5umiwt(i,1)*t(J,])*pp(i)%pp(1)+t(i,3)%t(J,3)*pp(3)*pp(3)
syml=gumi#fFf (1}
sum?wt(i,2)*t(J,2)*pp(2)%pp(2)+t(i,4)%ﬁ(4,4)*pp(4)%pp(4)
sum2rsumad £ £(2)
sum3=(E i, 1)E (g, @Y+6 (L, @)%ty 1) 2 #pp (1) #pp (&)

FORCE, 38t 4X+E i, Adut(§, 3) iapp (B ¥pp (4D
sumB3=gum3#£ £ (3)
sumd={t{i, 11#E 0y, AY+6 (i, 4)st(y, 1) )upp (1) =pp(4)

FOECT, 3R C ), 2+ (1, 2)#5(y, 3) ) %pp () #pp (3D
sumd=sumd*ff (4}
sumS=(t (i, LIt , 23+6 (1, 3ty 1 dxpp (1 #pp (3)
sumS=gsun3*f£(5)



[n]

a1

sumb=(t (i, 2%t {y, 4)+L (i, 438t 0y, 20 xpp (2rspp (4)
sumb=sum&#f £ (&)
sumO=suml+sum@+csunrsumd+sumB+suméb
sum=real (sumd)
return
100 continue
sumi=t01, 3%t (5, 3d#pp(Bxpp(BI#FL (1)
suma=t{i, 4)#t (4, &rapp(dixpp (I #*FF ()
sumI= (L {1, 2086y, A)+5 (i, 4%t (y, 3 ) #pp (B xpp (&)
sum3=sum2#Ff £ (3)
sumC=gsumltasum2+sum3
sum=real (sumO)
return
and

subroutine intval (k, nua, nub,dpth)
This routine finds the coeficients needed for integrals.

double precision dpth
double complex L(4,4), tt(4,4), £f(&}, pp(4)
double complex nua, nub,p,q.pgsexpp,exqqy
common/coef/ b, tt, £Ff. pp
iflk. #q. 101} go to 1GO
p=nua#dpth
g=nub#dpth
pa={nuatnubitdpth
call ifpyglp.p+p, expp?
FE(13=(1. O—~expp) /{2 *nua)
call ifpaglq,qt+q, exqq?
FE2)={1, O—exqu) /(2. #nub)
call ifpqlpq/2 porexppl
FP(3)=(1 O-expp)/ (nuat+nub)
call ifpglp/2. ,p,expp)
call ifpqlq/2. ,q exqq)
f§#(4)=(axqq-axpp )/ {(nua-nub)
FF{(S)y=dpth*expp
FF(H)=dpthytexqq
Treturn

100 continue
FfF{1)=0. 5/nua
FF(23=0. 3/nub
££(3r=1. /{nua+nub}
return
end

subroutine ifpglip,pg.expq)
double complex p.pq.expq
iflreal(p). 1%. 40.0) go %o 100
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gxpq=0. 0d+00
go to 200
1060 continue
expg=zrexp(—-pa’
200 rcontinue
reaturn
end

- - e e e s e am e me dem e e e e b e RS o L

subrautine tp1U$(nua,nub,wvn02:gam.gammk.rhm)
T matrix.

double precision gam, gammk, Tho, wvnod
double complex L4, 4y, t6(4, 4), £FC6Y, pp (4D
double complex nua.nub
common/coed/ t, bt FF.pp
£(t, 1y=-1. /tho
t(i,2y=nub/vho
£(1,3y=t(1, 1
t(@, 1Y=-nua/rho
£ (2, 2y=wvnod/rho
£(2, 3=t (2, 1)
£(2, 4)=£(2, &)
(32, 1¥=1. —gam
t {3, 2)=gam#nub
£(3, 3)=£(3, 1)
£(3, 4y=—-£(3 2)
£ (4, 1i=-gammk#nua
(4, 23=-%(3, 1)
t(4, =-%(4, 1)
t(4, 4y=t(4,2)
do 100 i=l.,4
do 100 y=1,4
Hli, 3y=0 5#60i, g3
100 continue
rebturn
end

e e wm e e me e e e e s e e e b mm e - e e rem e mee et wem e

subroutine tminus (nuas nub, wvno2, gam ganmk, rho)
T-inverse matrix

double precision gam.gamml,gammk'rhm,wvnma
double complex CC4, 43, t6(4,4), fFR(6), pp(4)
double complex nuarnub

common/scoet/ bttt £Ff.pp

gamml=gam—1. O

tt(l, 1i=-rho%gam



tt(1, 2)=rho#gamml/nua
te(1,3)=1.0

e (1, 4)=—wvno2/nua
t6(2, L)=—rho¥gammi/nub
tE(2, 2r=rho*gammk
tE(2,3)=1. /nub
t5(2,4)=-1.0

6 (3, 1)=tt(1, 11}

t5(3, 2=—-t£ (1, 2)
£4(3,3)=1. 0

£e(3, 4y=—tt (1, 4) ~
tEi4, 1i=—tt(2, 1)

£t (4, 2 =64(2, 2}

Lt (4, 3 =—t5(2,3)
t4(4,4)=-1.0

return

end

subroutine wenergl{wvno)

c calculatas energy trapped in the top water layer.
double precision wvno, wd,wra,wrad, wecosda, wsindd
double precision urur,uzuz,urduz,duzduz, wvnod, dr,dlam
double precision sumiO, sumil, sumi, sumid
common/moadel/ d{100}), a(100),b(100), vho(100), qal (100},

* qb1 (100, xmu(100), x1am(100) , mmax, 11
common/sumi/ . sumi®, sumil, sumi&, sumi3, Flagr,are, ugr
common/engerw/ wd, wra, wcosd2, wsindd
WYNO2=WYnoduvno '
wra2=wratdabs (wra)l
urur ={(wsin2d-wd)/(wra2¥uwcosda)

Urur  =UTurdwvnod .
vrvz =(wsin2d+wd)/weosda
yrduz ={(wsin2d-wd}/wcosda
urduz =urduziwvno
duzduz={wsin2d-~wd}#wraz/wcosd2
dr=dblel(vrho(l})
dlam=dble(xlam(i})
sumiO=sumiO+dr# (ururtuzuz)
sumil=sumil+dlamzurur
suymi2=sumid—dlam*urduz
sumid=sumi3+dlamitduzduz
return
end

36 R R
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laigen®l. §
£77 -1 -12 lesgeni. £ ~o leigentl

This it a new version of program leigen which calculates
the eigenfunctions of Love wave for any plane layered
model.

Gome analutic ofms for energy integrals are used instead
of taking numerical integration dirvectly.

The 1/0 are mostly the same as those of program leigen,
axcept that the eigenfunctions calculated are located at
the top of each laysvr, not in the middle.

The G model is ftaken into account,

Far the sake of space saving, only the values of
eigenfunction at the source depth are stored.
Mowever: several files with different source depths
can be set up.

~0ect 10, 1981

dimensinn nos (100, dphs(100), dphg(100), qa(100), qb(100)
dimension depth(1CO)

common/madel/ d(100),a(100), b(100:, Ttho(100),qal(10G0),

# qbl(lOQ),xmu(ioO),xlam(iQO).mmax:ll
common/eigfun/ wt (100), ££¢100), dedb (10C)Y, dedr (100), vuG(4)
common/sumi / sumiQ,sumil, sumi@, Flagr., ale, ugr

charactersl dd

character#80 names

format(al

format(/2x, ‘M, 3x, ‘DPTH 3%, D 7 3x,° A 3x:° B “
#* 3k, RHOL 3%, Y QA ‘L 4x, T GE o Ax, MU 7 3x (LMDAT)

format (i3, 1x, 5¢7. 2, 2f8. 2, 2¢7. 2) ‘

formatidx, ‘—source is at the top of this layer. ’,
3 ‘ source depth = ', £6&. 2

format (il 1%, £7. 2/ Tx: 3872, 2¢8. 2, 287,21}

format(3x, ‘~source is inside the half space. %
# ‘snurce depth = 7, £6.2)

format(’ at the source depth =  £f&. 2,7 km’)}

Cwritel(é, #) ‘enter the input file name: (from surfaceBi)’

read(3, 3} names
apen(l:?ile=names,status:’old’,Formn’unFormatted’)
rewgind 1
0p$n<31¥ileﬁ’tmp.1’,status=’scratch’,Fovm=’un$ormatted')
rayuind 3

anter the source depths and Q model.

write(& #) ‘enter the source depths:’
write (&, #)

* ‘(no. of source depths, srcdph(l),srcdph(2),... )"
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100

110

120

140

150

1460
170

1795

180G

#

write (&, #J

‘w42 if no. of source depths is negative, no output’
write (s, #) files will be generated w#x’
road (S, 2% kls, (dphs(i), i=1, iabs(kks))
ks=wiabasithkse!
writel(k, %) ‘enter G-model here(l), ov from file(2) or’
write(&, #) ‘NOT consider @ in this program(3): '
read (3, #} kk
kg=1 -
go to (100, 110, 170), kk
conbinus
write (&, #)

‘entar 401y, Galid), Gb (1) use d(il=0 for halfspacs’
icode=3
go to 120
continue :
write(d, #) “enter the name of the file storing Q-model: ’
read (3 5 names
open(2, file=names, status=‘o0ld’, form='Fformatted’)
rewind 2
icode=2
continue
i=1
base=Q. O
continue
ragd{icode. 4} dgO.qali). gb(i)
ifidqC le. 0. 0) go to 1350
base=basa+dql
dphgq(it=base
i=i+]
go teo 140
kg=i
do 140 i=1, 100
qal (iy=gqa(kq)
abl(iy=qb(kqg)
continue
continue
write(é, #) ‘Store the derivatives? (y/n)’
read (3, 3 dd
ifi{dd. eg. 'm”"} go to 175
writel(h, ¥ ‘enter the output file name for derivatives: ’
read(3, 3 names _
open(?, file=names, status='new’, form="unformatted’)
rewind 7 ”
continue
do 180 i=1, 100
depth(1)=1000000. O
continus

enter the earth model,

road(l}! mmax
wribte (s, 100

- 1_1_4 .



|

190

(a2 N

200
210

P
[N
O

230
240

base=0. &

depth(1l1=0.0

do 190 i=1, mmax

raad(1) d¢id,adi), b(i),rho(i)
base=base+rd (i)

depth(i+li=hase

smul{ii=rho(id#b (i)*b (1)
slam(it=rho(id)#¥(a(id®a(i)~-2. #b (i)#b (i)}
continue '

insert the G-maodel into the velocity model.
insart the source depth at the boundary of a layer.

kga=kq+ks—1

do 300 £0=1, kqs

dphO=dphg (kQ)

ieakO-kq+l

if{kQ. g2 kg dphU=dphs(is)
do 20C¢ i=1, mmax

k=i

ifidphC. eq. depth(i)) go to 230
it{dph0. gt. depth(i), and. dphO. 1t. depth{i+1}) go to 210
continus

ki=k+1

dphki=dapth(lil)

do 220¢ i=mmax, k, -1

il=i+] :
diilr=d (i)

alil)=ali)

b(il)=h{i)

vho(ilt=rho(i}
ymu{ili=xmuli)
ylamtild=xlam(1i}
desth(ili=depth(i:
PFIK0. ge. kg gqal(il)=qal(i)
PE0kD. go. kg) qbidity=qbl(i)
continua

diky=dphQ-~dapth (k)
dikidy=dphii-dphO
depth{kly=depth(ki+d (k)

mma x=mma x+1

if(kO.ge. kgy go to 240

iF (k0. »g. 1) ns=1

do 230 y=ns,

qat (yl=gqalkl)

gbl (y¥=qb (kG

continue

ne=kl

go Lo 280

continue

if0kO. ge. kgt g0 to 270
ifekG eq. 1) ns=1

do 246G i=ns, k-1



qal(il=qaCk0)
gbi(il=qb(kO)
| 260 continue
| 270 ns=k
280 noslisi=ne
300 continue
J=1
do 31¢ i=1, mmax-—-1
writelb 200 i,depth(i), d(i),alid, blid, rholi), qal (i), qbl(iy,
) g (i), xlam(i)
ifli.ne. nos(y’r} go te 310
write(h, 30 dphs(y)

J=Jg+i
310 continue
i=mmax
write(hd, 40) i, depth(i),
# altiyv, bli),rholid,qalt (i), qbl (i), xmuli), xlam{i)

ifinos (). eq. mmax} write(d, 30) dphs(y)
if(dd. eq. "y

+# write(?) mmax, {(d{i),a(i¥, b¢i}, rhol(i}, i=1, mmax)
writedld&, #) 7 7

writelbd, %) ‘wait. ’ \
11=1

iIFib(LY, 1o, G Q) 11=2
read{1l) nper
400 continue

c
€ read in the dispersion values
l C
| read{1) ifunc, mode, &
| ' write(3) ifunc,mode, &
if{dd. eq. "y’ write(?) ifunc,mode, t
’ if{ifunc. 1€.0) go to 700
ifimode. le. 0) g0 to 400
do &0 k=1, mode
read(ly «
) :
c main park,
o

; omega=é&. 2831853/t
wvno=omega/sc
call shfuncl(omega, wvno)
’ call energu(omega, wvno?
if(kk.ne. 3) call gammag(omega, wvno, gamma)
if{dd. eq. ‘m‘) go to 510
i autput the devivatives,
l write (9 dum uu®(2), o, ugr, sumi0, sumil, sumi2, dum ale, flagr
do B0 i=1, mmax :
write (S depbth(id, ub (i), tE i), dum dum, dum, dedb (i), dedr (i)
‘ 200 continue
910 continue
do 540 i=1,ks
‘ J=nos (i)



whe=uh{
dute=bh ) xmul y)
write(3) wvno,ale,ugr, gamma, uts, duts
560 continue '
6H0C continue
go to 400
700 continue

output the data Ffiles with different source depths.

iflkks. le. 0} go to 930
do QG0 i=1, ks
rewind 2
write (b, #)
# ‘enter the name of output file storing the eigenfunctions’
write(s, 400 dphs(i)
read(3, 3 names
ppen(d, file=names, status='new’, form="unformatted ")
rewind 4
write(4)
* mmayx, (d(y),aCyybCy)irholyl,qatdyl,qbiCyl, y=1, mmax)
write(d4) nper,dphs(i}
800 continue
read(3: ifunc, mode, ¢
writel(4y ifunc, mode, %
if{ifunc. 1%, 0) go to 870
ifimode. 1. 0} go to 8B0O
do 840 k=1, mode
do 85C y=1, ks , A
read(3) qalylrgbCyddphq(yd, ubCy), 860}, dadb (y)
850 continue
write(d4) qa(i), dummy, qb(i), dphq(i), ut{i)
write(d4) tt(i),dedb(i}, dummy, dummy
860 continue
‘ go to BGCG
870 continus
rluose(d)
P00 continue
PG continue
close(l)
close(2)
close (3, status="delate’)
write(&, ) ° ¢
write(&, *) "leigenBl finished’
write(&H, #) 77
skop .
end

O SO S T T T T T R

sybroutine gammag(omega, wvno, gamma)
This routine finds the attenuation gamma value

- A7 -



common/model/  d(100),a(100), b(100), rhe(100), qal (100),
at gblC1iCO), xmu (100}, x1am(100), mmax, 11
commonseigfuns whCI00), £HC100), dedb (100, dedr (100)Y, vuwG(4)
x50, O
do 100 i=11, mmax
x=x+dedb Cidxb (1) /qb1 (i)
100 continue
c=omega/wvnao
gamma=0, SxwvnoXx/c

reaturn

end
c
c - - - - SR - - - - e ea e me e e e e e e ke e e e e
c

subroutine shfunc{omega, wyno)
C Thie routine evaluates the eigenfunciions by calling sub
C up.
c

double precision exl{100), ext, fact

common/model/ dCi00), a(100),b(100), Tho(100), qal (100},

+ qb1(100), xmu (100}, x1am(100), mmax, 11
common/sigfun/ uwu(l0G, 2, dedb (100), dodr (100), wul(4)
common/save/ exl :
call uvplomega,wvno, £1)
duG(iy=1. 0

c vul(2y=stress0 is actually the value of period equation.

C uuC (3 is used to print out the period suation value before
c the root is refined.

C

wuld(2l=Ff1

wuQ(3)y=0. 0

WG (4)y=G. 0

ext=0 0

do 100 k=1l1l+1i, mmaryx

axt=gxtrexl (1)

facrt=0 O

iflaext 1683 C) fact=1l, /dexplext)

uwlk, P)=gyulk, 1¥#fact/vuCll, 1)

vulk, 2)=gulk, 2)#fact/uvu(ll, 1)
100 continue

(1l 1)=1, 0

wlill, 23=0. 0

return
and
€ e e e e e e e e e e - - - e e e - -
C
subroutine up{omega, wvno, #1)
c This routine calcoculates the elements of MHaskell matrix,
c and finds the eigenfunctions by analytic solution.

double precision ex1 (100, qq, T, 58, exqm, exqp.: sing, cosg
commonsmodel/s d(10C), al100),b(100), rho(l00), qal (100),

- 48.



100

300

400

qb1(100), xmuCi00), x1am(100}, mmax, 11
common/seigfun/ uu(i00, 27, dcdb(100), dodr (100}, wuO(4)

comman/save/ gyl
wWYNoZ=wynoruvng
skb=omega/b (mmax) :
rb=sqrtlabs {wvnod—xkb#*xkb )
iflwvno. 1t xkb) write(d *) ' imaginary nub’
vul{mmax, 1)=1.0

vu(mmax, 2)=-xmul{mmax)#*rb
mmx I=mmax-—-1

do 300 k=mmx1l, 11, -1

ki=k+1

dpth=d (k)

xkb=omegas/b (k)
rh=abs(wvno2d-xkb#skb)
rr=dblelrb)

rresdsqrt(rr)

sa=dblel{dpth)

qq=TrH#ss

if{wvno-xkb) 100G, 200, 300
sing=dsin(ggqg)
cosq=dcos(qq)

ysging/vrr

(=—rrd*sing

qq=0. ©

go to 4C0

34=0. C

cosq=1. Qd+0

y=dpth

1=0. 0

a0 to 400

ifigqq ¢t 40.0) go to 350
prgp=l.

pxqm=1. /dexp(qqgtaq)
sing=(gxqp—exqm)=*0. 3
cosg={exqgprexqmi*0. 5
y=sing/rr

z=rTAsing

go to 4CC

continue

y=C. S/rr

r=0. G#%rr

cosq=0. 3

continue
ampO=cosgruy ki, Li-ys#ou(kl, 2}/ xmulk)
strO=cosquu(kl, &)-z¥xmulk)#uulkl, 1)
rr=abs{amp)

ss=abs(str0)

iflss. gt. vr) rr=ss
iflrr. 16, 1. d-30) rr=i. 4+00
pxl(ky=dloglrritaqg

wulk, 1y=ampG/rr

wi(k, 2¥=s8rQ/vr



0N

NN

500

- e

*

continue

Flaryu (1L, &)
return
end

. ewe e e tmm e e -t e e ek e e e e T T s

subroutine energy(omega wvno)

This rouktine calculates the values of integrals IO, I,
and I2 using analytic solutions. It is found

that such a formulation is move efficient and practical.

double precision wvnoO, omegal, ¢, sumiQ, sumil, sumia

double precision xkb.rb,dbb,drho,dpth, dmu, wvnodd, omegas

double precision wpup,dupdup,dchb,dcr

double complex nub, xnub, exqq, top,bot, #1, £2, £3

common/model/ d(100),a(100),b(100), Tho(100),qal (100},
gb1 (1CQ), xmu(100), x1am{100), mmax, 11

commonseigfunsd wu (100, 23, dedb (100), dodr (1G0), vubd(4)

Lammon/sumi / xi G, xit, xi2, flagr.ale, ugr

wvnoO=dble(uvno)

omegab=dble(omega)l

c=omegaC/uvnoQ

omegad=omegal#tomegal

wvno2=wvnoGHFuvno(

sumi0=0. CGd+C0

sumii=0. 0d+00

sumi2=0. Gd+00

do 300 k=11l,mmax

ki=ak+t

dbb=dble(blk):

drho=dbleirho{k))

dpth=dble(d (k)

dmu=dblaelxmu(k’)

skb=omegaCG/dbb

vhudggriidabes (wvnod-xkb#xkb))

it{k. eq mmax) go to 100

nub=dcmplx(vb, G O}

if{wvnod. 14, xkb) nub=dcmplx (G O, vby

snub=dmudnub

top=yu ik, 1i-uulk, 2)/xnub

bot=uulkl, 1)+uulki, 2)/xnub

F3=nubsdpth

axgq=0,. 0

ifireal (£3). 1t 40 axqq=rexp(-2. #f3

Fi=(l. ~axqq) /(2. #nub}

exqq=0. O

ifi{real (£3). 1%, B0} exqq=zexp (—~£3)

t2=dpthserqq

£1=0. 234F1#(toprttopt+botsbot)

2=0. 5 #f2#LGopkbot

PA=fI+£2

upup=real (£3)



$3=xnub*sinub*(F1-F£2)
dupdup=real (£3)/ (dmustdmu)
go to 200

100 continue
upup =0 B/vrb#uuimmax, Li#uu(mmax, 1)
dupdup=0. Bsrbruuimmax, 1) *uulmmax, 17

200 continue .
sumil=sumiQ+drho®upup
sumii=sumili+dmustupup
sumi2=symi2+dmustdupdup
depr=-~G DcdoicRupup
deb=0. B4ca(upuprdupdup/wvnodd)
dedb (k=2 #drho®dbb#dcb
dedr(k)=dcr+dbb#*dbb#dch

300 continue
do 400 k=11, mmax
dedblki=dcdb(k}/sumil
dedr(ki=dcdr (k) /aumil

400 continue
flagr=omegal¥sumiO-wvno2tsumil-sumiad
vgr=sumil/(c¥sumiC)
ale=0. 5/sumil
xi0=sumi0
xil=gumil
xi2=sumia
return
eng
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30
40

£77 ~i ~12 dpegnBi. £ —o dpegnBl -lcalcomplad

piot dispersion curve
get data from reigenBl or leigen8l

dimension ¢(1000),v{(1000), mode (500}
dimension d(S00), a(500), h(500), rha(500)
character#20 names
character#4 yorn, xlog,ylog

common/ ctrl / yorn, xlog,ylog
formatla:

format (4£12. 9
format(9x, 15 3x. 010, 4, 3x,210. 4)
pi=2. #3. 141592652

writel(&, #) 7

write(& %) ‘Rayleigh(l}) or Love(2)7?’
read(3, % llvrr

writel&b, #) 7 7

ifillvrr. eq 1} write(s, #)
* ‘enter input file name: (from reigens8l)’
ifillrr. eq. 2) write(h, #)
#* ‘enter input file name: (from leigenBl})’

read (3 3 names

openCI,?ilewnamesiStatus:’old’,Form=’un¥ormatted’)

write (&, #)

* "how many modes and which modes wanted? (e.g.
write(&, #) ‘(if all modes wanted, answer 1.0 )~
read (5, #r nmoda, {mode (i), i=1, nmode’
if(mode(1). ne.0) go to 40
nmode=500
do 30 i=1, 300
mode(il=i
continue
continuga ‘ .
write(&, #) ‘plot U-pevrd(l) U-freq(2) C-perd(3}
write (& #) 7 K-freq(9) freq-Ki&) K-C(7)
writel(&, ¥) pr—perd(F) Ar—~fregq(10)’

3,1.,3,8)

C-freq(d)’
S C-K(8)

write (&, #}) gamma—-perd(11) gamma-~-freq(12)’

write (&, #)
read(S, %) ipg
write(& #) ‘plot X axis in log scale® (y/ni:’
read{5, 5 xlog

write(h4 #) ‘plot ¥ axiz in log scale?® (y/n):’
read{3, 5 ylog

rall plots(G, 0,7}

write(&, %) ‘enter ipen:’

read(3, #} ipen

call newpenlipen?

gorns=‘y -’

call plot(2. 8,2 2, -3}

write(s, #)y

Ardatten-perd(12) Arsatten—freq(lal:’



100

300

400

482

4835

484

487

488
500

mrite(s, #) ‘model:

do &OO kk=1, nmode

Trewind 1

read (1) nmax, (dlid,a(i),bl(i),rho(i}, gal,gbl,i=1, nmax)

ifCkk. g, 1) writelh, 15} (dCid,a(i), bCid,rhol{ild, i=], nmax)

read (i) nper,dphs

kkmode=0

continue

ident=mode (kk)

nt=0

itvig=0

continue

road(ily ifunc, kmode, t1

iflifunec. 16,0 go to 400

if{kmode, le. 0) go to 200

nt=nt+l

do 300 i=1, kmode

read (i) wvnod, urQ, ar=20, vd, gamal

cO=pi/ (tixuvnol)

read(1}) urQ, dur0, vz, duzO

if(i. ne. ident) go to 300

itrig=1

nn=nt

tinn)=t1

vinni=cd

iflipg. le. &) vinnli=u0

iflipg. eq. % ar.ipg. eq. 10} vinn)=arel/sqri{wvned)

ifl{ipg. =2q. 11. or. ipg. eq. 12} vinnl=gamaQ

iflipg. eq. 13. or. ipg. eq. 14)
vinni=are®d/(sqrit(wvnol)#exp(gamalx1000. 0))

continue

ge to 200

continue

if(itrig eq. 0. and. nmode. eq. 5S00) go to 400

ifltinn). gt 3000 0) nn=nn-1

do 530 i=1,nn

go to (300, 482, 500, 482, 485, 486, 487, 488, 500, 482, 500, 482,

500, 482), ipg '

=1, /7% (i)

ao to 3Q0

tlis=1. /7601)

viit=pist(is/vii)

go to 300

tmp=1. /£ (1)

Llid=pistmp/svii)

vii)=tmp

go to 300

tap=v{iy

viid=pl /(i) (il)

tid=tmp

go to S00

Clid=pi {tCidrav(il)

continue :

-— 53 —



B30

80

L]

ok % % % Ok

ifixlong. =q

L'y Y ki =loglO(Elind

iflylog eq. "4’} v{iy=loglO(v(i))

continue

rall diap(itrig,kk,ipg.ident,nn,t,v)

continus

call plot(0. 0,8 0,999)

closa(l)
close(2)
write(b, %)
write (b, #)
write(b, #)
stop

end

I3 I

‘job finished’

4 14

subroutine disp(iﬁrig,kk;ipg.ident:nn,x,q)

dimension

x(l)/g(i)

character#4 yovrn,nory, xiog, ylog

character#il alpha(2, 14}, alp,bet
common/ ctvrl / yorn, xlog,ylog
data alpha/

‘4 (km/sec)”
G (km/sec})’

T (se)
‘T (sec)

‘U (rad/km) 'y F (HZ)

"W (rad/km)’

TAmp Fac

an {(km/sec)
tor ‘7T (sec)

! Gamma LT (sec)
CAr#*atten LT (gec)

iflitrig e

q. O) write(&, #) ‘mo

iflitrig. eq. O) return

alp=alpha

i,ipg?

het=alphal(z. ipg)

iflyorn. eq
yorn=‘n’
ylen=4&, O
ylen=4 3
xmin=1. e+3
xmax=-—1 a2+

.'n’) go to 100

7
37

ymin=1. a+37
ymax=—1. a+37
do 80 i=1l,nn

iFix(id). ge.
ifix{i? le.

ifly(i. ge
if(ydid, le
continue

write (&, #)

ifl{ylog. q.

write (b, #)

if{xlng. 2q

write (&, #}
write (&, #)

if(ylog. aq.
ifiylog. aq.

xmax) xmax=x(i)
xmin) xmin=x{i)
.ymax) ymax=y{i)
cymind yminsy (i)

/
4
’
4
’
!
¢

!
!
i
1]
1
!
t
d

e ‘,ident., ’ 1

‘J (km/sec )’
‘C (km/sect’
f (H2) ‘
‘¢ (km/sec)’
‘&mp Factor
! Gamma !
¢ Ar#atten

fymin= ‘o ymin, 1 oymax=", ymax

Tyry writelh #)

~y value

fxmins S, aming 4 Xmays=, amax

gty write (b, #)

I3 ’

~% valueg in

’
:
'
1
!
!
'
S

0 (Hz) ‘Y
‘g (Hz} "y
‘R (rad/km)
‘K (rad/km)’,
‘f (Hx) )
0 (Hz) “y

£ (Hz) “/
not genevated. ’

in log sacle’

log sacle’

‘enter ymin, ymax, yinc, xmin, xmax, xine’

Ty 'y write (b )
fy’y write(br#)

—~x should be inkteger.

/

~y should be integer. '

...54...



roead (S %) yO, ul,yinc, x0, x1, xinc
yinut=(xi~-x0)/ »len
yinut=(yl-yCi/ylen

100 continus
if(kk.ne. 1) go to 500
write(sd, %) ‘plot axis™ (y/n)’
read (3, 5} nory

5 format(a)l
write(é&, #) 7
write(&, #) ‘wait. It is processing. '

ifinory.ne. ‘'y’) ge teo D00
call plot(xlen,0 G
call plot{xlen,ylen, 2
call plot(0.O,ylen, 2
call plot(0.0,G. 0,22
call plo%(0. 0, -0 03,)
if{xlog.2q. 'y} go to 110
if{x0.1%.0,0) xshif=-0.25
if(x0.ge. 0.0) xshif=-0, 13
if(xQ. ge. 10.0) xshif=-0 23
call number(xshif, -0.17,0.1,x0.0.0,1)
go to 12C
110 call number(-0. 12, -0.18,0. 1,10.0,0.0,-1)
call numbher (992, ,~-0.1,0. 06, x0, 0.0, 1)
120 continue
grid=xinc/xinut
yi=1.
200 xx=xisgrid
iftabs(xx) gt. xlen+0. 02) go to 280
gall plot(xx, Q. 0,2
call plot(xx,~0. 08,
xsum=xOFrxincH#yi
if(xlog.eq. ‘y'} gu %o 210
ifixeym. 1t. 0. 0 xshif=-0 &3
if{xsym. ge.C 0} xshif=-0 13
if¢ysym. ge. 10.0) ¥shif=-0. &3
if{xsym. ge. 100. 0} xshif=-0. 33
call number(xx+xshif, ~0. 17,0. 1, xsym, 0. G, 1)
go teo 22C
210 continue
rall number (xx—0, 12, -0.18,06. 1, 10.0,0. 0, -1
call number(999.,~0 1,0.0&, xsym, 0. O, ~1)
220 continue
xi = xi+l,
go teo 200
250 continue
call symbol(R %, -0. 5 0 16, bet,0 0,11)
call plot(0. G, 0 0,2
call plot(~-CG. 05,0 0,2)
iflylog. eq. ‘4’ go %o 240
if(y0, 1. C. 0y xshif=-0. 43
if(y0.ge. 0. 0} xshif=-0. 35
if{y0. ge. 10. 0 xshif=-0. 495
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call number(xshi#,~0. 05 0. 1,y0,0. 0,1}
go to 27C
260 continue
call number(~0.34,-0.06,0.1,10.0,0.0,~1)
call number(-0. 14, 0. 02,0, 04, y0, 0.0, ~13
270 continue
grid=ginc/yinut
' xi=1. :
300 xx=xi#grid
iflabs(xx). gt. ylen+0. 02) go to 400
call plot{(0. 0, xx,3)
call plot(~0.05, xx, )
xaym=yO+tyinc¥xi
if(ylog. eq. ‘y’} go to 310
if(xsym. 1%. 0.0 xshif=-0 43
if{xsym. ge. 0. 0) xshif=-0 35
if(xsym. ge. 10. 0) xshif=-0.45
if{xsym. ge, 100. O) xshif=-0 35
call number(xshif, xx=0.05,0. 1, xsym, C. 0O, 1)
go to 220 .
310 continue
call number(~0. 34, xx~0, 06,0.1,10.0,0. G 1)
call number (~0. 1&, xx+0. 02, 0. Ob, xsym, 0. O, —1)
320 continue
xi = xi+l,
go to 300
400 continue
call symbol(-0. 55, 1.5, 0. .16, alp,?0.0,11)
500 continue :
do 53%0¢ i=1l,nn
iflydtid. gt . yl) ylid=yl
if(x(i)y. gt xi) xCi)=xl
ifF(yCid. 16, 4O y(id=y0
if(x(iy. 1t x0) x(i)=x0
9530 continue
x{nn+l)=x0
x(nn+2r=xinut
yinn+li=y0o
y{nn+2)=yinut
call line(x,y,nn, 1,0, 0)
return
end
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deriv8i. t
£77 =i 12 derivBl. £ —~o0 derivBi

Thié proagram raads the eigenfunctions and derivatives
at diffevent depths from an output file of r(lleigenBl.

common/model/ d(30G0}:, a(500), b{(500), rho(300)

common/eigfun/ depth(500), ur(500), uz (500), tz (500), tr (300},
# dcda(500), dedb (500, dcdr (300)

character#®30 names

format(a?

format(///22x, ‘M 3x%, " D Y 3x, 7 A 2 3x, B O Bx, 'RHO)

format(2Cx, 13, 1x, 4F7. 2)

format (20, 13, 8x, 3+#7. 2)

format(/// /)

format(/ 7/ /77730, "T(EEC) =, £7.3/)

format(1Qx, " E = ‘,ell 4, CKM/8)Y = /, £7. 4,
3 ‘ Ulenergy} = 7, £7.4)

format(7x, 'CUAM/E)Y = , £7. 4, Ulenergy) = ‘', £7. 4,
%* 7 ALE = ‘“,ell 4)

format(10x, * 10 = ', ell. 4, I1 = ",ell. 4, 12 = 7,
# eil. 4

format(7x, ‘10 = ‘“,ail 4, ' Il = ‘,ell 4,7 12 = 7,
3 ell. 4,/ L= ‘,eli. 4)

format(iox, " I2 = 7, ell 4, ARE = “,ell. 4, " L. = 7
* ell. 4)

format (/" M7, Sx, ‘DEPTH’, Bx, ‘UR", 10x, “UZ 7, 10x, ‘TZ/,10x,
% ‘TR, @x, 'DCDA’, 8x, 'DCDB ., 8x, 'DCDR /)

formati{/ "’ M7, Bx, ‘DEPTH, &x, ‘DIGP, By, 'STREESS ', 8x,
4 ‘DC/DB Y Bx, 'DC/DR /)

format(lx, i3, £#10. 2, 7(1lx,ell. 4}
format(ix, 13, #1323 2, 4(2x, 011, 4))

format(/9x, ‘STREGSEC = 7, el11.4)

writel{s, #) ‘Rayleigh(il} or Love(2):’
vead(3, %! llirr

write(s, #) “enter the input file name: (Ffrom rllreigenBl})’
reaad{3, 3 names

opendl, file=names; status=‘old’, form='unformatted '}
rewind 1

read (1) amax, (d(i),alid, b(id,vho(i}, i=l, mmax)
write(b, #)y ¢

write(d, 10)

do 10CG i=1,mmax~1

writel(s 20 i, d(iY,alidY, b(i), rholi)

continue

i=mmay

write(s 300 i.aCiy, b{i), rho(i)

cantinue

read(l) ifun, mode,per

ifFCifun. 14.0) go to 300

if{mode. 1. 0} go Lo 200

writel{&, 40)

- 57...



omega=&H. 2831833/ per
do 40C k=1,mode
read{(l} 2,ee,c,ugr, xiCG, xil, xi&, xi3, are, flagr
wyno=gmega/lc
write(&, 45 per
gn to (210,220), 11lrr
210 continue
write(& 30) e, c,ugr.
write(d, 39) xiQ,xil, xid
write(éd, 0 xi3, ave, flagr
go to 250
22¢ continue
writel(s, 31) c,ugr.are
write(d, BHY xi0, xil, xid, flagr
250 continue
if(lirr. eq. 1) write(& 70)
if(lirr. eq. 2) write(&, 71)
do 300 i=1,mmax
road(l) depth(id,urlid,uz (i), 6201}, tr i),
* deda(i), dedb (i), dedr (i}
if{lirr. aq. 1)
#  writelh,79) i,depthlid,urCid,vz (i), vtz (i), v (i),
# doeda(i), dedb (i), dcdr (i)
ifillrr.aq. 2)
* writeld, 74 i,depth(id,ur(id,uz(i), dedb (i), dedr (i)
300 continue
write (b, 80) ee.
400 continue
gn to 200
200 continue
shop
and
ot A%
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wig8i. §
£77 ~i =12 wigB1l. f —~o wighl

This program generates ten basic types of synthetic
spackrum afier combining the eigenfunciions from
reigenB1 and/or eigenB8l with the source spectrum.

The output can be a seismogram'mhi;h will input to
the program gleB8l or a spectrum which will input to
the program specBl for plotting.

The dimension needed has been reduced %o the minimum by
using the sysbem call.

The program ‘bigfft’ to do fast Fourier transform should
gxist in the present working directory. '

The maximum point for time histories iz B172.
The marximum mode number at any period is 400.

dimensinn rei{20}, tshif (200, np (Z0C)

common/srctim/ erc (500)

commons/ctrl/  messv,sicxmom vC 80, npQy kkr. kkls Kkf,ino
common/resp/ d¢. bmax, mode, peri, per3(200), xx(20), yy (20)
tharacter®30 names

9 format(al

&pen(7,Filen’t1‘d”,statusw'scratch’,Formﬁ’unformatted’)
spanif, File="t2 ‘, status=‘scratch’, farm="unformatted ")
write (&, #)
# BE SURE bigfft exist in the present divectory. ’
write(&, #) ° 7

write (b #)
%* fanter the name of input file: (froem rveigenBl)’f
write(d, #) “(if not use, answer none I’

raad {3, 51 names

kkr=0

if{names. eq. ‘none’) go %o 100

kkr=1

100 write(&, %)

* ‘enter the name of input file: (from leigenBl)’
writel(h, %) “(if not use, answer none )’
kk1=0

read (%, 3! names
if(names. 8q. ‘none’) go to 120
kkl=1
opan(&:?ilesnamealstatusm’old’.Formu“unformatted’)
120 continue
write (&, )
“# ‘seizmograms {1}, spectrum(2), ov both(3) wanted?’
ragd (3, #x iftyp
ifiityp. 2eq. 20 go to 140
writeléb&, %)



* ‘enter the name of output file for seismogram: '

read(3, 3 names
open(S,?ilewnamea,statusa’new’,Form='un$ormatted‘)
rewind 3

140 if(ityp. eq. 1) go to 160
write (&, #)

# ‘enter Lthe name of output file for spectrum: '
read(d, 3) names
open(4:fileznames,statusm’new’;Form=’un#mrmatted')
rewind 4
write(é, #) ‘what kind of spectrum wanted?’
write (& #)

#* ‘all modes(i), fund—~high modes sepavated(2):’
road (5, %) kk¥f

140 continue '
writelé&, #) ‘enter source seismic moment(in 1. e+20):
read(3, #! xmom
write(d #) ‘enter source type (step:1 bell:2 readin:3):’
read (3, #) ms '
write(b, #) ‘enter di: ’
read{5, #) d%t
ifims. eq. 2. or. me. 2q. 3) call source(ms.dt)

170 continue
write(b, #) ‘enter station locations-= v, tshift, npt:”’
write(&, ¥}

s

* ‘{yze v, Lshift, ~npt if no interpolation wanted. ’
write(& #) ¢ uze —1,0,0 to stop this sequence. 1}’
i=i

200 continue
read (S, %) vr(i}, tshif (i), np (i
if(rr(i}. le. 0.0} go to 240
ifinptid. 1£.0) go Lo 230
npt=np (i}
nptG=1
continue
nptO=2+%npt0
ifinpt. =q. nptd}r go to 230
npti=2%*npt0
ifinpt. 1t. npti. and. npt. gt. npt0) go to 240
go to 23C
240 continue
np(i)=npk0
write (&, %)
# ‘npt is not in power of 2  adjust to “ynpli)
250 continue
i=i+]
go Lo 200
260 nstami~-1
ifCityp. ey, 1. or. ityp. eq. 3) write(3) db, nsta, kkr, kkl
if(ityp. @eq. 2 or. ityp.eq. 3) write(d) db. nsta, kkr, kkl, kkf
kO=0
ravo=0 G
open(qlﬁilem’bigFFt.d’,statug=’new’.Fmrmn’unformatted’)

L8]
LJ
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do 400 ki=1, nsta

kU=k0+1

O=rr{ki:

tO=tehif ki)

npG=np (k1)

inCG=1

ifinpCG. le. 0) inQG=2

npC=abs{npl)

df=1. /{npO*dt)

if{ms. eq. 1} g0 Lo 33C

generate the source spectrum,

if{ki. na. 1. and. npC. eq. np(ki~1}) go te 350

isign=-&

reyind 2

write(®} npO,dt, df, isign 7

do 300 i=1l,npC. 2

ile=i+d

if(1, le. S00; write(9) src(i),srcl(il}

if{i. gt 300) write(®) 1270, 2870
300 continua

close(Q)

call system{ "bigfft’, kretn)

open{9, file='bigfft. d’ status=’ 01d’;Fc1m“’unF0rmatted’)
350 continue

itp=ityp+2

if0ityp. 2q. 3) itp=3

ino=in0

ifiitp. g 3} ino=l

the main call.

call main(kO, ki, itp}

iflityp. =q. 3 call main(ko, k1. 42
400 continue

close {1}

close (23

if(ityp. eq. 1. or. ityp. eq. 3y close(3)

if(ityp. 2q. 2 or. ityp.eq. 3) close(4)

closa (7, :tatusz’delete’)

close(8 status='delate ')

write (&, *)

write(d, ) ‘wigBl finished’

write (& #*)y ¢

stop

and

J]

subroutineg main(kO, k1, itp)
dimension d(80r, alB0), b(BM) ,rho(SO),qal(ﬁq\,qbl(BO)
commondctrl/  me, st ei xmom 0O, 0, npO, kkr, kkl, kkf,ino
common/resps  dFf bmax, mode, perl, per2(200), xx (20), yy (ZE)
10 format( 2%, M 5%, ‘D 7% A 7% "B Gy FRED Y, Sx0 QAT
o by, ‘GE

_&1..



20 format(id, &Ff8. 23
30 formatl’
#* ‘nn,

towind 7
regind B
KO=kO+100
kk=kkr+kkl
do 200 k2=1, kk
icodea=k2

ifikk. eq. 1. and. kkl. 2q. 1)

rewind icode

IF(kO®k2. eq. 101}

read(icode)
mmax, (d(]

bmax=b (mmax}

do 100 di=1,mmax

100G if(kO#k2 eq. 101)

%

&

read{icode}
if{k0%k2. eq. 101

source depth
of periods generated

write (b, 207

=, 87,2/

in surfacedl =’,i5)

icode=z2
write(éd, 10)

yoalid,b(id,rho(id, qai (i), qbl (i, i=l, mmax)

isdtid,adidy, blid,rho(id,qal(i), qbiCi)

nper, dphsre

write (4 30) dphesrcrinper

if kO eq. 101, or. kO#k2. oq. 201) write(itp) dphsrc,nper .

ifF (k2. eq. 1)
write(b . *) 7
it(itp. eq. 3. and.
write(b, #) 7
S i
iflitp. 8q. 3. and.
writel{b, #)
* 3
iflitp. 2q. 4. and.

# writelb, #)y
4 ?
itlitp. =g, 4. and.

4 write (& %) 7

¢

write(itp)

0, €0, np0

icode. 2q. 1)

RAYLEIGH seismogram for station #
is undey calculation. ’
icode, eq. &)

LOVE seismogram for station #
is under calculation. ’
icode. eq. 1)

ReYLEIGH spectrum for
is under calculation.
icode. eq. &)

LOVE spectrum for station #
is under calculation, ’

ki,
vkl
f’ kll

station #

ikl

the main routine.

iff{ino. eq. 1} rcal
iflinn. vq. @) cal

I inter(itp,icode)
I noint(itp, icode?

200 continuea
rewind 7
rewind 2
go to (300,500}, itp~-2
330G sontinue
iflkkr. 2g. 1) read(7) per, (xxCid), i=1,16&)
iflkkl. vq. 1) read(8) per, (xx (i), i=17, 20
write(3y (sx (i), i=i, 209
if(per. 1o Q. O) go to AQGQC
go Lo 230G
5CC continue

iflkkr. eq. 1)

read{7) poar, (xx (i), i=1, 14}
if{kkl ayg. 1) read(B)

per, (xx (i), i=17, 20)



i

write(d) per, (xx{i}, i=1, 20)
ifikkt. ea. 1. and. per. 1t. Q. 0) return
if(kkf. 2q. 1} go to 30O
if(kkr. »q. 1) read(7) per, (xx(i),i=1,14&)
1f(kkl. eq. 1) readi8®) per, (xx(i), i=17,20)
write(4y per, {xx(i}, i=1, 20)
ifiper.le. 0.0) go to 60O
go teo 500
60C continue
return
end

subrouvtine intev(itp,icode)
This routine sets the end values Ffor dinterpolation,
common/dimen/ ur (200, 2), dur (200, 2}, v (200, 2}, duz (200, 2),
#* wvno (200G, 20, ur0(206, 2}, are (200, 2), gamma (00, 23
commonsoctrl/  me,sr.sis xmom v0, 0, npO. kkr, kkls kkE, ino
commonsresp/ d4f, bmax, modeC, perl, per3(200),
* Toxr (L&Y, 11 A), yr (16, yl(d)
ifims. eq. 1) go to 90 '
rewindg 9
read(?}) npx,dtx. dfx,isign
20 continue 4
npa=npl/2+1
itodel=icodetéd
read(icode) ifunc, moded, perz
iflifunc. 14, 0) writel(é&, %) ‘no data in the eigen file. '
do 200 y=1, mode?
read{icode) wvno(y, 2}, ur0(y, Q) are(y. 2y, var, gamma( §, &)
read{icode) urCy,2), dur (g, 2y, vz (2, durly, 2}
200 continue
itrig=QC
_——do 800 1i=npad, 1, -1
’ do 300 =1, 16
yr (=00
yr{y1=0. 0
300 continue
do 310 j=1,4
x1 (=00
yl{ =006
310 continue
per=—1.0
if(i.eq. 1) go te 750
ifi{ms. ne. 1) read($) sr,si ! b
per=1 /({i-1)adf v s
ifli. eq. 2 go to 320
dper=1. /{(i-2i4%df)~per
320 continue '
perO=per-0. GOS#dper '
ifii.eq. np2) perC=per+Q, O03*dper
330 if{perd. Lt pard} go %o 400

— B3 -



340

350

346G

400

770

—80¢

N

3+

ifiitrig. eq. 2) ge te 7950

perils= p@vw
model=mod

vedu<1~cae,endn?5a) ifunc, mode2, perd

itvige1

ifl{1func. g% O) go to 340

itrigaﬂ

g0 to 320

continue

do 330 ;=1.,model
wvnol gy, 1y = wvno{y, 2}
urCCy, 13 urO g, &9

o

arely, 1) ared g, 2
gamma(y, 1) = gamma(y, 2)
ve g 1) = yrlj, &

dur g1y = dur(y,2)
ey 1 = yzly, &)

duz {1y = duz gy )
continue ’
do 360 =1, model
perd3(yji=perd

read(icode) mvno();E):urO(J,Q),are(J,Q).ugr,gamma(J,E)
read{icode) urly, @), durly, 2), vz, 2y, duz(y, 22

continue
go to 2330

1#{itrig. eq. Q) go fo 730

mod=modal-moded
model=modesd
continus
kk=itp~2

if(itp. 2q. 4. and. kkf. eq. 1) kk=4

gn to (710,720}, icode
call excitriper, ki)

iflitp. =q. 4. and. kkf. eq.2) call excitriper,3)

go to 750
call excitlper, kk)

iflitp. 2q. 4. and. kkf. eq. 2) call excitl(per,3)

continue
go to (740,770}, icode
writel(7y per,x7

iflitp. 2q. 4. and. kk¥. eq. 2) write(7) pev,yr

go to 500
write(B) per,xl

iflitp. oq. 4. and. kkf. eq

continue
return
engd

subroutine noint(itp,

al
-

write(8) pev,yl

o e me em e wm s ek R e h e e R e e e e

icode)

commonsdimen/ ur (200, 2, dur (200, 2), uz (200, 2, duz (200, 2),

wvnn (200,

20, ur0(200, ), are (200, 2), gamma (200, &)

N3 -
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33

4006

o906

400

'

common/ctrl/ ms, s, si, xmom 0 80, npO, kkv, kkl, kkf, ino

common/vresp/ df,bmax,mode, perl, per3(200),
xr(1&), x1 (&), yr(1&), ylif)

irodel=icode+h

continue

do 310 j=1,1&

2 ( jIy=0.0C

yr(31=0.0

continue

do 320 y=1.,4

x1(y}¥=0.0

yloyy=0 0

continue

read(icode end=%00) ifunc, mode: per

if¢ifuneg, 1e. Q) per=-1.0

if{ifunc. le. 0) go to 730

do 330 y=1,mode

reoad(icode) wyno( g 1, ur00 1),avely, 13, ugr, gamma( j, 12

read(icode) uri{y, 1), durCy 1), uzCy, 1), duz(y, 1}

wvno (g, &r=wvnol j 1)

urlly, 2i=ur0(y, 1

arej, 2y=arely 1)

gamma( j, 2)=gamma(y, 1}

ur (g, 2Y=ur(y, 1)

dur(y, 2y=dur (), 1)

vztCye2r=u2(y, 1)

duz(y, 2r=duz (., 1}

continue

ifl{mg. eq. 1Y go Lo 450

npe=npQs/2+1 P

peri=1. /((npa-1)%*df)

if{per. 1% perl’ go %o AHOO

regind ¥

read{(9} npr,dtx, dfx.isign

read(F) sri,sitl

j=npa-a

continua

ifly.8g @) go Lo &OOQ

pera=1. /(j%dd)

read(?) sva, sid

ifi{per.gt. pera. and. per. le. perl) go to 200

perli=persd

srd=stl

sid=s51il

JEg1

go to 4004

sraarl+(per—paril}/(perd-perl)tlisr2-s11)

siz=gil+{par-peri)/(per2-perl)#(si2-gi})

go to &30

writel(s, #) ‘The period range of source pulse spectrum’

write(é4, #) ‘does not cover the period =7, per

write (&, #) ‘Now v='.v0, " npt=/npl, * dt=",dh¢

write(& #) ‘and the period range is ‘1. /((np2-1)Yxdf},

-~ 65 .-
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650

710

720

750

760G

770

800

00

Q0

#* -ty b /A F
write (&, *) ‘TRY DIFFERENMT npt.dt. ’
stop
continue
kk=itp-2
i#(itp. eq. 4. and. kk#. eq. 1) kk=4
gn to (710,720), icode
call excitr(per, kk?
if{itp. eq. 4. and. kkf. eq. @) call gxcitriper,3)
go to 735G
call excitl{per, kk?
if(itp. eq. 4. and. kkf. =q. 2} call excitl(per.:3)
continus
go to (740,770} icode
mrite(7) per,xv
if(itp. oeq. 4. and. kk#. =2q. 2) write({7) per,yr
go to 80C
write(8) per,xl
if(itp. eq. 4. and. kk#. eq. 2) write(8) pevriyl
gontinua '
go to 300
continue
return
anid
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subroutine excitriper,ident)
This routine genervates the Z and R components of
sejsmagram for

1: 45-deg dip-slip source & strike~slip souvrce
3. dip-slip source 4: eyxplosion source.

The number 200 in dimension declaration limite the
number of mode at a particular freguency not over 200.

dimension dk(4), dkk (4}, vz (2,4}, vr(2, &)
comman/dimen/ U1 (200, 2), dur1 (200, 2, w1 (200, 2),
%+ duzl (200, 2 wvnol (200, 2), ur01 (200, 2),
“* arel (200, 2), gamma (200, &)
common/etrl/s me, 510, 530, xmom, X, Exonpy, kkr, kkl. Kk, ino
common/yrasp/ Af, bmax, mode, perl, per3 (2007, xz (2, 41},
& xr{2:4), x5(2, 2 \JZ(Q: 4%, UT'(E’.J 43, Ut(gi 2)
do 9C i=1,2
do 20 3=1.4
vz{i, $r=0.0
wr (i, J):‘-O 0
continue
TXAEDX
spectra normalized to a distance of 1000 km.
ifiident. ge. 23 rxx=1000.0
Ji=1
iflident. eq. 3> Ji=2

...6& -



J2=mode

if(ident. eq. 23 ya=l

ifi31. g%, 32 return

do 200 =41, 42

rat=0 0

if{ino. eq. 1) vat=({per~perl}/(per3(yi-perl)
pivao=wynoli 13 + (wvnol( g, @)~uvnol (g 1) i4rat
abn=gamma j, 1)%ryx

factl=0. 0

ifiatn. 1t. 8C. 0) facti=1l Jexp(atny
atn=gammal j, 2)%rX

facte=0. 0

ifiatn. 15, 80. 0) fact2=1. /explatni

omaga=h. 2831853/per

vi = arel (g, 1) /sqrituvnol (), 1isrxx)

v = oarvel(y, @) /sqrifwvnol (g, 2)r¥rxx)

wl = duzi (), 1)+0. Srwvnol (y, 1y#uri(y, 1)
wl = wiwvlsfactl

vl o= wl*yrOli(y, 1

w2 = duzl (g @)+0, Srwvnol (g, 2)%url (g, 2)
W = w2Ev@%factd

uz o= w2eur0l(y, 2

dk (1Y = wi+t(w2-wll#*rat
dhk(ly= ul+(u2~ullxrat
wl = wvnol(y, 1¥xurtCy, 1)
wl = wlsxvixfactl

ul = wizurCl(y, 1)

wa mvnui(J,“)*uvl(J,E)
we = wRd4v24fact?

uR = opReEur0l Oy, 2)

1t

dk {2y = wi+t(wd-wi)srat
dkb (2= ul+(u2-ulistrat

wl = wynol(y, Lixyzl Oy Ti+durliy, 1

wl = wlisvliafactkt

ul o= wlaur0l g, 13

wR = wvnol g, Dy#uzl (g 23 +dur iy, @)
we = wRdvasfac ks

u= w2¥urOiiy, 2)

dk(3) = wl+(w2-wli#rat

dkk(3)y= ul+(ud~yll)srat

wi = durlily, 1)~wvnol(y 1ix0rl1(y, 1D
wi = wisvi#tfactl
ul = wisurQl(y, 1)
w@ = oduzl (g 2)~wvnol(y, 2)#ur 1y, 2)
we = wEsvR#fact
ud = wRdkur0i (g, 29

dk(4) = wit+(uZ-wil¥rat

dikk{dr= uvl+lud-uli®rat
tO=xmom/2. 30462823
ti=omegastbtx~wvnoxrx~0, 785398143
fR=pmegartx—~wvno¥rx-2. 3546194489
cti=cositl}

sti=gin(Ll)
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non

[ 2 I 2

MmN

160
200

300

4G0

o
£y

cE2=r0s(£2)
ste=sin(£3) -
dn 100 k=1,4
ch=ctil

ifik, eq. 23 ct=
sg=shl

ifl(k.eq. 3) st=
vell, kar=vr (1, k
wi (2, kymvz 2k
ch=ch2

iflk. 2q. 2} ct=
ststd

iflk. aq. 3) si=
v (L, ky=wr (L, k
v LR kyeEvr (2 k
continue
continue
ifims, eq. 1) go
sr=s1rQ

s1=5810 _

go %o 240
sr=0 0
si=—per/& 2831
continue

do 300 k=1,4
tO=vz (1, kI

-a%i

1

1

yo~ dkik)etOunct
yo- dk(k)#g0%et

-

cte

yor dkk(kI#EO%ct
v+ dkk(kI#tO%st

to 220

853

vl kr=maravzil, bri-gisvz (2, k)

vl (2, kimsridvi|
tO=ve (1, k3

S k) rsi#i0

i ll, kr=sravr (1, k) =sisvr(2, k)

wir (@2 ky=gr#vr(
continusg

do 400 i=1,2
do 4CQO J= ¢ 4
iflident. ne. 3)
iflident. ne. 2)
iflident, egq. 3)
iflident. eq. 37
continue
return

end

2, k¥+sistO

vz i, grs=wz iy g}
x7 (i gds=vr (i, b
yzii, g)=vzli, §3
yr (i, gi=vr{i, y?

subroubine excitl(per,ident)

This voukine genevates the T component of seismograms

for 1 dip—szl

dimension dk(2
romman,diman/

ip source

-
2.

e - m e e e

strike-slip

2 rveal & imag part J=1, 2

yovE(2:2)

P

sgurce.

sovrce

uh1(R00, 2), dut1 (200, 2), d21(200, 23,

duz1 (200, 23, wvnol (200, 2), ur01 (200, 2),

-

68 -

[



# alel1(200, 27, gamma (200, 2}
commonsctrl/ ms,sv0,s5iC xmom, vxs txonpx, kkrs kkl, kkf ino
common/rasp/ df, bmax, made, perl, per3(200), xx (16},

* 2602, 2)Y,yyis), gt (2, 2)
do 90 i=1,2
do 90 =1, 8
vbt(i, §I=0.0

20 continue
TXEETY
itiident. ge. 2) rxx=1000. 0
Ji=1 I
if(ident. eq. 3) ji=2
Je=mode
if(ident. eq. 8} J2=1
if¢yl. gt y2) return
do 100 =31, 42
rat=0.0
if(ino. eq. 1) vrat=(per-perl)/(per3(jl~parl)
wyno=wvnal (1) + (wvnol(y, 2)~wvnol{y, 1) )#vrat
atn=gamma (., 1i#vx
facti=0 0
iflatn. 14.8C. 0 facti=l. /explatn:
atn=gamma( j, 2)#vrx
factd=Q. 0
iflatn. 1t RO, 0} fact2=1. /explatn)
cmega=6h, 2831853 /per

vi = alai(y, 1/ sqritdwvnol (g, 13%rxxs
v = alel(y, @) /sqritlwvnol (j, @)#trxx)
wi = duti(y, Iy#visfactl

w2 = duti(y, 2rsvasfactd
dki1) = wi+(w2~wllixrat
wi = wvnelly, 1¥#uEl (4,

wl = wisvisfacti
we = wvnol (J, %0l (§, 2)
wa = wRdvadfact2

dk(2) = wi+(w2-wli*rat
tO=ymom/ 2. 5066283
ti=omegastx—~wvno#rx+0 785359814632
cti=cosi{tl)
sti=sin{tl)
wh (b, Tyawh (1, 1)
vE(2, 1i=vi (2, 1)
vt(l:ZR)r«'vt(i; 23
vi{a, 2Y=vt (2, &7
100G continue
ifims, 2q. 1) go to 120
str=aT0
si=gil}
g %o 14G
120 sr=0.0
siz~pnar/& ZBR21853
140 continue
de 200 k=1, 2

dk (1)#AL0#s%1
dk(1)#t0O#ctl
dk(ey#t0%ctl
dk (2)#t0%st61

+ + i+
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n

n

tO=vit (1, k)
vE(L, k¥=sr#vi (L, k) -sistvi(2, k)
vE(D, ki=sravi (2, ki+sint0
200 continus
do 300 i=i,2
do 300 5=1,2
iflident. ne, 3) xtii, gr=vili, jJ
iflidant, eq. 3 yt i, yl=vili, j?
3CC continue
return
end

subrovutine sourcelms, dt)
enter source time Ffunction,

common/srctim/ svc(3S00)
character#30 names
do 30 i=1, 8C0
src(idy=0. 0
90 continue
go to (100,200 ms—1
100 writel(hH, #*) ‘enter 1 for bell type of source’
read (S, %} t1
call pulsel(sre, 500, 4%, t1)
refurn
200 write(&, #)
#  finput source time function from herel(l) or filel(2)7?’
read {3, % 10 ‘
if(i0. eq. 1) go to 250
write(é&, #) ‘enter file name storing source function:
read(3, 5 names
5 format(a)l
gpeni{?, file=names, status=‘o0ld’, form= "Fformatted ')
rewind 9
J=1
220 continue
read (9, #, end=230) src(y?
J= g+l
il ). =q. 300
#* writel{& #) ‘source timeseries too long! 3007
if(y. 2q. 300) gn fteo 230 ' '
no to 220
230 continue
closa(9)
rehurn
2530 continus
write (b, &)
# "enter souvce Lime funcltion for every (i-1)d#dt: ¢
write (& %) “(uge —-1000. 0 to stop)’
J=1
260 continue

7
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read(S, %) src(j)
J=4tt
iflsrel i, 1t -99%. 0) go to 280
go to 2&0C
280 sro (=0 0
refurn
&nd

subroutine pulse(f, n,dt, t1)
C give a source fime function

dimension f(1)
t1 0.0
t2 1 o+ 1
£3 t2 + tl
t4 3 + 4l
td + %1
GO0 1 = 1, n
y = {(i-1i#dt
TR
CFi) = 0.0
if(y. g% t1) go Lo 101
gu to 10G
101 ifdy.gt. £2) go to 102
FOLY) = (x/%1)#(2/%81320. B
qo to 100
102 ifly.gt. £3) go to 103
FOLY = = (2/%81¥%(2/781)%0.5 + 2, 0#(z/%1y - 1.0
go to 100
103 1+f(y.gt. t4) go to 104
FOLY = ~ (/8135 (2/41040. 9 + 2. 04#(z/¢t1)y — 1.
go to 100
104 if{y.gt. t3) go to 105
FOLY = (/%10 #C2/%1) % 0.5 -4, 0 «+ (z/%1) + 8.0
go to 1C0 '
105 #(i} = Q.0
100G continue
c area of pulse novrmalized to unity
do 20C¢ 1 = 1, n
200 FO1) = F(1i) /(2 #t1)
rafurn
end
I RN A
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£77 =i -12

2

lai. # ~¢ gleBl -lcalcompll

This prwgram follows the program wigll and genevates
the seismogram after passing through an instrument,

The instrument response is imposed in the fraquency
domain,

The source mechanism should be given here.

The dimension neaded has been reduted to the minimum,
and time sa2ries point can be as large as 8192,

The restviction for this point dimension comes from
the FFT program ‘bigfft‘, which should exist in

the present working directory.

~0ct 10, 1981,

dimension Jy(5), az(100), baz (1C0)
complex data(iC),rr, tt, £F
common/dimen/ x(1024&), y (10286}
cammon/pltzes/ tO,yend,yl, iplt, yctrl, bbb, cc
common/keep/ si,s2,33 81, t2,cosl,sinl, df
character#*? form(3).bb,cc
character#3C names
data form/‘Z 7, 'R, ‘BHY, ‘NS, 'EW’/
3 format(ail
10 formati{/ix,a2, " component for station at R=', 8. 1,
#* T Az='!,f6. 1, i% being processed. ‘)
20 format(/1x, ‘ing="', 12, 9x, ‘peak= ", #7.1,° iresp= /,
# 12/ dé= , £9.8, ° ndist= 7,12, 7x, ‘dphsrc= ‘ £6. 1/
#* © 2 Ry BH N, E: 512, 8%, ° Guake,Expl: i/
#* o dip= 1, £5. 1, 8%, ‘slip= 7, £5.1,58x, ‘strk= ', £#3. 1)
30 format(ad, ix, ‘component )
writel&, %)
write(4, %) ‘BE SURE 7
# ‘the program bigfft exist in the present directory, ’
writeld, #) _
# ‘and not be used by other similar Jobs. '’
writel(&, *)y
write(b, #) ‘calculate only(l), ‘.
# ¢ plot onlydi{2), or calculate and plot(3): '
raad(3, %) iplt
write(a, #) "snter the input file name:’
read{(3, 3} names
open(l, file=names, status= old’, form="unformatted )
rewind 1
writel& #r ¢
write(d, #)y ‘store the seismogram data: (y/n)’
read (%, 5% bb
ifibb.egq. 'n’) go to &O



60

80

*

#*

“*

*

o+

<t

+*

write(s, #)

‘data (x,y) will be stored

write (&, 4)

Tantar Lthe files name for

read{(d, 3! names

in

storing

the format of

(2e13.8). 7

seismogram data:

open(?, file=names, status="new’, form="formatted ')

rewind 9
continue
ifliplt. eq. 2) go to 70

open(2, file="bigfft. 4’ status="neuw’,
form=‘unformatted ')
open(d, File="tmpp. d’, status="scratch’.
form= ‘unformatted’ )

ifliplt. ne 1} go to 70
write (&, #) 7 7

writel(s, %) ‘enter output file name
“for stering the ploting data: ’

road(3, 5 names

4

open{3, file=names, status="new’, form="unformatted )

reyind 3
continue

input control parameters.
Jotivl=-1

ifliplt. 2q. 1} go to 80
call plots(G, G, 7))

write(&, #) ‘oviginal pen move:

read (3, #) x1i,ytl
cail plot(xi,yl, -3}
yend=yl

ipens1

write(é, %) ‘choose the pen: ’

raad(d, %) ipen

call newpen(ipen)
ifliplt. eq.2) go to 140
continus

(1.8,10. 37

write(&, #) ‘chooss the type of instrument’
writeléd, #) (=0 13-100 WWESN

write (&, #}
write (b, #)
write(b, #)
write (&, #)
read(3, %) ins
write (b, #)

=4 WWGEEN 5P
=& CEEM 8P

L N RN

=] 30100 WWSSN’

=3 USEE 8P

=2 &£824-13 LP SYSTEM =3 &824-2 LP SYSTEM'

=-1 do NOT pass throuvgh any instrument )’

‘enter the peak value for instrument response: ’

read (3, #}) peak
mrite (&, #)

‘Take integration(-13},

re2ad (3, %! iresp

read{l} dt,ndist, kkr, kkl
kkmkkr+kil

read(1}) dphsvc,nper

~ 73

derivative(l),

onr

not(Qy:
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c

c

#* 'Boih Rayleigh and Love eigens been anera*ed
* ‘Only Rayleigh eigens been generated.

#* ‘Only Love eigens been generated.

write(b,%‘ 0o
iflkk. 2 write (b, %)

s

iflkkr. eq. 1. and. kkl. eq. Q) write(é #)

4

iF(kkr. eq. O and. kkl. eq. 1) write(&, #)

’

write(& #)
write(&, &)

#* ‘Which components to be plotted? (Z,R,8H, NS EW)'’

write(&: #)

# 'if yas snswer 1, no answer O (e.g. 1,001,137

100

110
120

-150

130

14G

read (3, #) (jJ(i)lizlls)

ifi{kkr.ne. 0} go teo 1QO0

IERPIS RENFES=S]

if(y.eq.O) go to 100

write(&, %) ‘no P8V wave ready. vun again,
go to 10Q0

continus

it(kkl.n2. O go to 120

if0yg(3).eq.0) go to 110

writeld, #) ‘no SH wave ready. run again.
go to 1000

continug

continue

4

4

input source mechanism,

write (&, %)
write(&: 4

# ‘no. of epicentral distance generated = ‘,ndist

write(&, %) ‘souvce depth = ‘,dphsrc,’ dt = ', dt
write(éd, #) °

write(éd, #y ‘earthquake source{l) or explosion(2}7
read (3, %) n3

degrad=3. 141592653/1850. G

if{m3. eq. 2) go to 130

write(é, #) ‘enter the source mechanism dip.slip,strk:’
read(S, %} dipCG,slipC strk0
continus

s 7

ifliplt. eq. 1) write(2) ins,peak,ivesp.dt, ndist, dphsrc,
3 JgemZ dip0,slip0, strkO

go to 130

continue

read(1l} ins, peak,ivesp,dt,ndist, dphsrc, jy, m3,dipl
#* $1ip0, str kO

write(h, 20y ins, peak, ivesp,dt, ndist, dphsvo, § g mdd,
a* T dipC,slip0,str kO

150 continus

c—~200 the main loop.

c
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iarm=0
iar=—-1

ztations at different epicentral diatances.
do 900 kdist=1l,ndist
iar=iaz+i
ifiiplt. 2q.2) go teo 210
read(i}) v0, t0, npO
write(&, #) ° F
write(h, #) ‘v=', 10, " tO0=', %0, npO=’,np0
write(& %) 7
np2=npd/2+1
df=1, G/ (npOxdt)
if(iaz. 1t. iazm) go to 180
iaz=~1
write(&, #) ‘enter Az, bAz (in degreed:’
write(s, #) ‘(use bAz=0.0 to set bAz=Az+1BO 0O’
write(&, %)  use ~1,-1 to stop)’
k=1 '
160 continue
read(8, %) arl(k),.baz(k)
iflazl(kr. eq. ~1. 0. and. baz(k). eq.~1.0) go to 170
if(baz(k}! eq. 0.0) bazr(k)=az(k)+180.0
" if(baz(lk). ge.360.C) bharl{kl)=baz(k)-360. 0
k=k+1
go to 140
177G naz=k—-1
wirite (& %)
# ‘how many sets of different distances FOLLOWED will use ’
write(éb, *)
# ‘the above azimubth data: (if not know, enter 100}~
read (3, #) iazm
180 continue
writedl(4, #)y 7 '/
writel(&, #) ‘wait. ’
rewind 4
do 200 k=np2, 1,1
read{(1l) (datali),i=1, 10}
write(d) (datali), i=1,10)
200 continue
if(iplt. =q. 1)
#  yrite(3) v, t0, npCynaz, (az(k), baz (k) k=1, naz)
210 continve
ifliplt. eq. &)
4 read(l) v0, tC,npO:/naz, (az k), baz(k), k=1, naz)
ni=npGr1024
nm=npQ0-ni&*l1024
nl=ni+i
if{nm. eq. 0) ni=ni-1

stations at diffevrent arimuths.

do 900 kai=1l,naz
phiO=az(kaz}

- '75...
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phil=bar(kaz)
ifliplt. eq. 2) go to 310
phi=philsdegrad
cosi=cos{phi)
sinl=sin(phi)
if(m3. eq. 2) go to 300

-390 dislocation souvrce

strki=phiO-strkO

dip=dipC#degrad

slip=slipO#degrad
strki=strkisdegrad

strk2=2. #strkl

dip2=2. #dip

si=sin(slip)#ain(dipa)
sP=—~(cos(slip)#sin(dip)#sin(strkel+

* O, S#ginl(slip)#sin(dip2)#cos{strkal)

s3=sin{slipitcos(dip)#sin(strkl)-
#* cos(slip)*cos(dipi#cos(strkl)

tlﬁsin(slip)*cos(dipg)*cos(strk1)+
#* cos(slipi*cosidipi#sin(strkl)

t2=cos(slip)#sin(dipi#cos(strka)-

# 0. S#sin(slipi#asin(dip@)#sin(strka)

300 continue
310 continue

~500 store the spectrum data in bigfft. d

different components at the same station.

do 200 4=1,95
i€¢ y0y). 2q.0) go to P00
ccsformd §)
write(&, 10) cc,v0, phil
ifliplt. eq. 2) go to &30
regind 2
rewind 4
izign=+2
write(2) npCG.dt, df, isign
do 500 k=np2, 2, -1
read(4) (data(i),i=1, 10}
froq=(k-1)4d+
gqo to (400,320, m3
320 go to (330, 340, 350, 3&0, 370),
330 ff=data(4d)
go Lo 440
340 ff=data(8)
go to 440G

350 write(& %) ‘explosive source no SH wave.

gn to 1000 .
360 Fem-~cosiwdata(8)
go to 440
370 ff=—-sinisdatal(b)

— T& -

Tun again.
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go to 440 ,
400 go to (410, 420, 430, 440, 440},
410 ff=sl#datal(l)+s2xdatal(2)+s3*data(3)
no to 4&0C
420 feusiddata(Sr+eP¥data(o)+eddatal?)
go to 4&C
430 fe=tid4data(F)+taxdatalio)
go to 440 . ,
440C rr=sledata(S)+aR4datal(b)+el%datal?)
' tt=tlsdata()+t22data (1)
cti=—-cosl
sti=sinl
if(y. eq. 4 go ko A30
ctl=—-sini
sti=—cosl
450 ff=ctidrr+stlistt
440 continue
' call vesp(#f, freq. ins, peak, iresp)
write(2) £f
500 continue
FRzemplx (0.0, 0.0
write(2) +¥¢

C

cC. system call: perform big fFft
closel2d)
call system(‘bigfft’, kfurn)
open(2, file='bigfft. d’, status="0ld",

# , form= ‘unformatted’)

rewind &
read(2) npx,dtx, dfx, 1sx

€

c—-&00 find overall max.min

c

ymax=-1. Qe+38
ymin= 1 0e+38
do A0C k=1,np0,2
read(2) yl,y2
ifiyl. gt ymax) ymax=yl
iF(y2. 9t ymax) ymax=y
iflyl. 1t ymin) ymin=yl
if(y2. 1t ymin) ymin=y2
600 continue
ymin=Q. &
xmax={npl-~1y#df
ifliplt. eq. 1) write(3) xmin, xmax, gmin, ymax
rewind 2
read(2) npx,dtx, dfx, isx
iftiplt. eq. 1) go to &60
650 continue
if(iplt. 2q &) read(l) xmin, xmax,ymin, ymax
c  plot axis
L0 continue
call seipltCxmin, xmax, ymin, ymax, xrminl, xmax1)
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ifibb.eq. 'n’y go to 480
write(9, 30} cc
write (T, #)
#  ‘dE=’,dt, 7 nn=/,np0, ’ from: ‘% xminil, ’ %o ', xmaxil, * sec’
if(m3. eq. 1) write(P, %)
# ‘source depth=’,dphsrc, ’ dip=’,dip0, " slip=",
# slip0, " strk=",strk0O
if(m3. eq. 2) writel(?, #)
# ‘source depths=',dphsre, © explosion source’
write (9, )
* ‘p=,r0, 7 phi=, phiQs 7 t0=7, £0, © instrument=’, ins,
#* * peak=‘, peak
680 continue

c-800 divide the whole length into sub-lenth with 1024 as max.
do 800 k=1,nl

nG=1024
if(k. 2q. nl. and. nm ne. 0) nO=nm
go to (7C0,730,700), iplt
700 do 720 i=1,n0,2
read(2) yl{id,yli+1)
720 continue
ifliplt. eq. 1) write(3) (y(i),i=1,n0)
go to 7460
750 rvead(i) (y(i), i=1,n0Q}
760 continue
call seical(kd ni, nO,dt, 0, xminl, xmaxl)
800 continue
200 continus
1000 continue
ifiiplt. ne 1) call plok(8. 0,0 0,999}
close(l:
close(2)
close(3)
close(d, status="'delate’)
ctlose(9)
write(&, %)
writel(&, 2 “gleBl finished’
write(4, %) 7

shop
and

o

€ e e e e e e e e e e e e e e e e e e e e e e e
subroutine Tesp(f¥, freq, ins, peak, iresp’)

C This routine imposes the instrument response on the

o s2ismogram by frequency domain multiplication.
complax f£f '
fr=real (£+)
fizaimag (FF)
iflins. 1£.0) go to 250
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go t

WWEEN 15-100
[P SYSTEM 4B24~13 =
WWSEN 5P
CEuH GP
110, 110, 120, 120, 130, 130G, 130), ins+l

1
110 call wwssnifreq,peak, ins,pr.pi?

go to 200

120 call lpsys(freq peak,ins, pr.pi)

go to 200

120 call sperd(freq, peak,ins,pr,pi)

200 continue
tmp=fr

fr=fr#pr-fi#pi
Fiz=tmp#pi+tfispr

250 if(iresp. eq. O}
omega=2, #3, 1418926334 Ffreq
if(iresp. eq. ~1?

tmp=Fr

go to 400

fr=-—~fidomega
fiztmpromega

go to 400G
300 continue
tmp=Ffr

fr=fi/omega
fi=—-tmp/omega
400 fe=cmplyifr, £i)

return
end

F L T T

e s e e e e

go to 300

(S O

WWHEN

LP

subroutine wwssnifreq, peak, ins, xT, xi)

ins =sq O
inz eq 1

15~100 WWEEN
30-100 WWEEN

230-100
SYSTEM L8242

peak magnifications are 350, 420, 1400, 2800, 5600
wea=h. 2831853% freq
index={peak+1)/373

ifdins. gt. O

100 continus

g0 todl, 2,2 2.3, s

1 Pmag=273.

go to 200

sigma=0. 003

go ta &

2 fmag=554. 0
sigma=C. 013

go Ho &
3 fmag=1110G.

sigma=0, ¢47

go to &
4 fmag=2190

zigma=0. 204

o to &
5 fmag=3930,

..79..

2,4, 4,4,4,4,4, 4,4,.8), index



non

O NN n

zigma=0. 205
& reta=(, T3
retal=1.
un=, 4182879
wni=. Q&HI2E831853
go to 300
00 continue
go tol( 10, 20, 20, 30, 230, 30 30: 40, 40/ a4, 4, 40: 40, 40, 40/ 500,
indesy
10 fmag = 281.9
sigma = . 003
go to &0
20 Pmag = 3503. 1
sigqma = §. 012
go teo 60
30 fmag = 1001. 95
sigma = 0. 044
go to &0
4¢ fmag = 1941 9
sigma = {195
go to &0
30 fmay = 2241.8
- sigma = L 767
HO 71eta = 1.5
retal = 1.0
wn =, 2024395
wni = | 0&RB31853
continue
ar=s (wodye-wndun )+ (wedtwe-wnl#unl ) -4 *ratatzetalstunsunlx
# (1, ~sigma)fwetwe
ai=2, #yes(zetalrunid(wntun~weswe j+zetatunst
#* (wnldwni-~we#we))
factor = fmagiweFwerRwe /

300

(ai%ai + ar¥*ar)

xr =-ai % factor
xi =-factor % ar
rasurn

end

subroutine lpsys(freq,peak, ins, xr, xi)

LRSM response for LP system with filter &BR24-2 ing=3

LREM response for LP system with filter 6824-13 ins=d

phase response cbiained from hilbert transform of amplitude
responsa, gain normalized to 1.0 at 29 seconds.

dimension fre(28), p(86&6),phi(S6)

the first 28 p and phi are for &824-2,
28 are for ABR4-12 ‘
data fras. 001, . 002, . G03, . 004, . 005, . 00&, . QG7, . CO8, . D07,
1.01,.62,.03,.04,.05,,06,.07,.08,.0%9,.1,.2, .3 .4, .5, &
2.7,.8,.9, 1./

data phi/R63.9,257. 9,251, 9,245, 6, 229. 3,233, 1,227, 1, 221. 1,
1R14. &, 208. 3, 124. 9,73, 2,15.3,-33.2,~-71. 2, -100. 1, ~122. 4,

next

|

I

- 80



N n

nanaonin

2”140.0:~153.8;~213.1;—232.b:~242.B,~249.2:~253.0:*256.9,
-3

3-259.

 —Dh1. D, -242. 9, 2&5.0,259. 1,253, 4, 248. 1, 242. 8, 236,

4 230.3, 223 4,216, 4, 209.7,153. 4, 102. 0, 54. & i4, 4, ~1&. &,
g 40 4, -58.2,-73.3, -85 4,-186.4,-153. 9, ~155 3, ~154. 4,
=157, 7, -15%9. 2, ~160. 0, ~162. 3, -163. 8/

data pfAOOQOS..00040,,00135:.00321;.00&25:401077;.0170&,

.03

CE

~N O N

.G
m'_'.
deg
if(
if(
do
if(
200 con
1640 con
if(
if(

. 00040, . C0O029,
. 000015, . 000321,

631, . 05006, . 34117, . 73904, 1. 0000, . 97633, . 79807, . &1417,
Akd, 26315, . 03583, . 01097, . 00448, . 00240, . 0013%, . 00087,

08052, . 006545, . 005404/
28

rad = 0. 01745329
freq. gt. 0. %) freq = 0. 5
freq. 1t. 0. C0B) freq = O,
20C 1 = 1:/m

freq. ge. fre(i}, and. freq. le. frel(i+ll} go to 140
tinue

tinue :

ins. eq. @) y=i+28

ing. eq. 3) =i

003

2

. 02546,
L6105,
. 00058,

. 00131, . 00310, . 00409, . 01068, . 01713, . G2B56,
02418, . 04848, . 28030, . 47553, 1. 0, 1. 07448, 1. 0044, . B&IET, .
463557, 54818, . 12153, . 04830, . 02741, . 01827, . 01328, . 01017,

74511,

pf== phi(J)+(phi(J#1)~phi(J))/(Fré(i+1)w¥re(i))*(FrEQWFre(i))

ph
pf
XT
»i
rTet
end

sub
ing
ins
ins
The

dou
dou
g0
100 con

m=3

n=3

XNo

pf * degrad

cos{pf} % ph % peak
sin(pf) * ph # peak
urn

I I

routine sperd(freq, peak,ins, xr., xi}
4  WWSEN 8P
5 Uges gP
& C8EN GF

Bt

p(yd + (pCy+1) = p(y))/(fretitl)~frei)in(freq-Ffreli))

values for WWESN and USGS from Luh (1R77, BEBA, p. 980)

ble romplex ss(20}, ww tt
ble precision xnorm, a(z20)
to (1CG0, 200, 300), ins-3
tinue

rm=1. QO7d+1

al&r=1.0d+0

a(3)=53 &£84d+C
at4i=1.510d+1
a(3)=2. 217d+1
a(2y=1 Babd+1

all
g0

y=7. 220d+0
to 400



nr

©n

200 Tentinua
R
n=1a
xnoTm=2, P21d+15
avili=1 (Gd+C
a{10r=4, 315d4+2
al%y =8 44%d+4
a(g) =7. 320d+4&
al7)y =4 022d+8
alsy =1, 14681d4+10
alsy =2 g41d+11
atd)y =1, 4824+12
al(s3r =2 348d+12
a(2)y =1, 98%d+12
all)y =2 &45d4+11
go to 400
300 continue
Te=1. 0 Tg=0.22 hs=0.8 he=0.8 sigea=0 0
m=3
n=4
xnorm=, 2Q73212244+2
3(8)=1, Qd+0
ald)r=, 8534532d+1
a(3)r=. 310340d+2
al2)=. 372023d+2
alti)= 12903&d+2
40C continue
wy=demp 1x (O, Od+0, dblelfreq))
3 (1)y=ww
do S0C¢ i=2.,n
a5 (iy=as (i1 )#ww
500 continue
th=domply(adisy, O.C)
do AQ0 i=i,n
tt=ttrali+idess (i
ACGO continue
fh=ssim}/ bt
orm=xnormipaak
yrareal (Lt )#xnorm
xi=dimag(ttitxnorm
rabturn
arnid

subroubine swipltixmin, xmax, ymin, ymas, xmini. xmaxl)
CALCOMP plot.
plobt axis only,
commonspltses/ 0O, yend, yl, iplt, yotrl, bb,ce
commonspintt/ supi,xnpd, ynpl,yynpeds xv.yv
character#d bb, oo

xinud: how many unit per inch

yson: how wmany unit for one segment in time axis

S =



80

if{kchtrl. 1a. jotvd
ritein, ¢)
pr i e s sy TTe%al
wr oy be (&, =)
& “pnter Lime win
write b, ) {yse
~epad (D, %) xmini, x

ifixminl, 15. Q. 0. &
xmini=xmin
ymaxi=gmax
gndif
smni=absixmaxli-um
ifliplt. =q. 1) go
write(é &)
“how many
writaels, @)
write (&, 43

B3
“how m

4 ‘and how many o
read (D, #) Xl;gl;X

continue
write(é, )

#  “how many plots
writel&, %) "(if n
raad(S, %} jotrld
ke trl=0
continue
ketrl=kotri+l
ifliplt. »q. 1) ret

Ymy X =gy max
ifiabsdymind, gt
yendi=yand-yl1-0G. &
1Foygendl. TG0 5
yend=yendl
iflyendl. 1%t. 0.
rall plot(0. O,
xinut=xmni/x1
ji=yminl/xseq
if¢xmini. 1t & O
yOwxsen#ii
inpl=x0
snpEd=xinut
ynpls—ymux
ynpa=2, #ygmxx/yl

[$5)

)
-yl

powe “11ﬂn10(gmx

ifipower. 14, Yop
pawer«ﬂ,nt(pummri
yuy=ymyx/ 10 #dpowe
call plot(~Co 14, 0.
call plot (-0 1.0
call plot (-0 L.yl
call plot(-0 16&, y
call symbol (-G 17
call number (9799

inches

time axis from

dow to be plotied:

1,1 to pleot the whole Uime span)’
maxl :
nd. xmaxl, 14. 0 0 then
int?
to 80

for time axis, {total= ', xmnl, ‘sec)’
any inches for amplitude axis, '
nits for one segment? (as 5. 0,0 8, 16007
509

FOLLOWED will wse

S I N

(e fhart

to 7.orimax
and ennd Lime)

above numberst’

ot know, enter 100;
BT R
‘x} ymyx=abs (ymin?
all plot(B. 5 yl—-yend, ~3}

yend=gl-yl-0. &8
-0. &8, -3)

ir=ii-1

X}
swer=power—1.

v
0.3

Uy o2

P 2D

1, &l

GG ORS, 0.0%, 1h-, 50,
)RR, 09, yy. GO 1

r



©

o
AW

LHQ0

all number(???.,ulﬂo,19,0.Qq,gg!90.,1}
call symbol¢~-0. 35, y1%0. 25,0 11, 3h#10,7C¢. . 2)
cull nunher (-0 4,997, 0. OA.power,Hh y =10
t511 symbol (-0 G 4180, 48,0 18, cc. 0.0, ol
sr=x 1+0 Q3
yr=0Q. S%yl-0. 03
ylen=abs{(xmax1-xC}/xinut
grid=xsag/xinug
call plot(0. G, -0 1,3}
call plog(0 0, -0 14,20
iF(x0. 14. 0. Q) xshif=—-0 10
if(x0. go. 0. C) xshif=-0. 03
iF(xC ge. 10, 0) ¥shif=-0. 08
£{x0. ge. 100. ¢} xshif=-0. 11
call number(x:th/"O 25,0, 08, x0,0. G, ~
call plDt(O O, -C.
xi=1.
xxs=xi#grid
call plotixx,~0. 1,2
call plok(xx,~0C. 14,23
ssym=iCrysagixl
ifixsym. it. C. O} xshif=-C 13
1f(xsym. ge. 0. 0} xshif=-0.03
if(xsym. ge. 10,0 xehif=-0. 08
ifixsym, ge. 100. 0} xshif=-0 11
ifixsym. ge, 1000 O} xshif=-C 13
rall number{xx+xshif, -G. 25, 0. 08, xsym 0. 0, ~1)
call ploti{xx, ~C. 1,3
xi = yi+i,
if(absixx). gt xlen) go to 500
go to 400
continue
if040. 12.0.C) go to 320
eall symbol(xx/2, 2,~0. 45,0 14, ‘T~ 6 0, 2)
call number (999 9o , 0.1, %0,0. 0,2
90 to &0C
call sgmbol(xxJPAQS,wO.45,O.14/’T’,Q.Olif
continue
call plot(0. 0,0 G, 270
refurn
gnd

-~ e e e e e e e e s e e e e e temwe e e mm ne

subroutine seical (0 ni, nn.dt, 0O, xminl, xmaxl}
plot seismogram,

commonsdimens/ x(102&6), y(16G2&)

common/plott/ anpl, anp2rynpl,ynpd, xvoyr
cammonSpltses/ 0, yend, yl,iplt, yotrl,bb, oo
character#2 bbb,

10=0)0~11r%1024+1

i0C=i0+1023

ifinm. 14, 1024) i00=iQinn-—1



100

200
250

300
350

420

A5

500

xOm (1G] Yadt
xO0=(100-1 ) #d b

if(xQ. 1o, xmint. and. »00. le. xminl)

500

PP Ox0. ge. xmaxl. and. x00. ge, ymaxi) go to 500

do 100 i=1.,nn

¥ (1 )=xQi{i-1134d¢

continye

do 20C i=1,nn
if(x(i). ge, xmini) go to 30
continue

continue

mmaz -1

dn 230G i=1,nn
iftx(ir. gt. rmaxti) go to 330
conbinue

continue

mmi=i-1

kk=mml-—-mnm

do 400 i=1, kk

J=mm+i
xiid=x{y
yiil=yly
continua
ifliplt. #q. 1) go to 420
x{kk+i)t=xnpl

s (kk+2 ) =2np2
yikk+1i=ynpl
yikk+2i=ynp2

call line(x. 4, kk, 1,0, 0)
continue

ifibb. =g, ‘M"Y go Lo 300
do 450 i=1, kk
write (9, 10y «{id, yli}
format(2alB. 8)

rontings

ifiiplt eq. 1) return
continus

.
A
1
!

iFC 0 eq. nl) call number(xv,yr, 0. 1,70, G O

raburn

end

it Rt Y

25

' "'1)



program spec8i. f

c
c
C £77 ~i =12 specBl. F -o specBl -lcalcompl?
C
c This program follows the program wigll and plots the
t spectrum after passing through an instrument.
C
€ The source mechanism is included here
C The whole processes are treated in the freq domain
c
C The dimension nesded has been reduced to the minimum,
¢ and the number of servies point is not limitted.
o
o ~NOV 1, 1981
"
dimension (3}, az(10C0), baz (100}
romplex data(iC, @i, vrr. L, #F
commonSdimen/ x (102&3, y(102&)
commonsocErlys dolvlogizer xy(h)
character®2 form{3},cc,yorn
character#30 names
data form/’Z 7, R 7, 'SHY, NS, TEW/
o) formatial
16 formal(/1ix,a2, " component for station at R=', £8. 1, 7 Az=’,
2% f&. 1,7 1is being processed, )
20 Pformat{six, "ins= 12, Px, ‘peak= L, F7. 1.7 iresp= 7, 12/
#* Codt= P95, 7 ndist= 7,12, 7x. ‘dphsves 7, £4, 1/
# ©L/R,SH N E: 7,812, %%y * fGuake, Expl: ‘viad
* T SBpectrum Plot: 7, i3/
#* Todip= L5001, 5x, felip= L, £5.01, 5y, fstrk= 7, £5 1)
mritel{&, #) 7
writel& #) ‘calculation only(l), pleot only(@r, or bolth(3):
read{(3, #) iplt
write (&, 3 7 7
write(& s} ‘enter the input file name: ’
read(d, 3) names :
ifiiplt. ne. 2) »
#  ppentl, file=namas, status=‘0ld’, form="unformatted ")}
1f(iplt. eq. 21}
#*  open (T, file=names, status='old’, Form~ "Fformatted’)
rewing 1 ‘
Tewindg B
ifliplt. 2q.2) go to &O
open(2, file="tmpCG. d7, statuss=‘scratch ) Form="unformatted '}
ppenid, file="tmpp. d " status=s‘seratch’, form="uynformatied '}
ifliplt. ne. 1) go to &O
write(&, #) “enter the sutput file name: ’
read (3, 3 names
openid, filesnames, status=new’, form="formattad )
rewind 2
60 continue
c
c~12C input control parameters,



#

*

k3

%

*

=+

R

ifCiplt. eq. 1% go to 70

call plots(Q, 0,72 .
writel(é %) ‘oviginal pen move: (20,2 03
voad {3, 4 x1, 4yl

call plotixi,yli,-3)

jetr =0

write(é, #) ‘choose the pen:’

read (D, #! ipen

call newpentipen?

write(&, #) ‘enter size (e.g. 1.0
read (5, 2%} size

call factor(size:?

write (&, #) ‘plot the observed data?™ (g ni:’

read (3, 5! yorn

if{yorn.eq. ‘n“} go to 70

write(d, #) “enter the file neme of obzerved data:’f
read (3 D) names
open(S,Filennamea,statusn’old’,Formm’ﬁormatted’)
rewind 2

continueg

if0iplt. eq. 2) gou to 140

write(&, %) "X-axis fto be period(i) or freq(2d):!’
vead (5, %) jaxis

ifliplt. 2q. 2) go to 140

writel(&, #) ‘choose the type of instrument’

write b, #) (=0 15-100 WWEEN =1 B0-100 WWSEHY
writeis, #) ¢ =2 6AR24-13 LP SYSTEM =3 62242 LP SYETEM’

writel(&, #) 7 =4 WWHEEN EF =0 USEH SP
writel&, %) 7~ =4 CHSEN  GF'
mritel(s, %) ¢ =-1 do NOT pass through any instrument 3
read (3. %) ins
writel&, %)
‘enteor the peak value for instrument response:’
vead(3, 4 peak
write (&, #} :
"taks the integration(-1), devivative(l}, or not(0)”
read{3, %) iresp
read(l) db, ndizh, Ykr, kkl. kkf
kk=kkr+kkl
raad(l) dphsvo,nper
writelé& #) ° 0
1fFCkk g &) write(s, #)
‘Both Rayleigh and lLove eigens been generated
ifikkr.eq. 1 and. 4kl. eq. 0) writels, 4}
‘Mnty Rayleigh eigene been penevatbtad.
iflkkr. 2q. O and. kkl. eq. 1) write(h, #}
‘Only Love eigens been genevated. ’
write (b ) 7 7
write (b, 43
Which components to be plotted? (Z,R, SH, NG EW)’
write (&, %)
“if yes answer 1, no answer 0 (e=.g. 1,0, 01,107

i

ks
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read (S, %3 (jy0i), i=1,5)
if(k¥r. ne, C} go Lo 100
JEap Ly g led
i#0 ). 2. C) go to FC
writeid, %) ‘no P-EV wave veady
go to 1000

¢ continue

100 if(kkl. ne. 0) g0 to 120
if(y (3. 2q. ) go Lo 110

a
‘no SH wave rveady.

wrifeléd, #) Tun
no to 10G0
110 continue
120 continue
¢
c~122 input source mechanism
c .
writaeid, #) 7
write(&, %) ‘no. of distance = in
write(&, +)

+ ‘source depth = “ydphsre, Y epe
write (s, #) ‘earthapuake source(l)
read (%, %) m3
degrad=3. 1413%24653/180. 0
ifim3. eq. 2 go to 130
write (& ¢) ‘enter the source mechaniem
reoad (S, %) dip0,»lipl stk

130 continus
c
iFviplt e 1) writel(3, #) ‘control
iflipit. 2. 1) write (3, %) ins, peak

* kkd, 43

g0 to 150G
140 continua
read (9, 3 names
read (%, ) ins,peak, irezp,db, ndist

& dipCG,51ip0, strkO
write(&, 20 ins, peak, ivesp,dt. ndi

# diplh slipQ, strkl

150 vontinue
c
c~90C the main loop
C

iarm=0G

itazs—-1

dn QOO kdistwl, ndisth
iaz=iaz+l

ifdiplt. 2q. &) go to 210

road(l) vO, tO.npO

writel(s, 3y 07

write(& ®) ‘r=, vl 0 E0=7, 40, 7 np

mrite(édr#y 7 7
ifliaz. 14,
iaze—1

run again,

again.
digi, dt=", di
ctrum type = 7, k&f

or explosion(&r?
diprslip,etrk: ’

parameter: ’
yivesp.dtyndist, dphsrc,
ym3, dipG,slipO, strkO

cdpharas k€, gy md,

R
Te

t,dphsro: Jjem3 ki F,

- &

snpQ



write(d, ¥) “enter Az, bAr (in degree): ’
write(&, #) “(use baz=0.0 to set bAz=A7+18HO. O
write{&é %y 7 oyse 1,1 fo stopl’
fe=1

1&C continue
read (3, % azl(ki,bazrik)
if{ar(kl eq. -1 0 and. baz(k). eq. -1 0} go to 170
ifibaz(k:. eq. 0. 0) baz(k)=az(k)+180. 0
if(baz(k) ge. 360 O) bazl{kl=bazl(k)-340.0
=k+1
go to 14C

170 nar=k-1
wurite (&, %)

* "how many sels of different distances (v} FOLLOWED'
writeldH, #) 7 will vse 7,
% ‘“fhe above arimuth data: (if not Ynow, enter 1007

read(3, % jlazm
1735 continus
writel(bd, #)y ¢ 7
writel(& %) “wait’
reyind 4
k=1
180 continue
do 190 =1, kk#
read(l} per, (datali, g), i=1,10)
1920 continue
ifi{per. 1a. 0.0 gn to 200
write(d) pev, ((datali, g}, i=1,10), g=1, kkF)

k=k+1
g0 to 130
200 continue
npa=k-1
ifiiplt. aq. 1)
* writed(2, % "1, 10, npi, nstation,azl, bazrl,azd:; bazdd. . @’
ifliplt. eq. 1
* write (3. 4 0, 0, npQinaz, (az k), bazik), k=1, naz?

210 continus
ifliplt. eg. 2) vead (9, 3} names
ifliplt. =2q. 20
+ read (P, %) r0, LG, nplrnaz, (az(k}, bazlk) k=1, naz)
do 900 kar=l, naz
phiO=azl{kaz)
phil=baz(kaz}
ifCiplt. wq. @) go Lo 310
phi=phii#degrad
cosl=cos(phi)
zini=sin(phi) '
iFim3. eq. 2) go to 300

c-30C dislocation souTce.
strki=phiO-strid

dip=dipO#degrad

e 8(? -



+

slip=slipOxdegrad
shrii=strkisfdegrad

cstrkE=2, #strkl

dipa=2. *dip

si=msinf{slipl#sinidipa)
som—(ros(slipt#sin(dip)#sin(strkd
#* u.qw51nt¢}1p)%s1n(d1pc)*coaffiwPQ))
in{zlip)#roc(dip2i¥sin{strkli—
Eifl]p)*fwwidlp'*COS(StTkl)
in{slipiscos(dip#cosl{sbrkl i+
s(slipiscos(dip)#sin(strkl)

b= s(:i1p)*51n(d1p)*co€(stvk’)~
# 0. S#sin{slipigsin(dip)I*sin(strkd

300 continue

310 continue

]

[
=

4,

do 900 y=1.95
ifCggtyr.eq O 3o Lo 900
ce=Fformi j)
write(&, 10) coy G phiQ
dn 200 Wf=1, kk¥f
ifliplt eq. 2) g0 ko &40
rewind =
rewind 4
kKzavo=0
do BOO k=1,npa
road(d) perT. {{datadli, JO)I i=1, 10}, Jozi' kkf?
fraq=1. /per
go to (400,320}, m2
320 go to (330, 340, 350, 340, 2700,
330 ff=datald, k)
ga Lo 440
340 fi=dataif, kf?
go to 440
350 write(4, %) ‘explozive source no SH wave. run again. ’
ao to 1000
3&?0 'F'F*“Cﬂalﬁ'da* k£
go to 4&C
370 ffe-sintddatacB, LF)
go Lo 440
400 go to (410, 420, 430, 440, 440},
410C femsiddatall, if)resftdata(2, kfr+sedata(ld, kil
po Lo 450
420 ff=sludatald, kFf Fry+smtdatalb, kf)rsBdatal?, kF)
go to 480
430 ff=tl#data(® kF)+E2%datal10, kFf)
go to 460G
440 vrusisdata(h, kf)+sledatalb, kfy+sIdatal7, kf)
tietisdata (P kP)+t2%datad10, k)
cti=-costl
sti=sinl
if(y. aq 4) go to 450
cht=-gini

i
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|
|

4350
460

D00

c—4&00

400

&ad

b1

H&O

stli=~cosl

fR=ctl#rr+stlixty

continus

call vesp(f#, freq, ins, peak, ivesp)
gg=§qvt(raal(ﬁF)%vaal(FF)+aimag(FF)%aimag(FF?)
if(ag. le 1. 2-33) krevoskzero+l
if{gg.le. 1. 2~3%) go to 500
write(2r Ffreq.ygq

continue

npp=npa-krero

find thes max, min

~

rayind &

0

1]

ymax=—1. Ce+3H
ymin= 1. Ce+38
smax=-1. Ge+38
smin= 1, Qe+3R
do A0C k=1,npp

read(2! ¥freq.,gg
ifigyg. gt ymax) ymax=gy
ifigyg. 14, ymin) ymin=gg
ifi{fraq ot xmax) xmax=freq
1£(freq 1t xmin) xmin=freq
continue

tmp=xmin

if{iaxis. eq. 17 xmin=1. /xmax
ifidiarxis. g 1) wmax=1. /tmp
rawing 2

if¢iplt. ne. 1) go to &40

write(3. #) ‘nptO. xmin, xmax, ymin, ymax, T/§:

4

Write (3 %) npp, xmin, xmax, ymin, ymax, iaxis
ifidaxis. eq 1) write(3,#) ° period amp ’
ifliaris. eq.2) write(3, %) ° freq amp

g0 to &&O

continue

ifiiplt. ne. 2) go %o &50

read(%, 3) names

read (%, %} npp, xoin, xmax, ymin, ymax, iaxis
raad(9, 5 namas

rontinue

plot axis

iF{kF. wq. 1) call spppltixmin, xmax,ymin, ymax, cc, iaxis)
if(kf. vy, 1. and. yorn. eq. "y ) call obs(iaxis)
continue

ni=npp/ 1024

nm=npp-nl*i024

ni=ni+1i

ifinm . e2q. 0) ni=ni-1

divide Lthe whole length into sub—-lenth with 104 as max.
do 80O k=1,nl

nC=1024 ‘

if{k. eq. nl. and. nm.ne. 0 nO=nm

i¥liplt. eq & go fto 750



nnan

2]

an nNnn

700

800
Q00

1560

do 700 1=1, nd

read(2) xCi),y(i)

if{daris eq. 1) x{1r=1./x(i)

continue '

irdiple. g 1) writel(Z, 40) (x(id,yCi} i=1,nQ)
if0iplt. m. 1) go 4o 800

continus

1flaplt. og 2 read (9,40 (x(id.y(id, i=1.n{)

format (2213,

all sppcal

™

continua
continua
continus
i¥0iplt.ne. 1) call ploti(® G, 0.0, 992}
tlose(i:}
closed(2,statue='delete ")
close () :
closed(d, statuse="dalate )
iflyorn.eq. 'y’ tlose(B)

ifliplt. eq. 2 vlose()
writeld, *) 7 7

writal&, #) ‘specBi finished’
write(é&, #) °

stop

2ad

subroutine resp(Fff, freq, ins, peak, iresp}
This routine imposes Lhe instrument response on the
serzmogram by Fregquency domain multiplication.
compley FF
fraraalfFf)
fisgimag(+Ff)
i¥ling. 14, 0k gn Lo 2350
ins o= O WWNESHN Li 106G = ] WBEN 30-~10G0
5 EM 682413 =G LP GYSTEM &824-2

; TE
= 4 HNS&N S = 5 UBes SP
= &  CHEN P
goo ot C1I0, 110, 1200120, 130,130, 1230, ins+i
call wwaéxtFrnq peak, ins, pr,pi)
go to 204
call Ipsysifraqg, peak,ins, pr.pi)
go to 200
tall spevdifrag, peak, ins, pr,pi)
cuntinue
tmp=Ffr
Frafrdpr-fidpi
Fi=tmpepit+Fidpr
ifliresp. eq. O go to 400

onegax, #3, 14159246403#freq
ifliresp. &g ~11 go Lo 300
timps=fr

- P2 -



|

|

n

[n]

fre-—-fi%omega
fiztmpsomega
go to 40C
300 cantinus
tmp=fr

fr=
£1

400 ff=omplx(Ffr, i

re
an

ins eq ¢ 151060
ime eq 1 30100 wwssen
perak magniticatbtion

go ko 1.2, 8.

1 fmag=278.
s1gma=G, 003
go to &

@ Tmag=534&. O
sigma=G. 013
go o &

2 g=1110. C
.SIQMH G047
30 to &

4 frag=a190. 0
g1 gma=Q. 2044
g0 to &

D fmag=3930, 0
gigma=0G, 8035

b orefa=d, 92
zotaj 1. 0O

=, 418877
wn1=.Uh 2B21BBR
go to 200
200 continue

10 fmag=2%1.
Figma= 0.00B
go Lo A0

20 Ffmag=35003.
sigma=C. Q12
go to &0

20 fmag=i001.5
sigma=Q 044
an to &0

R

=fi/omega
wefmp S omega

turn
d

subroutine wwessn(freq, peak, ins, xv, xi}

we=h 2831883%freq
indey={peak+1.

if{ins. gt. O)

Go to (10!?0:«?0130! 3¢, 30,

Fmaq«l”di 5
sigma=Q. 199

~ .
2032, 3

fixed at 380,700, 1400, 2800, 3&00

4,4,4,4,4,4,4,4,5), indeyx

30, 40, 40, 4G, 40, A0, 40, 40, 40, 50}, index



nonon

[ SN s B !

o

g0 to &0

50 fmag=2241. 8
sigma=0. 7&7
HO teta=1.5
tetal=1.0
wn=, S0F43995
wnli= 0&2831883
30C continge
AT
1 (1. ~sigma) *werue
al=a,
factor = fmagrwedwedwe / (ai%ail + ar#ar)
ip =-ail # factor :
51 =-—ar #* factor
reLturn
and

subroutine lpsys{(freq.peak, ing, xr
lvsm response for Ip system with f1
lrem response for lp system with Fi
phase response obtained from hilber
response. gain normalized to 1.Q a

‘dimension fre(28), p(54&), phi(dh)

;) X1}
iter
lter

GEEG-E

HB24-173 1nh””

’w»%wm-mn*un)&(we*we~wn1%wn13—4.%zeta%zetal*wn*wn1%

%we%(1eta1*wﬂ1*(wn*wn»we*we)+zeia%wn%(wni*wri~we%we))

ing==

t transform of amplitude

t &3

seconds,

the first 28 p and phi are for 6824-2 next
28 are for &BR4-103

data fre/. 001,.0 003, . 004, . COS, . O0&, . 007, . 008, . 007,
1.01:,.;,. 3, 04, . OQ'.C’&I.O}I‘OB).OQI.1J.C.I 3;.1:.5!.(5;
2.7:,.8,.9%. 1./

data h1f?£3 2,257, 9.251.9.245.6,239‘3. 233. 1,227, 1, 221. 1,

1214, h,~U8 2,124, 9,73.2,15. 3, -33. 2, -71. 2, ~100. 1, -1 4
218G, -153.8/ 213.1,~232.67"242.8;~249. ?5&.0.»£bu.9,
32593, 241 2, ~R62.F, 265.01259.1,253.4,248.1,342.B,23&.9L
4 920,73, 2874, 216 4, 209.7.153.4,102. 0. 54, 4, 14. 4., ~16. 8
5 -4, 4, ~58. 2, ~73. 3 ~85. &4, ~146. 4,153, 9, ~155. 3, ~156. 4,
=187 7, =159, 2, ~1&60. 0, ~162. 3, ~163. 8/ '

data pﬁ.GOOOS,.OOO40,.00185,.00321,.00625;.01077,.01706.,0254&,
1, 03421, 09004, . 34117, . 73904, 1. 0000, . 97633, . 79807, . 61417, . 46105,
DoB4464, . 26215, 02983, . 01097, 00468, . 00240, . 00139, . 00087, . 000H8,
3. 00040, . 00027, :
4 . C0001S, . COGE%L, . CO131, . 00310, . 00609, . O10&B, . 01713, . 02536,

3 03618, . 04845, 8030,.6755311.0,1.09448.1.0044:. R&P69, . 74511,
L ARBHY, . 54818, 12133, 04830, . 02741, . 01827, . 01328, . 01017,

T Q0B0B2, . 00LD4A3, .005404/

m = 28

degrad = G 01743329

ifi{freng. gt. 0. 3) freq = 0.9

if(fragq. 1t. 0. 009 fregq = 0.005

do 200 1 = 1, m

if{freq. ge. fre(il. fre
200 ronbtinue

140 continue

and. freq. le.

- P4 -
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AN AnN

104G

r
x
O

300

iflin
ifin

. eq. 2y y=i+ay
5. 8q. 3§71

pf= phi(priphi(y+rid—phi{ 3/ {(Frelisli-Ffrelidinl{freg-Ffreli)}
pho= oplgr + (plyriy ~ pOpdi/sifrelittii-FreliN®(freq-Ffrel(ii)
pt = pt % degrad

sy orosipdy o oph o peak

i = sintpfy ¥ ph # peak

relurn

and

Subvmutire sperd(freg, peak, ins, xr, x1i)

ins = & WWESN &P

ins = 3 USGHE =P

ins = & CH8N &P

The values for WWESN and USES from Luh (1977, BESA, p. F30)
douvble complex 55(20), ww, tt

double precision xnorm.a(&O)

go to (1G0,200,300), ins-3

continu
m=3
R

ynorm=1

al&dy=1
alsy=9%,
al(4dlry=1.

L] e |
al3y=a,

alady=1
alll=7.
go to 4
conting
ms 4
=i
ANOTM=Z
alflls
al10)=4
ai%y =5
aldy =7,
af7)y =4
a(&)y =1,
a(3) =2
adld) =1.
alldr) =2
ala) =1
al{il) =2
qo to 4
continu
TS!"-: O
mwD

nwd

E A At B

3]

QO7d+1
QA +C

&84d+Q
S10d+1

217d+1
. 846d+1

220d+0
oo

&

P2idrid

=1, Gd+0

L 215d+2
447d+4
3RO +4
GR2d+2
161d+10
C41d-+11
4@82d +12
. 348d+12
. 589d+12
L ee3dyll
o0

£

073212244+2

hs=Q. 8 hg=0.8

gigma=0. Q

-~ f"‘ﬁ -



o n M

als)y=1, 0d+0
al(d)= 855632d+1
a(3)=_ 310340d+2
aid)=, 372023442
a(l)= 18903&d+2
40C continve
ww=demp Ly (O, Od+0, dblelfreqy)
(1 )=uw
do BOOQ i=2.n
walid=maedi~1)%wu
500 continue
th=demplx(all), & O
do HQ0 i=1,n
thatt+ralitld®ss (1)
&OOD continuea
tt=ssimi tt
rnorm=xnormtpeak
sr=real (bt )Fanorm
xi=dimag(tti#inorm
raburn
end

subroutine obsCiaxis)
commonsotrl/ dictrl,size, xy (&)
read(g, 14 n
10 format (52, i5)
do 10Q i=1,n
integq=23
read (£, 20 t,y,m
20 format (F10.58, 8x, F12, &, 25x, i3)
ifliasis. v2q. &) t=1./¢
if (g Lhoxg(2Y) go %o 100
s=alogtGit)
=gy (1) xy (5}
y={y~xy{33)/ xy(&l
if (mone. 1) inteq=1
rall symbolix,y, 0 07 inteq, 0.0, ~1)
100 continue
return
2nd

- [EU—- =3 - ee - e - . e — P T e L

subroutine sppplédrymin, ymax, ymin, ymay, co, iaxis)

commonsotrl/  dctrl,size. xyléh}
charactersd oo, ans
charactar#30 names
jctrl=ictrl+l

iflickrl eq. 1) gn to 100

writel(éd, %) “enter new origin for the next figure w vt
write(& #) "the origin of the present figure

. (‘,’é) -
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raad (3, #3

s Q=xQ/size
yO=yGrsite
catl plot(xG, yG, -3}

xG Q'Q

190 continue
nl=intixy (Rir~xy il
na"lnt(xg(4)~xq(?))

write (s, 4)

raad (S, #}r xl,yl
’J]Tit@(&l%) 'plgt th&.‘ 'FT‘;‘]
raad (%, %) ans

iflans. giq.
y1e=0, 5%yl
y1a=0. 3#yl
xaeg=xlsal

‘Y go to 340

- ()7 o

me? (ys/niy:’

‘enter the length of x- and y-axis

180 vontinus
writedld, #) ‘entey the station identification:’
cTead(3, 3 namas
5 formatia:
ifixmin. 1t. 1. e~-230) xmin=1.e-30
ifiymin. 1t 1. e~30) ymin=1. e-30
yiytid=aloglCixmin:
ry(2¥=aloglCGixmax!
yy(3¥=aloglCliymin}
ry(A)=aloglOiymax)
dn 150 i=1,4
f=intCxy i)y
Lok
1#{xygCiy. 1%, 0.0 go Lo 140
th=xy(i)—t
xiy(1)=%
FE R eq.l or.i.eq.3) go to 130
if(tt. gt 0 001) xyCi)=t+1.0
go %o 1W' ) ‘
140 tE=t—-syl{i)
xylid=%
if{i.eq. 2. 0or.1.29.4) go to 130
if{th. 0% 0 COLY xylid=t-1.0
150 continue
write (4, #) '

%+ fymin= ‘. yming, Tymaxs= ‘., xmax, ‘ymins= ‘,ymin, ‘ymax= 1, ymax
idexy (L
13: g2

‘.J(.\.l}
14rxgk4)
writeld, #)

* ‘LLog~l.og vange- X: %, 11,7 Yo i Yoo id f to 14
write (s, #) ‘give the range for spectrum plotting® (y/n)’
read (3, D) ans
ifians. 2q. ‘n’) go to 190
writa (&, #)

# ‘anter your range for X-axis: then for Y-axis: (0,2, -2,3)7
read{S, #y xy(1), 2y (2}, xy (3}, xy(4)

(5,3.75)7



NN

300

a3s5c

360

ag=yl/n

11 plot(xl2, G 0,280
call plot(xl , G G/ 2
cail plot(O. 0,41 3
call FLUJ(” Gryid &)
call plof(Q. 0,0 O, 2)

dao 200 1=}, nli+t

yh=xsag#{i-1}
call number (xE~0. 0%, -0.2,0. 1,10, ,0. 0, 1)
yopmyy{dyriel v
call number (999 ,-0.12,0.0& xp, 0. 0, —-1)
ifti.eq. ni+l) go to 300

do 200¢ y=2.10
xr+-xt+x:eq%a10910(vea1(J))
call p]n*()ft*:,Q 0,3}
Ft C,

£04. eq 10) yth=0. 07

Lill plot(xtt, ~yth, )

rontinue
do 350 i=1,nz+1

yt=yseg#{i-1)
call number (-0, 38, yt-0. 07,0 1,10.0, 0. 0, ~1)
yp=xy{3)+i-1
call number (399, , yt~0. 04, 0. 04, yp, 0. Gy 1)
if{i.eq. na+1) go to 350

o 250 y==2,10
ytt=ytrysegtaloglClraal ()

Cill plof(Q. G, ytt 3)
=3, G4

iF(J.ﬁq.IO) IR AL
call plot(: xtt,qtt.QI

N

4
‘b

[=%

b4

call symbol(x1/3 &Gyyl/sl. 05:J 12, names, O, 0, 207
call symbol (0. 4%, yl/2. 1,0 14, "AMP 7, R0 0, 3)
names='FREQ (Hz) !

ifliaxis. eq. 1) names= 'FERIOD (sec)’

call symbol(x1/2. 3, ~C. 4% 0. 14, names, 0. 0, 1)
continue

gy (Sry=vealinli/xi

pylhr=raal (n2)/yl

raturn

ani

suybroutineg sppealinn:
common/dimen/ x (102&1,y(1028&)
commonsotrl/  ivtrlisize, xy(é}
do 100 i=1.nn
x{idt=aloglO{x{i)
gli)=aloglG(yli)
if(x(i. LE xyCl)

J

s

yox{id=xy (i
ifCxii). gt xy(@))d

v ({r=xy ()

- \‘?8 _—
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yinn+ll=aygl
ginn+2r=xyl
call line(x,y
raiurn

B1vd

HHESERRFRIY

{3y ylidy=xy(3)
C4Yy y(ir=xy(4)

cnns 100000

9

[l
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program bigffs

This performs a f+ft of length m=2n fo yield a

&n series by deing only an n length f#%

I/00 i3 acecomplished by means of the Ffile
The data in “bigf+ft. 4 should be:
m.dt,dF;iaign

‘higRfE. o

real, imag or pointl, point2
pointd, point4d
Lhtotal: m/2+1 compley datar Ltotal: m time datad
wse  do o xxx i=1,m/2+1 do xxx i=1,m &
xxx wrike(l) datali) xxx write(l) time(i), timel(i+1)

to set wup the data file ‘bigfft.d’ in main program.

freq first.

freq first.

isign=—1 : "forward’ FFT, output the lowest
=2  ‘forwavrd’ FFT, output the highest freq first.
=+1 : "inverse’ FFT, input the lowest
=+2 . “inverse’ FFT, input fthe highest freq first.

dt, df defined in the £f#t program four.+ are

ifligign. 1t 0. or. df. eq. 0. 0) df=1. /(nn*dt)
iflisign. g%, O or. dt. eq. G. O) dt=1. /(nnxdf)
This shows how {o use ‘bigffi’:
Input:

me gt

4 ¢
time(id), i=1,m ~-—ftime series

Program:

open(l, file="big#ft. d’, status='new’, form=

rewind 1

isigns-1

write(ly m, dt, df, isign

do 10G i=i,m 2

write(ld timel(i}, time(i+l)
vlose{l)

call system{ 'bigfft’, kturn)

ppen(l, file="bigffL. 4, status~"old’, form=

rewind 1

read(i} m,dt.dFf, isign

do 200Q i=1,n/2+1

ragd (1) specll, i), spec(2,1)

Dutput:
mydt, d¥f, isign

‘unformatted )

‘funformatted

spac (i}, i=t, m/2+1 ~—-— compley spectrum

H R R FE R

complex datal(d0R%bs, v, 4, 2, twidle, twidel

~ 100 -



dimension datal(2, 40%6&) '
equivalence (data(l) data2(1,1))
double precision cos0, cosd, sin0, sind, pp.vi2, gl vv, 99
open(i:File:’bigFFt.d’,status:’old'.Formm’unformatted')
rewind 1 '
read(1) m,dt,df, isign
n=m/2 '
na=n/a
npi=n+1
pp=3. 14159245358%979d+0/float (n)
cosd=dcos(pp)
sind=dsin{(pp)
twidle=cmplx{(cosd, sind)
if(isign. 1t. 0} go to 1000
open(EIFilew’FFt.1’,status=’scratch“,Formm'UnFormatted’)
rewind &
if{isign. ne. +2) go to 200
do 100G i=npil, 1, -1
read(l) datali)
100 continue
regind 1
write(l) m dt, df, isign
do 1350 i=1,npl
write(l) datali)
150 continue
200 continue
do the work
do S00 y=1,2
i=1]
rewind 1
read(l) m dt, df, isign
read(1i) «x
if(y.eq. 1) then
data(il=x
i=i+1
endif
do 300 k=1,n2
ii=n+a-i

read(l}) y
vread (1) x
ifly. eq 1) then
data(id=x
dataliid=conyg{(x)
alse
data(il=y
datal(ii-li=conjgly?
endif
i=i+1

300 ctontinue
call four{data,n,+1,dt,df)
dt=0. S4dt
if{y.ne 1) go to 3500
do 400 i=1,n

- 101 ~



n

400
500

400

700

800

Q0

1000

1100

write(2) data(i)

continue

conbinue

rawind 1

rewind 2

tuidel=cmplx(il. O, 0 O

do &0C i=1,n

read(2) x

r=hbwidelstdatal(i)

y=s+z

1=y

data(i)=cmplx(reallyl),realz})}
twidel=twidel#twidle

continue

now consider data as a real time series of length &n
the order of time values is 1 n+i 2 n+2d 3 n+3 .. ...
we now have to demultiplex

rewind 2

do 700 i=1, n, 2

write(2) data(i),data(i+i)

continue

rewind 2

do B0C i=1,n2

ii=i+nad

read(2) x.y

datal(l, i)=real(x)

datal(2, i)=really}

data2(i, ii)=aimagix)

dataz2(2, iiJ=aimag iy’

continue

rewindg 1

write(i) m, dt, df, isign

do 90C i=1,n

write(l) data2(i, i), data2(&, 1}

continue

close (2

g0 to 2000

continus

forward Fourier transform

dn 1100 i=1.,n

read(1) data2(l, i, dataz2(2, i)

confinue _

ctall four{data.n,—~1,dt, df)

df=0. S#d ¥

cos0=1. Od+0

sin0=0. Gd+0

data2(l, n+li=datal(l, 1)-datal(a, 1)

data2(l, 1)=datal2(l, 1)+datal (2, 1)
data2(2, n+l =00
dataz (2, 1)=0. 0
do 1200 i=2.n2d+1
pp =cos0#cosd-sinO%*sind
sin0O=ginC#cosd+cosO4sind

WL = wfe

- 102 -~
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[a]

1300

1400
2000

 cosO=pp

ii=n+2-1

ri=datald(l, 1)
r2zdatad(l, i1}
gl=datad(2, i)
ge=data2(2, 11}

ri2=rl-ra

gli2=gl+g2
rr=cos0#gl2-sin0O#ri2
gg=sinO#gi2+cosCxri2
g4g9=—-gg

rig=ri+ra

gi2=gi-g2

datald{i, i) =ri2+rr
data2(i, il)=rid-rv
data2(2, 1) =gg+gl2
dataz2(2,il)=gg-gila
continue

do 13C0 i=2,n

datal (i, i)=0, S#datal2(l, i)
data2(2, 1)=0, S#+dataz (2, i)
continue '
rewind 1

write(l) m dt.df, isign
do 1400 i=1l,npl

idm=i

1f{isign. eq. ~2) il=n+2-i
write(ly data(il)
continue

continus

close(i:

stop

end

L T T o T - o e e T SIS

subroutine fourl{data,nn,isign,dt, df}

FFT

dimension datal(l)

n = 2 % nn .
iflisign. eq.~1 .or. df.eq. O O) df=1. O/ (nnxdt)
iflisign. eq. +1 .or. dt.eq. 0. 0) dt=1. O/ (nns#df)
J =1

do 3 i=1,n.2

ifli~-y¥t1. 2,2

tempr = dataly}

tempi = data(y+1)

data(y) =.data(i)

data(j+li=datal(i+l}

data(i} = tempr

data(i+il: = tempi

m = n/Z

ifly~-m: 5.5, 4

- 163 -
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4 J = j-m
m = m/2
ifim—-25, 3,3
2 J=4+m
mmax = &
& iF{mmax-n) 7,13, 10
7 istep= & #+mmax

theta = & 283185307/float(isign*mmax)
sinth=sin(theta/2
wstpr=—2. #sinth¥*sinth
wstpi=sin(theta)
wr=1. 0
wi=0, O
do ? m=l.mmax,2
do 8 i=m;n.istep
JEitmmax
tempr=yridatal ji—~witdatal j+1)
tempi:wv*data(3+1)+wi*data(3)
data(j)=data(it~tempr
data(j+ly=datal(i+ii—tempi
data(ir=datal(il)+tempr

a data(i+l) = datali+1)+tempi
tampr = wr

wr = yrHwstpr-witwstpi + wr

? wi = wiswstpr+tempréwstpi + wi
mmax = istep
go to &

10 cantinue
if(isign.1£.0) go to 1002
C frequency to time domain
do 1001 iiii = 1.n
1001 data(iiii) = data(iiii) #* df
return
1002 continue
£ time tn frequency demain
de 1003 iiii = 1.n
1003 data(iiii) = data(iiii) * d¢t
return
end :
B A R N HR R
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