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THE DISTURBANCE DUE TO A LINE SOURCE IN A
SEMI-INFINITE ELASTIC MEDIUM

By E. R. LAPWOOD, Department of Geodesy and Geophysics, University
of Cambridge, and Yenching Universily, Peiping West, China

(Communicated by H. Jeffreys, F.R.S.—Received 2 February 1948—Revised
16 October 1948)

When a cylindrical pulse is emitted. from a line source buried in a semi-infinite homogeneous
elastic medium, the subscquent disturbance at any point near the surface is much more complex
than for an incident plane pulse. The curvature of the wave-fronts produces diffraction effects, of
which the Rayleigh-pulse is the most important, :

In this paper the exact formal solution is given in terms of double integrals. These are evaluated
approximately for the case when the depths of source and point of reception are small compared
with their distance apart, allowing a description of the sequence of pulses which arrive at the point
of reception. When that point is at the surface and distant from the epicentre, the disturbance -
there can be regarded as made up of the following pulses, in order of arrival: (a) for initial P-pulse
at source: P-pulse, surface S-pulse and Rayleigh-pulse; (4) for initial S-pulsc: surface P-pulse,
S-pulse and Rayleigh-pulse. If the initial pulse has the form of a jerk in displacement, the P- and
S-pulses arrive as similar jerks, whereas the Rayleigh-pulse is blunted, having no definite beginning
or end. The surface P-pulse takes a minimum-time path and arrives with a jerk in velocity. The
surface S-pulse, on the other hand, is confined to the neighbourhood of the surface and arrives as
a blunted pulse. Moreover, part of the S-pulse arrives before the time at which it would be expected
on geometrical theory. ) .

Although derived on very restricting hypotheses, these results may throw some light on seismo-
logical problems. In particular, it is shown that when the sharp S-pulse of ray theory is converted
by the presence of the surface S-pulse and the spreading of § into a blunted pulse, the duration of
this composite pulse is of the same order of magnitude as the observed scatter of readings of Sg and
other distortional pulses from near earthquakes.

1. INTRODUCTION

The propagation of tremors over the surface of a semi-infinite elastic solid* was first &mn.cmmoa
by Lamb (1go4) in a classic paper. He considered the surface displacements at a 92&3
point which occur as a result of the application ofa vertical or horizontal impulsealonga line
in the surface. He was able to demonstrate, after intricate analysis, that the required
displacement will show a sequence of P-pulse,} S-pulse and Rayleigh-pulse. .
Lamb also indicated a method of attack fcr the case when the initial &mg_&ws.oo was.
located at a certain depth below the free surface of the solid. His method of obtaining the
formal solution (involving a double integration) is used in §§4 and 5 below, though m#o
disturbance here considered differs in type from his. Lamb showed further that the solution
for the corresponding three-dimensional problem follows in general that of the two-
dimensional one.

* I am much indebted to Professor Harold homwnww. who proposed the subject of this paper and has
given valuable advice.

% Throughout the following work the abbreviations *P-pulse’ and *S-pulse’ will be used to denote the

longitudinal (irrotational) and transverse (distortional) pulses respectively.
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case, followed up Lamb;

, but carried oyt the
.mzﬁm and ﬁmmogé
ighbourhood of the
es of the integrangs,

phase. This gave more information about the displacements in the ne
source, and a clearer analysis of the part played by each of the singularitj
Zwrwwo. mcu&:aom that there should be observed at a distant point on the fr
to an initial P-vibration, the direct P-wave, the Rayleigh-wave, and also a - mE.».m.nﬁ e
:.m<n=om N:.oum the surface with the velocity of an S-wave. Swrnb he re NM<M ‘ﬁ:o.w .r..&
harmonic a”:s.pmoa by a pulse of arbitrary form, and evaluated his inte &v 1 - ey
path, he failed to find the ‘surface S-wave’. B Eong a differen
Similarly, examining the disturbances due to an original S-vibration,
Rayleigh-wave, and ‘surface P-wave’. In this case ’
w..vc_mnw which, in contradistinction to t v
criterion.

. he obtained S-wave,
generalization did show a ‘surface

he .m_...u.@.oa S-pulse’, does satisfy a minimum-time

time (¢)

Q> Wiz

0 ) x3
distance from epicentre (x)
Froure 1. Time curves predicted by Nakano.

where £ is the d x=vhly(a®~y?), X=fhly(at - p2), x=yh[J(F2—¥?)
s the depth of focus and &, 3, v, are velocities of P-, S- and Rayleigh-waves respectively.

WCNMMNMMW M_MM.MM“@““M ohwzom mr.osﬁ in figure 1to illustrate the relationship of the different
(explanatory notes have b o B Source omits a pulse with both P- and S-components
(1025, p. 324): when 1o r . 24ded and a correction made). He concluded, however
appear, s,Enr. corres © P S”wﬁﬂnu Unn.osnm.wwnmn.a than fh/./(a®—f2), two other components
These are waves SEWMbw 0 the straight lines (marked surface S-wave and surface P-wave).
waves in the strict sense .Hwho?.mwmmwﬁoa along the surface, but they are not free surface
ment will not be shar mr xdstence of the surface ﬁ.s\mﬁu is possible, but its commence-

P In comparison with those of irrotational and distortional waves. The

reality o -wa igi i
: Qw f the mﬁ%»mo %.iw«&. (due to original P) is not certain, though it is obtained for the
ase when the motion is periodic and stationary.’
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Muskat (1933) has attacked a similar problem—the reflexion and rcfraction of pulses
at the interface between two layers of different elastic properties. While he obtains pulses
like the ‘surface P-pulse’ and ‘surface S-pulse’ of Nakano, he has not discussed the dis-
placements of a free surface in a semi-infinite homogeneous solid. Fu (1947) has recently
wcw_wrna a brief investigation of the problem in three dimensions, confining his attention
to the response to a point-source oscillating harmonically; the application of his results
to earthquake phenomena is therefore uncertain. L

Two considerations make it desirable to undertake a further investigation of this problem.,
The first is the divergence of Nakano’s results from those given by geometrical theory and
their uncertainty (see Byerly 1940). The second is the difficulty of reading 2ll S-phases in
the records of near earthquakes. Jeffreys (1946) writes: ‘The large scatter of the readings
of § in normal earthquakes up to 20° is still unexplained; it is clear that the large movements
read as § by most observers are not §, but we still do not know what they are.’-

An investigation of the nature of the surface S-wave, if it exists, should help towards the
clearing up of this question. )

In the following discussion, the problem of the disturbance near the surface of a semi- -
infinite medium is set up and solved for the case when the line-source cmits a puls¢ of the
form of a Heaviside unit function. In order to facilitate examination of the ensuing dis-
placement, irrotational and distortional displacement-potentials are kept distinct, and
evaluated for an arbitrary point near the surface, but not necessarily on it. .

" The form of Riemann surface, and consequent distortion of contour, {irst introduced by
Sommerfeld (190g) and applied to geophysical problems by Jeffreys (1926 4, 1931), proves
to give more convenient analysis than that of Lamb or Nakano.

2. PRELIMINARY ANALYSIS

While any disturbance which is a function of the time can be regarded either as a com-
bination of waves of different periods and amplitudes, or as a combination of unit functions
ofdifferent instants and amplitudes, the latter view is much the more suitable for our purpose.
For a simple harmonic oscillation of infinite duration is totally inadequate as a representa-

.tion of an earthquake source, whereas Jeffreys has shown (1931) that a simple unit function
and the response to it give results ‘ probably valid for a wide class of earthquakes’.

We %an&.o_d. seek the response to an initial disturbance in the form of a unit function

1 dw =0, t<0,) . X
HO) = e[ G 70 50) (21)
where Qis the line parallel to the real axis in the w-plane running from — o0 —ic to + 00—,
or any equivalent contour. :

Ifin any system the response to an initial disturbance e is f(»), then by the principle of

Superposition the response to H(f) will be

EQCE&.\?V is Nsw_vin in the «nmmon noa»maam the contour b. and the r:nmu. 1 erges.
. : a OB mm_—mﬁn ’
In some cases, (2:2) may be evaluated by the usual methods; in wmk:oi r, bs
- 9-2
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contour integral for the factorial (Gamma) function we obtain the results (Copson 1933,
p. 226) : .

1

- forr — H - 17 -1 piwr —— g | - D
o I do = 2(in} T IH(), oo re Ve du = 4(ir) iV H(r). (23)

We shall meet, however, responses to e of which'the following definition is typical:
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u,w) be the displacements of the point (x,z) in the (¥, z) plane. Then Ec‘nacm&oam
mroﬁ"mogs in the absence of body forces (Bromwich 1898 has shown that gravity can be
ol mo 3
neglected in this problem), are . |
(A+p) 300 +pV?u = pI?uf0r*, (A-+p) 300z +pV?w = pd?w|dE, (31)
= ‘9w/dz (Love 1906). : ..
SrMHW m.omw \mwm.w,._”pn?\N HA 0, the normal and tangential components of stress must 5555”
ie.Z,=0,2Z,=0, giving .
o A(Qufdx+dw/[dz) +2pdw[dz = O, dufdz+dw[dx =0, when z=0. Aw 2)
In general, the displacement of any point may be expressed as the sum of n_un. gradient
. ammn&»_. v“:ga& and the curl of a vector potential, the wonSo_. oo_,—.n.%oum.aw u»o an
M?Mgmo:& strain, and the latter to shearing strains only. Thus, in the two-dimensiona nmu,o.
1 we may introduce displacement-potentials @, ¥, writing .
3 i= D+, w=0,-¥, (33)

—3nte On Q' the integral converges provided n>>0,
and (2-4) is valid right up to the origin. Then by use of

J(@) = wrextorior  (n p 1real, p>>0) according as #(w) 50, (24)

except within the very acute sector bounded by arge = —4nt¢, ¢ being small. In that
sector f(w) is represented not by (2-4) but by a function which makes a rapid but continuous
transition from o” e*#9+iv7 op the left to &" e~#%+i7 on the right of the sector (see §§ 11,12, 14).
Unfortunately, the contribution to (2-2) from the part of Q which traverses this small sector
is important but difficult to evaluate. Since, however, /1 {w) is analytic in the lower half of
the w-plane and f{w)/w— 0 as w~>+ 00, we may replace Q by the more convenient contour

€', which proceeds from — o0 to the origin and thence to + o by two loops below the real
axis and avoiding the sector argw =

. s - it R
here suffixes denote partial differentiation. Substituting these expressions into th
w .

equations of motion (3-1), and the boundary conditions (3-2) we obtain
| | : 102 = x.wlnu Wp.l 3:4
L he,-_ e e wrdu = I(n) (p2+12)1n S ny, (25) Vi) — ww&wu VY=g where Vi=gatan S
_ | ‘ A .
| . , : iti ion of P- and S-waves
where ¥ = tan~!7/p (Stewart 1940, p. 503), we obtain the value of (2-2) as . and o? = (1+2)/p, B = lp, so that &, f are the velocities of propagation o.A
! i i A respectively, with o ~ v
,wumﬁ?v (p2412)in [ — gminty+m] (26) s 2D+ (A+24) D, —2uF,. =0 (vanishing om. normal .mMnoww MWV v (35)
: —Y¥. =0 (vanishing of tangential stress),
We shall use the following results, obtained by inserting particular values of n in (26)and | N 20+, — ¥, (
in the corresponding formula for f{w) = Fwr etputior. ) . when z = 0.

Response to el

R H(1) - 4. FORMAL SOLUTION FOR INITIAL P-PULSE )
» — : - . ol: .
L : We next construct a function which shall represent a pulse m_,w<n=:awm M,Mv A&”“deﬂ oM
e w,bnm.ﬂ z @7 1 froin the line-source. The appropriate solution of the wave equation for @ ( )
-} with time as €97 may be written b = miHig(wK,) &, 4 mw
; . H ﬂ . = : . *.
Twetbotior PR (29) L1 where k,=wfa and ©?=s2+(h— 22, N Mf.m
os iy 1 i ind of zero order (Jeffreys & Je )
. . - . . ) B d Hi, is the Hankel function of the second kind o : ,
e ey e w:%&: %Em .M.zzanoa is chosen from the various Bessel functions of zero order because when
T i-lg) et putior .

. (np)~* cos ¥ sin (3 —}m) (2:10)

|w,| is large

v . *.“
Hi AQR V\( >\ mn OLSEJ A v
¥ being given by tany = 7/p o\Tha MKy The fact

: = 1/p. : . v . ity o actor
A and s0 Hio,) ¢ will represent a wave travelling outwards with velbely = "0 Ll
i is introduced for algebraic convenience. We note that Hiy(z) >0 as
f(2)<0. e e i ce is to be
Superposing such solutions, we find that when the time <w.~.u~sm5,b of the sour .
not as €7 hut as H(t), the corresponding &wEwnoBﬁ: potential is

3. EQUATIONS OF MOTION, BOUNDARY CONDITIONS AND DISPLACEMENT POTENTIALS

Let z = 0 be the bounding plane of a sémi-infinite medium of isotropic elastic material
of density p and elastic constants A and #. Choose the axes so that the line source F which lies
parallel to and at a depth # below z = 0 is given by x = 0, z = & We wish to discuss the
disturb._ce at a point G, distant from F and near to the surface z — 0

, due to a cylindrical
pulse émitted from the line-source F. ‘

dw . (4-4)
1 . =
O, = m.ﬁ.m_%aﬁv w:a v
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Hsmﬁ.nsm in (4°4) the niwao:m?m A

Hiy(wk,) ll._. e iwRacoshu gy

o ’. (45)

which is valid for () <0 (Jahnke & Emde 1945, p. 150), we obtain

— l-—, xﬂ elult- Aa\nvnob.:;kn
a @

= —2cosh™! (at/w) H(t —w/a) .

We proceed to examine the form of the displacement given exactly by (4+8) in order to
be able to check the accuracy of methods of approximation which are used later. Since

@, is the &mﬁ_wnﬁzob?vogsn& of a P-pulse, the displacement at a distance @ from the
source is in the direction of the nmmEm vector w and is given by
, D, 2at o}
U= lmﬂ ~ o /@@= QANINV : (47

This displacement falls from oo at ¢ = w/z and mvvnoworam the limit 2/w as ¢~ co. Writing
t= a\a+q we get, for small values of a7/,

\
\

Uo= fom (1+5) 1 va,_m&/

Se

N '

Uz

e

_
_
*

A
_
_
“
_

0

(a) (v)

Fioure 2. @, and U, graphed (a) against ¢, (3) against w.

In figure 2, ®, and U, are graphed (a) against  for fixed w, and (b) against  for given £
The displacement may be described as a sudden jerk at ¢ = w/a, followed by a gradual
recovery, which is incomplete. The residual displacement varies inversely as the distance.
The infinity at ¢ = @/a represents a failure of the Hankel function to correspond to E&@Q_
conditions, as does the infinity at @ = 0. The “infinite tail’ characterizes the solution of the
wave equation in two dimensions (Jeffreys & Jeffreys 1946, p. 565; Lamb 1904, p. 28)-

" and (4'6) by :

(¢
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When the original disturbance is not a P- but an S-pulse, (4-4) is replaced by

1 . . % ._., ’
Y, = w.—‘p Hiy(wkg) 0§ﬂv /, , (4-8)

¥, = —2cosh™ (#f0) Hi—olf), | (+9)

where Kz = w/f. In this case the displacement at a distance v is A .

mﬁs w\wn ) Fa \
Vo~ =5 Al-F)
and is at right angles to the radius vector w.

The expressions (4-4) and (48) for ®, and ¥, respectively thus represent fairly well the
disturbances in an infinite medium due to an initial explosion or twist at the line-source.
Unfortunately, they are unsuitable for our problem, since the second A&B‘Evc,\.nm ‘Hiznr
arise in the boundary conditions lead to very clumsy expressions. The difficulty lies in the
occurrence of both x and z under the radical in & = /[x*4 (A —2)?]. We s_nnnmo_.m mnmr a
transformation of Hi,(wk,) into a form which contains x and z in linear combination,
extending a result due to Lamb (1go4, p. 4).

Hig(zx,) = w h e-izacoshudy  provided . (zx,)<0. (4:10)

Write ik, sinhu = {, @.ﬂa coshu = A, so that A,du == d{ and 2 = n»n,;xw. Then

As in (4-5)

wﬂs?«&n .:
Hiy(zx,) = ab e~ T ?.v.
and for real z>0, since cosh  is real and positive all along the original path of i integration,
we must choose the sign of A, so that #(4,) = cosh u £ (ix,) > 0. This being so, we can replace
the path of integration in (4:11) by the real axis from 0 to o, since the integral along the
arc at infinity which connects the two paths is zero. This gives /

2i( kﬁ

w 0

v .
Hiy(zk,) = ems (z>0, #(0) <0). . (#12)
Now the solution of the wave equation for @ (3+4) which is an even function of x and
reduces to e~#A« el when x = 0 is
e~#Acos (x €',

. cyye ( = 01
and so the solution which is an even function of x and reduces to anm_oﬂmxav e’ when x = 0 is

-2 4_. e~ COs wa aﬁn:a
N

which must be identical with niHiy(wyk,) € where o} = 2+ 2%

When the initial &mncncwnoa occurs not at the origin but at x = 0, z = h, we can repre-
sent it by

& ' )
B o = miHiy(wx, vn_e_ - Iw._. e~t-Racos (x5 ma§ . (413)
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. with @? = 22+ (h—z)?for the region 0 <z <k which concerns us. An equal source at the image
point (0, —£) will be given by :

¢, = miHiy(w'k,) € = —2 ._.a e—(h+ e cos m».m.m eiot,
0

valid for £>0, 2> 0, where 0’2 = 2+ (h+2)% : |

We have proved (4:13) and (4-14) for J(») <0, but they are also true in the limit when
5 ,Ae“_ = 0. In that case the branch-points 2, = 0 lie on the real axis, and the path of integra-
tion must be indented to pass above the branch-point on the positive half of the axis. Then
the proof given by Lamb (1904, p. 4) becomes applicable.

Thus the complete expression for the initial P-pulse is

(414)

1 [ dof> d¢ .,
== | — —_ ~(h=2a it .
P, TN 34_.5_ (—2) e~h-Macos mx?qs. (4:15)
We can now proceed to the formal solution of the problem. We shall work in terms of ¢,
and obtain the solution for @, by applying the operation Wﬁm‘_ wle
o

No set of image sources can balance both normal and tangential stress on z = 0, but we
can nullify the normal stress by taking an equal and opposite source at (0, —#). This gives
a displacement potential

Por = Po—¢r = I»%sai_? sinh z4, cos mxm..mn.s. . (416)

0 @

We now add further potentials ¢ and ¢ which are to be constructed so that all the conditions
of the problem are satisfied by the potentials ¢o,+¢ and ¢.

Using the relation (A+2u)/s = K%/x% we can rewrite the boundary conditions (3:5)

in the form } )
ARWI»Mka ﬁx&kka &Nulwhw %xh =0, w&»~+_§nnlw§§. =0, when z = 0. Aﬁmqv
_”&cban = Ou Mﬁoﬂuu« = Ov

H&ow”_ xz = m.‘»” {e~Masin (xdl elot, Aﬁ.wmv

Atz=0,

The form of (4-18) suggests that ¢ and ¢ must be built up out of expressions like

MM {xexzA« and MMM {xetse, where A} ={*—«} Q.Ev

The sign of A, is already determined, but that of A4 is at our disposal. Let us choose it 50 that
#(A;)>0. Thenin order to ensure that ¢ and - vanish as z— co we must use the exponential
-multipliers e~*% and ¢~**. This suggests for-¢ and ¢ the form

p=14f HE cos Lx-+ Bsin (x) e« d{ ¢, (420)
p=4 ;. ® (Ccos L+ D sin £x) e~ df e, (#21)
o .

Substituting from (4-20) and (4:21) into the boundary corditions we obtain two integrals
which must be zero for every point of the boundary. We therefore equate the integrands

equations for 4, B, C, D:
(20 —3) A+

(202—K3) B—

Nm»uQ =0,
—200, B +(20—x3) C =0,
(4-22) and (4-24) can be satisfied only if F() + 0, where
F(§) = (202 —x3)2—4{A, A4

Aand D and substituting we obtain

$=16 % ”wmmaéx? cos Crdl &,

. and ¥, where J 2 i« .
. I|~| o - ~hAagi g 2 .
2Py =5 rm LI (—4)etesinh B, cos B, (4-29)
. _ 1 o dw 8u@ﬁu\~\ —hiA .
0= wﬂbq [ gt cos (#:30)
: ‘ o 2_,2) . : :
and LY = 1 owim.ely (—8) (2 k) e-Ma-2Apgin {xd(, (4:31)

.wa. a @Jo F(0)

We notice the strong resemblance between these expressions

integrals,

Vor. 242, A,

2,D=0, ¢

o0, A+ (20 —k3) D = —3( e,

v =, %w&é ehu2Mosin (rd .

5. FORMAL SOLUTION FOR INITIAL S-PULSE
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to zero, and since the coefficients of cos {x and sin {x must vanish separately, we obtain the

(4-22)

(4-23)

(4-24)
(4-25)

|

. (426)

But if F({) + 0 we must have B = 0 and C = 0 to satisfy (4-23) and (4-25). Then solving for

C(427)

(4-28)

Hence the formal solution of the problem is given by the displacement potentials @, +®

where the prefix p means that these potentials refer to an original P-pulse.

When the original disturbance is an S-pulse, we start from the expression (4:8) for Y.
By transformations identical with those of § 4, except that A replaces a, we obtain -

1 . do [ —hAg g .
uﬁowﬂﬂw.ﬁoaiﬂ , (—4)e \.:&nrn\{nomnxm. - (5:1)
Substituting this into the boundary conditions, we find
d 1 dw 80 (202 —K3) —hAg—Aa 52
Rk Imﬂmrmiﬂb O sinfxe /& (52)
.| 1 E&& = 160%A, e—(h+22p d| 53
uﬁlm&i‘ﬁ:m o). FO .nommxn C. _ (5:3)

and (4:30) and (4:31), but the

interchange of « and £ introduces remarkable differences in the interpretation of the

10
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6. PoLEs oF THE INTEGRANDS ON THE RIEMANN SURFACE

Exact evaluation of the integrals along the {-axis is impossible,
- almost so. We therefore regard { as a complex variable, and distort the path of integration
50 25 to concentrate the important contributions in certain sections. When the choice of
_signs in A, and A, is unrestricted, the integrands are four-valued functions of {, and their
representation needs a four-leaved Riemann surface. The four leaves of this surface can be
so defined as to correspond to the four possible sign-combinations of Z(A.) and & (4,). By
our decision that #(1,) >0, #(A ) >0, at all points of the path of integration,
fined it to the leaf of the Riemann surface for which 2(4
shall call this the *top leaf”.*
The branch-points are the four points { = +f-«,, £ky, at which 4, = 0 or Ay =0, and the
cuts, along which the four leaves coalesce, must be given by (1) =0, R(Ag) = 0. Let us
write { = £4i7, = s—ic, then #(A,) = 0 implies that

haiee 2 m»lan.vmﬁqlﬁnlmlwmﬁ\a»

we rwﬁw con-
) 20, R(2,) >0 everywhere, We

AN

is real and negative. Thus
fr=—scje? and E—p<(?—)22,

and so the cuts from 1K, must lie as shown in figure 3 along parts of a hyperbola which has
the axes as asymptotes. Similarly, 2(4 y) = 0 defines part of the hyperbola £y = --sc/f2.

0 Z 0 ~Ka £
Ko

K, K

\Rﬂ K

(a) \ / (b)

Ficure 3. Branch-lines and poles in the {-plane (1) #(w) >0 and (5) R(w) <0.

The integrands have poles at the zeroes of F({). We now proceed to identify these poles,
and to assign the appropriate ones to the top Leaf of the Riemann surface.

The algebra is very greatly simplified if we now consider the special (Poisson) case in
which the elastic constants A and # are equal. This is nearly true for most rocks near the
surface of the earth (Jeffreys 1929, p. 86). Small changes in A and # would merely shift
slightly in the {-plane the positions of the zeroes of F| (0) ; the conclusions reached below would
still remain true.

* This choice of Riemann surface follows naturally from our original expression for the Hankel function.
A different convention of signs for the radicals will lead to a difierent Riemann surface, as in Lamb's paper

(1904). Lamb, however (followed by Nakano), indented the path abore the singular points 'on both sides of

the origin, and as a result was forced to take principal values of the integrals and to add a free vibration in
order to obtain progressive Rayleigh waves.

and numerical calculatiop -
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When A = g, o = 3#% and &, = /,/3, where in this (Poisson) case we write « for kg Then
F({)= 0 gives (202 —K2)* = 16042~ 2[3) (2 —«2),

ie 32 A%!Mv AQI wlm\wawxmimﬁ,\wzv =0. (6-1)

Since (6:1) has been derived by maﬂmnwn@ not all its-roots satisfy F({) = 0 on g.n 8%. leaf
of the Riemann surface. Considering them in turn we find that the only roots ﬁwnr lie on
the.top leaf are { =4 (3+./3)'«/2. These will be ansomnm by .H,a.\. In the Poisson case
£, = k/J/8 = 0-58«, and «, = (3+./8)!x/2 = 1-09x. The singularities on the top leaf of the
wmuawnm surface are shown in figure 3, in the two cases (a)  in the fourth quadrant, and
3 v in the third quadrant. ,

7. DISTORTION OF PATH OF INTEGRATION

Henceforward we shall consider ouly the region x>0. The analysis for the region x<0
does not differ in any essential point, other than that all pulses travel in the opposite direction
from the source. .

Each of our integrals in the {-plane is of one of the two forms

= GQcostrds, 1)
. (1]

x=[ GO sinte, (79)

s —hAg—2A,
where G({) is an even function of { containing a factor of such form as e zAg

which vanishes exponentially on any arc of the circle at infinity, except possibly in the -

neighbourhood of the negative imaginary axis, where G(¢) is 0(1/| {|). Let us write
1 itx m ~-ifz

1 =3 6O d+3 [ 6O ey, |

1 e I‘W.. i —itx . .N.*v i

X = 5| (G0 8t — 5 [ (G(0) e7edt (74).

When ( lies in the fourth quadrant, e~#*-0 as | {|—co provided S @ +0, and when
{liesin the first quadrant, e* - 0 as | { | > 00, provided # ({) 0. Wenow distort the contour,
obtaining different results according as #(w) 2 0. -

) #)>0 | o

Distort the path in the first integrals of (7-3) and (7-4) into the positive imaginary Bnm
together with the first quadrant of the infinite circle. Distort the ﬁwmv in the second Ennﬁmﬂp

of (7:3) and (7-4) into the negative imaginary axis, together with a loop I' aroun b w
singularities and the fourth quadrant of the infinite circle (see figure 4 (a)). The contribu

tions from the infinite arcs are zero, and we have

(7-3)..

- —fo 1, —ifx N

2 HW .“ G(L) it m?;wb» G() auﬁ&n.Tm._.—,Q@ e~ dg, (7:8)
. o 1 e .

- 5[ G0 k-5 QR k-Ef GO

10-2

|

[
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By a change of variable we see that the integrals along the imaginary axis cancel leaving
X 3

A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM 5

When o is real and positive, the contour takes the limiting form shown m:. figure 15. This
<% maybe proved by starting from the integral for ¢, when o is real and following through the
) 43 above argument with suitable modifications. . ) s .
Xy =— W .‘, {G(0) e it dg . o Again, when Z(w) =0,T Umowgnm.m wE.%Ho._oo_v m.uuB l‘.s8 to —100 go.HOwSm the points
2 ) (749) t., k; and «, on the negative axis of imaginaries, while I' becomes mrn mirror image of I'
m__._:%ﬂ real axis. The integrals along T"and I" are then of course equivalent.

1 . .
1 =3| GO etiag,
r

8. INTERPRETATION OF THE INTEGRALS

We now give a general .Eoﬁ&.o of the meaning of the integrals (7-11) to (7 ..;Y taking
. was fixed, | @ | not too small, arg @ not too near 0 or I.‘wa. and x large nonn.wwnna with £and z.
r : 1 This interpretation will indicate the approximate times taken by various waves to nnm.ov
the point of reception, and something of their nature. It must, rwinaaﬁ be treated with
Y b caution, as suggestive rather than definite, since it refers only to a Esm_w o.oBEQx value of w,
: and it is not clear that the same interpretation will hold either in the rnuﬁ.s.wa.a v becomes
real or pure imaginary, or when the exponential time variation is mn&nw&ﬁo& into 2 pulse.

First we modify the contour I further, transforming it as shown in figure m :.;o three
parts: T, a loop lying indefinitely near to the branch-line #(4,) = 0; I's, a similar loop
around #(3,) = 0; and T',, a small circle around the pole «,.

<
a3
=
e
re

(a) (&)
Fioure 4. Distortion of contour in the {plane.  (a) B(w) >0. (b) R(w) <0. =
(i) #(0)<0 : ° :
In this case the singularities on the right of the ima; |

ginary axis lie in the first quadrant,

and the distorted path must include the loop I (see figure 45) which contains the points e
~—~Ka —Kg, —Ky. (7°7) and (7-8) are replaced by k8
. . , ol
==| G et=d . T @
X1 2 - AO ﬁv , Aq 8 H‘m H.\«
1 .
*e=o; b.%@ eite dg. (710)

Using the formulae (7:7) to (7-10) we obtain, for the case % (w) >0, the following ex-
pressions: )

. o dl
o= I.‘. qn:_?lsézemln e, (711) Ficure 6. Further transformation of I'.
8L%, _. . . .
»9 N;. %NUN e=itx-th+2)ka gt elut, : (712) We shall require | | to be large enough for the exponential factor to <ermmm..8n.¢Mw= _M.M
r (20— 2 multiplier in each integrand, and x/(z-+#) to be large enough .».On us to take the <wﬂm__o= P
. »% = .‘. ﬁ\m@.vl @nv eirmhAa=g gf elot ’ (713) ¢"* as dominating that of such factors as e-Ms-24 in the neighbourhood of the pole an
r . branch-points. A . o - Vw it
Vo= I,_. e=ite=(h=2)Ap n.lmn.«;. (714) If the point { describes the contour I';, the Bomc_,:m of na...a will take its me%mn <mm :a» Ma
" A - k., and will decrease rapidly as { recedes from «, on either side of the branch-line. So
= [ 2R kD) e e major contribution to the integral will come from the neighbourhood of £, and to a first
P = ya € #=a g et (7:15) A hat the parts of the integrals
r (©) approximation we shall have a factor ei¢-=/®), Thus we can say thatt n%ﬂ  the v
A , ; . . . i e w
W= ._, . W,nmﬂva i+ 2)Ag gp ot ) (716) which arise from this contour will represent waves which have travelled most o y

from the source to the point of reception with velocity . The type om.. displacement vongww_
gives further information, and we may form the following mounE,ﬁobm (suffixes a, § and ¥
denoting contributions from the loops T, Ty and T}, respectively).

and when %(w) <0, we get the same expressions, except that i is replaced by —i, and the
contour I"by I'.

J——
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(a) ,¢. Tepresents a wave which started and finished as a P-wave and travelled magt of
the way with velocity a. This must be a part of the reflected P-wave, PP. '
(8) p¥«is a wave which started as P.and finished as S and travelled most of the way with
velocity . Since we know from the reflexion of plane waves that the reflected S from

incident Plies neaser the normal than the reflected P, this must be the reflected S-wave, P§,

.\, ¢) ¥.is a wave which started and finished as an S-wave, but travelled most of the way
with velocity a, i.e. as a P-wave. Since the only place where transformations can take place

is the surface, this must be the ‘surface P-wave’, sPs.
(d) ,$.started as § and finished as P, travelling most of the way with velocity a. Since the

reflected P-wave from incident § is farther from the normal than the incident S, this must
be the reflected P-wave, SP. :

FiGURE 6. Waves represented by integrals along T, and I'j, (a) initial P-wave, (b) initial S-wave.

These four waves all correspond to minimum-time paths, i.e. their existence is also
deducible by geometrical methods.

In the same way, we can analyze the contributions from the loop I'j, and see that these
waves, which all travelled most of the way with velocity f, may be described as follows:

(¢) ,94: this wavestarted and finished as P, but travelled most of the way as §. We may call
it the ‘surface S-wave’ pSp, noting that, like the Rayleigh-wave, it satisfies no minimum-
time criterion. .

(f) p¥4: this started as P and finished as 5, travelling most of the way with velocity 4.
It cannot be part of the wave PS, since it seems to have been reflected close to the epicentre.
1t will be called the ‘secondary S-wave’ p3. The path is not a minimum-time path.

(8) .94 this corresponds to (f), having started as § and finished as P, travelling most of
the way with velocity £. Itis the ‘secondary P-wave’ sP, and has not a minimum-time path.

(k) (¥4 this is part of the reflected S-wave, SS. .

(i) The values of the contributions from I', depend only on the residues at &, and so
contain a factor e~*7, These waves therefore travel with velocity y and must be identified
as the Rayleigh-waves, R. Longitudinal and transverse displacements arise in both cases.
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Figure 6 gives 2 &wmqwagmmm w..%aamobnwmob of the waves other than the Wm.ﬁn.mmr.ipém
for (a) initial P-wave, and (b) initial S-wave. Of nr.nmo waves, PP, PS, 88, SP arisc in the case
of reflexion of plane waves. The others are all diffraction effects due to the curvature of
the wave-fronts which impinge on the free surface: .

In this rough specification, we have beén unable to make any msﬂﬁdos.n concerning ﬁ.ﬁ
amplitudes of the various waves, or even to assert that pulses no:.nmm.osmrsm to :..o.a s.::
exist when the initial disturbance is a pulse. We :oi.v.no.omom to more detailed analysis, with
the object of ascertaining the form of response to the initial unit pulse.

9. PATHS OF STEEPEST DESCENT AND STATIONARY PHASE

While the contour composed of [, [y and T, seems to rwp.m to a on..z<n.=.8=n v.gﬁn&
ES%RQ&oP it must not be assumed without further discussion that .: will provide .ﬁwo
best mvwﬂoﬁgwaonm to the values of the munnmn&m. ‘We shall now consider other possible
contours, and for definiteness examine the behaviour of ,¢ when .&.ﬁevVo. We shall not
restrict ourselves to the case where 0, defined by (h+2z)/x = tand, is small. From (4:30),
by a simple change of variable, |

' ;, $= w‘_.a M\Ww e-itx-th+2Matiot JF, : (9:1)

Following the usual method of steepest descents, we can show n.ww" for .a,.o .FS%.& in
(91) the path of steepest descent has the form shown by the continuous line in figure 7,
where H ({ = x, cosf) is the saddle-point.

' .
/ ! t
\ !
CY [
/ \
3 /

Fioure 7. Path of steepest descent (continuous line).

When we atterpt to distort the real axis into this path, the result depends on the <m~=m~ow
#/(h+z). Figure 8 shows how, as #/(h+z) increases, the path of steepest descent aaMS M
a parabola of decreasing latus rectum, closing in on the E.w:or%o_ﬁ K, The distorted pa
of integration must not cross singularities, and 50 takes the form of figure 8 (a), (8) or (¢)

1

.
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according to the value of x/(%+-z). This analysis indicates that there are certain BW:EE&
distances at which the Rayleigh-wave and ‘surface S-wave’ first appear. ‘Such a deduction
was first made by Nakano (1925), but one of the puzzling statements in his work is that when

ronov_»ooaﬁrovw?ommﬁoomn&annosnU<oaoomm»mmosmn<v:wmnbo.mcu.mmon,w.smé.
appeared. : .

& b4 0 4
~— SNy
A, K.
1 Ko ™y )
Kg 7. )
h R‘v./ s O//
(a) . (b)

Figure 8. Modified line of steepest descent for ,¢. (a) x/(h+2) <y[J(e?~7?),
(6) yI(2=¥?) <x[(h+2) <l (&2 = £2), (¢). x/(h+2) > B[ (a* ~ 7).

An investigation has therefore been made into the form of the modified contour when
distorted towards the path of stationary phase; the work parallels that described in the
preceding paragraph, and the conclusion is that the same features emerge, including loops
around «, and &, under the same conditions on x/(h+z).

When #/(h+z) is large, the modifications to the path of steepest descent needed to avoid
pole and branch-lines are so extensive that the path of steepest descent comes to resemble
the Sommerfeld contour closely, except in the immediate neighbourhood of the saddle-
point. The modified path of stationary phase, though it cannot be confined to the top leaf
of the Riemann surface, also contains loops around «yand «,.. The evaluations of the integral
by the three methods should therefore show results agreeing in their main features, though
they may differ in the accuracy of approximations obtainable.

10. EVALUATION OF INTEGRALS FOR REAL ¢

The loops T, and I'; are convenient for approximate evaluation of the integrals because
we can find a new independent variable which takes only real values upon them. But since
the saddle-points do not lie on these loops the results will lack the sharpness and accuracy of
approximation obtained by steepest descent or stationary phase. If, however, we consider
the limiting case when w is real and positive, the contour of integration takes the form shown
in figure 15 and the saddle-points lie upon it. We can therefore get useful information from
this limiting case. First we give a more adequate justification of its employment than was
given in passing in §§ 4 and 7.

We shall prove the formula

._. a-r?e.uurmlm = —mikliy(wx,), (10°1)

-3
where «, is real and positive; the other symbols have their usual meaning, and T, is the
contour shown in figure 9. Writing A, = ({~—«.)! ( +-k,)t, we see that #(1,) vanishes on
the real axis in (— 0, —k,) and (., +c0) and so changes sign in crossing these segments.
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Near &, A = /{2a(§ ~k,)}, and sincé #(1,) >0 we prove easily that #(4,) is positive above

the reql axis there,
in figure 9.

and negative below. It follows that #(1,) takes on I, the signs shown

+ ~

Ket:

o

Ficure 9. The contour Ty

Then in the left-hand member of equation (10-1) let us write x = @cos 0, h—2z = wsind,
{ =k cos ¥, &, = ik, sin on the left and right banks of Iy respectively to get

. ._;aia?La:oaaus Je-iTKacos0+9) 49, (102)

0

where 9 takes the path from 0 to = and thence to i 00 +4m. In the first integrand of (10-2)
write §—3 = iw, and in the second § 43 = iw, to obtain

|.._> e~iwracoshw gy Co‘wv
[

where Cstarts from — 00 +i(37—8), runs parallel to the real axis to i (3m—90), ﬁrnﬁnca down
the imaginary axis to i(—}n—0), and finally parallel to the real axis to o +i(—§m—0).
We now write w = {-+4in, and (10-3) becomes : :

|4_. exawsinht gp CO.PV
c

where C' is the path joining (— oo—if, —if, —if— im, 00 —il lu.,.a.v. Because oK, is real
and lies in the first quadrant, the end-points of the path €’ can ,ca. mrmmnm to — oo and 00 —
without altering the value of the integral. But we have thus obtained a standard expression.

for —miHi,(wx,) (Copson 1935, p. 324), and (10-1) is proved. \

Y [y

If we now wish to find an approximation for the integral in Co;y we can usc the form

(10-2) which shows that the first integrand has a saddle-point at & = 6, while the second

\

has none on the path of integration. We therefore evaluate at the ong saddle-point, using

Kelvin’s method of stationary phase (Lamb 1932, p- 395), by which N

\

(10°5)

[ oty 9 = ) o 757

approximately, provided f™(xo)/[| f" (%0) {]# is smiall and ¢(x) changes slowly compared with

Vor. 242. A.

¢/, Here x, is the saddle-point (point of stationary vrmhmvw and .?o upper or 55”—. .&mﬁ in
the exponent is used according as f"(%,) = 0 Applying this theorem to (7-11) we have

4= .\ﬁmmv e (10-6)

approximately, provided wx, is large.
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- Since the exponent in P is identical with that in §, except for the sigu of z, we can mn.ﬁ
an approximation by the same method. When we ccme to set down the value of the multi-
plier of the exponential at the saddle-point, we note that A pmust be positive imaginary o

the upper edge of the cut, for the same reasons as given for 4,. Then we obtain, provided
o'k, is large,

2 : , )
8 (G L0 -t (o
E cos?§ sin m,\?w\\wwlnomas . h+z
. where L(6) = (@7 —2cos0)7+ dcostd sin B /(a2 [ — cos?0) with tand = — - (109

To find the expression for the wave PP we must combine (20-7) with —g¢_which is given
approximately by

. ?
— >\ AW.N«IMV e-viatdin  when w'x, is large, (109)
analogous to (10-6). These two expressions cancel out (i.e. PP changes phase) when

8L(6) =1, (10-10)
i.e. in the case A = x, when
, 4tanf/(3tan?6+2) = (3tan?+1)2. (1011)

This is identical with the result obtained by Jeffreys for plane harmonic waves (Jeffreys

1926 6), as it should be, since we have approximated at a particular value  and a particular
point {.

Turning next to ¥, (7-13), we make the same substitution, with the same rule for signs
of A, and 44, and we see that when we consider the part of the contour which lies above the

real axis, the exponent is ) .
—ik,[xcos ¥+ hsin® +z./(a?/f? —cos? §)]. (10-12)
This is stationary when 9 satisfies ’
zcosd sind
T =cos9)
If 9, is the root of (10-13), the time of arrival of the wave will be

xsind—hcosd—

= 0. o (10-13)

8= [xcos d, +hsind, +2 /(af - cos? 9)]. (1014)

But (10-13) and (10-14) are reducible to the equations which determine PS by the minimum-
time principle. :

It may be shown that there is no point of stationary phase on the contour below the real
axis. Thus ,, evaluated by this method gives the wave PS, incident at the surface at the
angle #, which is given by (10-13). Using this value of # we can evaluate an approximation
for LF, when x«, is large, corresponding to (10-7). . »

In this section, by consideration of the limit of the contour I" when w lies on the ﬁom.n.:a
real axis, we have been able to identify #P. and ¥, as PP and PS respectively, obtaining
accurate expressions for their travel times. In the same way we can identify other waves.
But if we wish to generalize from waves to_pulses we meet the difficulty that our approxi-
mations hold only as long as w is large enough for the exponential factor in each integrand
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cillate BE&% compared with changes in its Sa‘_nwmnﬂ. In mnbonwznﬁm. from ei¢, we
N o”w cefer to use a contour which avoids the neighbourhood of the origin. To do this
%MM.QMMM wo the contours I',, T P and ﬁ, for complex w, losing mno.:.mn«.~ in our vv?.ox.mammouu
to the travel-time and amplitude, but gairting the power to generalize more effectively.

11, DIREGT AND REFLECTED PULSES

We now evaluate ¢, by approximation on T',. We must consider the cases #(v) %0

separately. 0 y
Ka
41,
in —Ka
Ta, . . ¢
(b)
“ ! for 0
Ficure 10. Evaluation along (@) T, for Z(0) >0, (b) I's for Z(w) <O.
(a) #(w)>0 v ] "
. ~igr-(h=2Ra 2 0.
By (7-11) fo=—| e NF» ¢ when 2(w)>

Ta .3 - .
If I, lies indefinitely near to the cut £(4,) = 0, we may write A= nwﬁ_m_ on H,anﬁ“nmﬂo u Mw
real and positive. The positive sign will refer to one side m.w the cut, and the :nmw ive :M_M o
the other. The easiest way to determine which sign is positive is to sﬁnmh. = ﬂx&m nd consider
the cases p 2 1, The facts that &, = (s—ic)/a, and 2(A,) must be positive, wwro O the cor
clusion that . (A,) must be positive on the left of the cut, and negative on ght,

figure 10a. Then since { = /(K% —u?), {d{ = —udu, we mnm

du i . .
; - —(h~2)lu h-2)iu) £ edot, Cw :
&cﬂﬁho.&_ﬂns Hu el uhm )
. —2
Approximating to { in the denominator by &,, and in the exponent by &, —u*(2Kqs
do= mm elwi-ixke Bﬂeainxa no.m .Q~|Nv udu ) (11-2)
LA 0 o
Qo . lmﬁ (h—2) ﬁ (11:3)
N>\A o vﬁ% En« = X+ 9% ’ e
11-
provided | xx, | is large and # (k) <O.
(b): &) <0 i .
Here go=—[ e R(w) <0

th
and the contour I, has the form shown in figure 10 . We find that . (1,) must be negative

i i bstitutions as before
on the left of the cut and positive on the right, and with the same su bef
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except for mmmsw,ﬁ we obtain exactly the same expression (11-1) as before. Thus (11:8) holds
for all w not too near the origin and such that .# (w) < 0. This is the response to ¢, Then the
response to H(¢) when (k—z)/x is small will be : .

. (2may 1 4 ior A i, (h—z
eoﬂ>\ﬁ|miv§.‘ae teivr dy, where ﬂuslmﬁx+|wm:vld (11:5)

nlm\Amwmva o S ()

by use of (2-3). In this case we can use the approximation (11-3) which is not valid in the
neighbourhood of the origin in the w-plane, since the contour £ can be taken as any line
below the real axis from — 00 —ic to 00 —ic. We may compare our expression for ®; (11-6)
with the accurate result (4-6)

at [
Dy = Iwoowr-ummAT mv. (11)

7 in (11-6) will be 2 good approximation to ¢--w/x in (11-7) if » is large compared with
and z. Writing {—w/a = 75 in (11-7) we get

— [ (o)L A@% AGE :
®o = .»_HAva 8\ow) + O\gp) |Hla)- (11-8)
(11-8) will be a good approximation to (11-8) if | k—z |/x is small and also if are/2w is small,

i.e. at the onset of the disturbance.
The displacements derived from @, as given by (11-6) are

U@y =2 JG=) E, , ()
Wy =Sne =2 (Vg (u10)

~ We notice that these tend to zero as 7 tends to infinity, so that our approximation fails to
record any residual displacement. ‘ A
Next consider
4. = 82,
o In ()

Since we are »».Ebm  large enough for the exponent to vary much faster than the remainder ’

of the integrand, we take . )
A= (0 —x5) = i Sl —xE) +u] ik, (1112)
thus defining &) = /(x}—«2), and

F() = (20— «%)? = (x5 —2¢2)? = i3, . (11-18),

defining k,. We shall also use the additional symbols §, and f, defined by
frt=f-t—a"?, fy?=pt—2a"2 | (11-14)
£, and £, have the dimensions of velocity, and in the Poisson case ,

FH»\WF fa=J3f=n0.

b=+, [ o, (1)
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Evaluating as before we get, provided (h+2)/x is small,

L 2ur\ f4 (h-+
»eaﬂlﬂaxﬁlﬂv%\w_h asmS“ ()
where 7 is now .m?oz ,Uw 7= NIWT;TQI.NVNBL. (11-16)

The complete expression for PP is derived by combining (11-15) with
o le‘wN)\AmVvaS.v (11-17)

From (11-15) and (11°17) we see that at very large distances ,®, is negligible compared
with —®,, but owing to the large numerical factor in the ratio

4 btz

./~ ) =~ S 112

(=842 (h+z)/x in the Poisson case), reversal of phase takes place for a small angle of

incident ray. Qur approximation gives the critical value of (h+2)/x as /2/18 = 0-0884

which is a poor approximation to the true value of 0:2270 given by (10-11), and shows that

our approximations begin to break down at such short distances, because the Sommerfeld
loop is too far from the saddle-point.

Comparing (11-15) and (11-17) with (11-6) we see that the form of the reflected pulse is
essentially the same as that of the direct pulse—a sharp kick followed by an infinitely
protracted recovery. .

In the same way we find, when (2-+2)/# is small,

.5 =8 () R pyafent HO, (11-18)
where ' 1 = t—xja—z|f —B*[2(ax—f, 2). (11-19)

Thus the pulse PS is of the same type as the initial pulse, but falls off faster with increasing
distance,

We now turn to the disturbance due to initial S-pulse, and derive the expressions for the

- direct pulse, S, and SP.

¥, of (7-14) is identical with g, of (7-11) except that § replaces . We can therefore write

down the approximations which would bé obtained from the loop T, valid when |h—2z|[%
and fr/x are small:

¥ys ;&\AWWV H(r), where 7= Tm_”i@wmdv o)
wiby @y, Ot e-A2E () H0L e
wery -/ QWV "o - wa)

An equal and opposite pulse from the image source would give
lﬁ_”umxﬁu_mi, where anth}Mw : (w2a)
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when (i+z)/x and fr/x are small. The reficcted pulse 5§ will be compounded of this and -

s¥; When 2{0)>0,

82, . i
— 20T a—ifx—(h+ 2, i :
Vo= Fg T e (1124
Just as for T, we write A5 = +iv on the left side of T, 4, = —iv on the right. Then
(= J(&5—2%) =kp{(1—2%(262), A, =+x,, (d=—vdv and F{Q)=nt.
Thus = )\ llwa\wﬁ.vma‘TN iur—jin
V=8 AE e, (11-23)
when (k+z)/x is small, and 7 is given by (11-23).
When #(w) <0, 802,
: /A 8 @d{x~(k+z)) i
hw\\ - Nﬂhﬁv eilx u.mmn.:k.
Ay = inu on the left of I and A, = +iv on the right,
{=JK3—1?%) = —&p(1—~vY2%) and A, = —x,.
Making these substitutions, and evaluating as usual, we get
= wu.‘%n.u \W \NJFN iwr iz
L&_qm)\A = vmluin_ b (11-26)
Thus Vpediloiéw=¥n  according as @ (w) 50, {11-27)
where A=g [(*F Lhiz .
KA ) (11-28)

Considering now the two parts of $S for given v, we see that the amplitudes are in the
ratio | ¥, 1/ ¥, | = 86(h+2)/B, %, which is small when (A+z)/x is small. The phase of ,§,
exceeds that of —y, by -+ 17 according as #(w) £ 0, so that the amplitude of the sum of
~¢,and ¥, differs from | ¢, | by a small quantity of the second order if (k+ z)/x is first order.

This corresponds to the fact that with plane waves for angles near grazing incidence no

energy goes into SP, 8§ being reflected with unchanged amplitude but changed phase
(Jefreys 19266).

The above evaluation of i/, differs in one important respect from previous approximarions
on I',. Whereas approximations obtained from T, hold (subject to the conditions stated)
a5 w approaches and crosses the imaginary axis of w, (11-27) holds only as long as Iy is ot
too near I',. If [', lies so near to T, that contributions to the contour integral in the neigh-
bourhood of x, from T, have to be taken into account, (11:27) breaks down. The same
condition holds near —«, when %#(w)<0. In other words, (11-27) holds only as long as
argw lies outside — 7L ¢, where ¢ is a small angle determined by the nature of the integrand
i (11-24). Across this small sector there takes place a continuous transition between the
two expressions given in (11-27). We therefore obtain the response to H(t) as described in
§2, replacing Q by Q' and using the time derivative to avoid encountering a singularity
at the origin, : :

»@.\% !Whe-. sin ?%lwa.v dw (11:29)
"Mhel—mmﬂ AS~+W§V %» ﬁmﬁmﬂm *w =—1,
= m.\ mwv M \_lwmm (™). (11-30)
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This approximation differs from that for ¥, only in numerical coefficients and in the occur-
rence of sin (o7 — 1) in (11-29), whiere W has sin (wr — ) ; it is this &m.gnbnn which distorts
the shape of the pulse.* .

Ficure 11. @s\ and lﬂw\« as functions of 7.

mwsu and — Y, are graphed against 7 in figure 11, Since w = —d¥/dx %.6. /A, this figure
shows the form of the vertical displacement. Itis clear that ,'¥'; does not modify the amplitude
of the disturbance due to —¥,, since that lies entirely subsequent to the instant 7 =0,
whereas ¥, gives a disturbance preceding 7 = 0. The effect of the term 'V, is therefore to

lead up to the jerk given by —W¥,; and its relative size decreases with distance from the.

epicentre.
The evaluation of ,®, is exactly analogous to that of ,\¥',, and the result is, when (2 +2)/x
is small .
’ . 2ar\zfF (. HA\7 (11-31
aea...mz\ﬁlmnvm%A xnv H(r), ( )
where - | T= “l_”m.f:\_:.*. I«IWNII”_ T (11-32)
, o By 2ax—pik)

This is SP, and its properties can be derived from those of PS by change of sign and inter-
‘change of  and z, as long as z+ 0. If z = 0, the approximation given in (11:31) vanishes,
and we must consider the contribution from terms which can be neglected as long as z+ 0.

12. RAYLEIGH-PULSES

The contributions from the loop T, can be evaluated exactly, since «, is not a branch-point
but a pole. When { = Ky :

A =J(0—#2) = ofy., where y?=y7—a?,
Ay = J(2—K3) = o]y, where yz*=y72—f72,

the positive signs being taken before the radicals, since &, is on the top sheet of the Riemann
surface and 2 () > 0. Then, evaluating the residue at «,, we obtain, for # (w)>0,

Qw,.:
(12-2)

—sf G4 emtt-trana g i
PPy =8 O ° .m

— \&un nl?‘ie.ﬂ

.Hr:waovwgoio:o:oooE.mwnnrorolnonnm,_&wv_wooaogmnminx\.mm=ru§_u,mv3w~2=A~wo+.
P+ 21 and figure ¢), .

(12:3)
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e e 2 —_ -
where 4= Y27, F (x,) Amyy (V2 4+75+ 22— 47V s+ 2725l 1, (12:¢)

A p=(h+2)fy, and 7T=t—xfy. (124)
4, is a real constant.
If, on the other hand, we consider #(w) <0, we must choose the negative signs for A,

and A4, and note that the pole is now at —«, and is encircled in the reverse direction by I,
In place of (12-3) we obtain . . :
oy =— A fethorir, (126)

(12-3) and (12-6) are adequate expressions for the Rayleigh-wave provided «, is not so close
to I', and T', that the integrals along those loops make significant contributions in the neigh-
bourhood of the pole ,, and similarly for —«,, I', and I'y. That is, (12-3) and (126} hold
except within the sector argw = —}n+¢ (¢ being small), across which there is a rapid but
continuous transition from (12-3) to (12-8). We therefore obtain the response to H(t) from
the contour ', using displacements, which are :

u = F A esporior . (127)
7 A according as #(w) 5 0.
w= l.ws exputior . . (12:8)

Fioure 12. U and W for the Rayleigh-pulse ,®, as functions of 7.

Using (2-8) and (27) respectively, we find the displacements corresponding to initial

unit-pulse
AT : (12:9)
mp T ,
A _p . (12:10)
Ty b*+1°

U and W are graphed against 7 in figure 12. In each curve, the greatest displacement is
inversely proportional to p = (h+Z)/y,. Thus (12+9) and (12-10) represent a pulse confined
to the neighbourhood of the surface, travelling with velocity 7, and whose sharpness decreases
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with increasing depth of focus. This is the Rayleigh-pulse, of which ,®, gives the irrotational
part. The distortional part, given by ;¥ is found in exactly the same way to be

Ue=-—Pr T 12:11
v b+ (21
4y (1212
]ﬂv\bGlT.ﬂNu . A—.w_, v
. 2_1\4 "= hfy,+2zly, and T=1t—x/
where xAn“‘W%v\hAﬂ!mﬂ 3 % = Nf}a v.u = v

The amplitude of the Rayleigh-pulse contains no x-factor. So in this "io-awans%owww
case, frictional loss being neglected, the pulse travels along the surface with undiminishing

amplitude. . . .
When the initial disturbance is an S-pulse, the displacements in the Rayleigh-pulse are
A4 g A 1 | 1213
U= mrrn (219
Y / (12:14)

T AT LT
where g = (A+2)[7p ¢ = kY g+ z[Yar

13. THE SURFACE P-PULSE

So far we have dealt with the features of the disturbance which are mnoQQlow»? evident
and with the Rayleigh-pulse. We now consider the four Honwn.mnm w:nmnpwmg R/ »Nu
and $,, whose contribution to the disturbance, if any, m.m certainly not aﬁmnuﬁ from the
geometry of reflexion. In this section we deal with ,, since the mathematical treatment
follows methods already developed in § 11. .

By evaluation on T', as before we obtain, when (h+2)/x is small,

2 [[2x\ B4 h+2z) A (13
.rmsn%m“wl AMVWMTKAIIMM\IQ o H(r), (131)
where , T =t—xfa— QTTNV\P. (13-9)
. p
Kl fi AVd

Fioury 13. Suggested path of \¥..

The result (13-1) differs from the formulae for PP, PS, etc. mainly in the oom:mawm MM.
7 in place of ', It represents a pulse which started and mEvam as S, but trave ro 0_8 e
the way at the surface with velocity a. 1t can therefore suitably be called " M mzwmnm
P-pulse’, The value of 7 given in (13-2) corresponds exactly to ﬁ.wﬁ A.Vm Hn&, which trav :
a3 shown in figure 13, with angles of incidence and emergence ¢ = sin (Bl)- .

12
VoL, 242, A, . i .
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If x/(h+-z) is large, the displacemients are given by

. oo ot , . .
Uz~ w@)\AMv %wma_...«qw (139)

W=16 >\ A.wxmv mwmﬂ_. (134

, Thus the displacements of the surface P-pulse have the same form as the potentials of the
ﬁ reflected pulses, and consequently, to a first approximation, the velocities of the surface
P P-pulse have the same form as the displacements for the reflected pulses, i.e. the disturbance
begins not with a sudden jerk, but with a suddenly acquired great velocity, the initial
displacement being zero.

It is easily verified that the path shown in figure 13 is 2 minimum-time path. Moreover,
the magnitude of the disturbance at the point of reception does not decrease as k and z
increase, i.e. the disturbance is not confined to the neighbourhood of the surface. Thus the
surface P-pulse is not a surface effect analogous to the Rayleigh-pulse, but more of the same
nature as the ordinary reflected pulses. This distinguishes it from the surface S-pulse, next
to be considered, which can only be discerned near the surface, like the Rayleigh-pulse,
and has not a minimum-time path. :

14. THE SURFACE S-PULSE

Hnwbumoddm:ms&\??;wvvwgaﬁcﬁmsgmamoaon H.\iomorﬁrnn.&@vc.
provided | xv/f| and x/(h+z) are large, .
-~ _a“_é (k3 —202)% (k3 —v?) v2dv
#9p =160 o (k5 —20%)* 41602 (x2 —0v%)Z (K —v?)
= mlalm T ~ep anwa.\nxmew dy
\ﬂw 0 .
= B /nily~) givr-op, (14-9)
wherer = t—x/B, p - (h+2)/f,and B = 8 /2 fix~}. Similarly, evaluating on T for 2(w) A.P
sPp% B milyt elvrtho, (14:3)
This response is a surface wave, with amplitude diminishing downwards as e-¢+2¢//.
The phase retardation is x/4. .

As with all other approximations from Ty, (14-2) and (14-3) cease to hold if I, passes
too close to k4, or I, too close to ~—&g4, and so here we find the response to H(f) from Q,
again choosing the integrand so as to ensure convergence at the origin.

We therefore examine the velocity

e Vg D-(h+2) Vixi-vitiat  (]4:])

is B M T cerser a5 R(w) 50, (144)
From this, under certain conditions specified below, we can derive
o 1 Ldo
U=35x a.: ©
B _ . T (14:6)
%INM bcostf sin (Y +4n), where nm::vﬂm. A
by (29). U varies with 7 as shown in figure 14. .
- T s b
» e I P IR
On g E=u%t- g
~
. w Al o denr v
N T
bR E o
4 - L _,, o
‘Y ﬂv g ., .v
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The condition for the approximation (14-2) to be valid is that | xw/f | wsm.x\ QT_‘NV shall
be large. Thus the lower limit of | | for which it may be used decreases as x increases. ..H.vo
derivation of (14+5) from (14+4),0n 9@099.. hand, is exact, and 50 A F.m.v will apply provided
the integral from which it is derived receives a negligible contribution from "wo.mo small
values of |w| for which (14+2) breaks &02?. Mﬁ may be shown that the proportion con-
tributed to the integral from such values diminishes as b w:a 7 decrease. . ;

. Thus we may show qualitatively that our mmmnﬂwﬁswoo,a (14-5) for U may be ox,m.vn.oﬁ
to hold provided x is large, } and z are small, and 7 is small onocmw. Under a.romo 8:&50.8.
the surface S-pulse makes its arrival known at £ = z[f by a peak in the bozmoun& w&ommw.
the sharpness of which increases with the shallowness of focus and reception man., e
horizontal displacement will start gradually.

U

t=x/8 t

A

Froure 14. U (for pSp) from approximation on I'y.

Ko 5@ Ky
0 o~ NN g
o/

v = ~—

Froure 16. Limiting form of loop I' when w is real and positive.

In order to remove some of the uncertainty of thisresult, we are driven to the mnooomﬁwﬂ_
hitherto avoided—of integrating first with regard to w. H.o do s0, we chm Emna_ﬁwnm eu
from the other variables in the integrand of (14:1), and this is feasible only for rea 4 . §10

We therefore return to the limiting form of I for @ real and >0. We have ﬁnmﬁw J&m&
that the neighbourhood of , provides expressions mon.. the reflected vcwnw. ﬁw_.oB: “ o
P-pulse), and we are now concerned with the nozivcﬁ.g from the _QA%HM.~ _n_ﬁ E“m:mmnm
k,around x, (see figure 15). In the region of thisloop, ‘which we mn:onnMQ Nu\wmw a . ws& sw.:o
in the integrand of (14-1) are single-valued except »n and oo.:mnm:nn %9 AE.o above the
{=x 4¢0s ¢, we find in the usual way that A, Swﬂ the value +ix,sing on n‘ P

ax1s, and —ik,sin ¢ below. . : 12-9
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To avoid questions of convergence of the integral for o, we deal with
$A,

. = —8¢ e~ixt=(h+2)A, +iwt Rﬁ

Irg, £(0)

_peos=1/a kgsing  —ix sin g
- 3 g~teb—the 2 Hut grf _Kp £
mﬁc‘vo ﬁ ¢ RMA Nﬂ... IT . .m«. v

HW@.‘SR-_E» Amoo%&lCnoOww& mmswﬁ&
Flo (oo —T)7+ I6cos sin §(cas? g—777a7)
T t=xcosglf, P = (h+2) /(cost §—pu)

and F, and F_ denote the values of F ©)
Writing cos¢ = w, we get

o?,w.leﬁ CA.&
where (147)
on the upper and lower sides of the loop,

u = Hﬂwm M\n .2.5 GoT-0 gy, (148)
. w3 (22— 1)2 /(1 — g2
with CGlw) = Awsnlm:ﬁ:ﬂm%w ,t\mé mﬁl@&%
Tw) = t—uxlff and P(w) = (h+2) J(u?—2Jed) 5. (14:9)

When o is negative, we use the appropriate signs and obtain the same result (14-8), except
that the sign of wP in the exponent becomes positive.

In this case, Q' degenerates into the real axis, and we find that the response to initial unit
pulse is 1 do

16! .
-_— . wT+wp =2
; .&nﬁﬁsv &Swﬁ p.&n. -
16 1 WPt
== G(w)dw ‘ e~“Psin o Tdw
nf Bla 0

16t

- rﬂﬂ Ala
1 7T
Ew) =3 prrm
- (Bt —wx)
. B2 (=) ¥ (=)
(14-10) m?am U as a function of #, , z and ¢, but a long series of numerical integrations
would be needed to obtain a close approximation to the true relationship. The shape of the
factor E(w), however, gives us a method of investigating qualitatively the variation of U
with ¢, when (k-+2z)/x is small.
Given ¢, E(w) has a single zero at  — ft/x,

like (ft—ws)-1. In the immediate neighbo
minimum at

G(w) E(w) dw, (14:10)

where

(1411)

and at large distances from this zero it behaves
urhood of the zero there are maximum and

H%HE\TTNV)\X £ 222

, x NAZL(hrz) (1412)
Tespectively. When (h+2z)/x is small, and ¢is not very different from #/B, (14-12) reduces to
P2 F B(h+2) 6, %, , (1419)

and the values of the maximum and minimum are
+41/24(h+2). (1414)
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-13) and (14+14) we see that the peak and So:mw near the zero of E(w) become
From (14-1 (h+z)/ is very small; moreover, E(w) is nearly zero n<oQ.<<rono oxnmﬁn
- mw&,m 2&%» s, since U is obtained by integrating the product of the ordinates m.m QQV
in this reg o W w\w tow = 1, its value will be determined, for given ¢, by the nw:?&:ﬁo:
ond NM.W ) ?M”Mw.mﬂﬂnvoom of w = ft/x.. If in that neighbourhood G(w) is changing slowly,
from the n :

o

. | )
o . 090 o
Fioure 18. G(w) and G'(w).

w=4!

U /
U /3 ¢

Fioure 18. Uand U for pSp.

Ficure 17. G(w) and E(w).

arge. G(w),
the value of U will be small, but if G(w) is changing ».mmm the <&M p omﬂ”w-« o_w.wh EM wo.amova
which is independent of all variables except w and f/a, is plotte Nﬂoim_ except near w— 1,
case. From this figure we see immediately that G(w) changes mwnm. Mzdc&. The actual
where the change is very rapid. Figure 17 shows E Asvmmsw vawa from w = flo to w =1
position of E(w) depends on the value of ¢; the zero of m,zwr two curves in figure 17 to be
a tincreases from x/« to x/f. By imagining the ordinates o_u c a qualitative picture of the
multiplied together and the product mbﬂown‘w.nam“ we ow M oHu” NMM mmm:o figure is graphed the
behaviour of U as # varies. This is sketched in figure red with the result obtained by the
slope of this curve, which gives U, and can be compa o
brevious approximation (figure 14).
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The variation in the vertical displacement, W, can be discussed in
of U. Approximating on I'; we get

‘ ws HM\W\HMLE. elorspe as R (w) £ 0,
1

the same way a3 tha

(14:15)

and-hence a rough approximation for small 7 and large x/(z+4)

. B . A
W —gp7 cosiy sin (I — ). . (1419)
This is plotted in figure 19.

t=ai~ ¢

!

Ficure 19. W for pSp from approximation on Ty,

) TN
P

w=l /l'\

&2

Ficure 20. G'(w) and N-Aé. F1GURE 21. W and W for pSp.

When we invert the order of integration, we obtain

=180 Grtw) B (w) dw, (e

7 J pra
where . G'w) = %QASY (14-18)
and E'(w) htz (1419)

| (b2 (W P+ (Br— )

E'(w) is always positive within the range of integration, with a peak at w = ft/x whose
‘sharpness increases as (h+-z) /x decreases. G'(w) is plotted in figure 16—its form being similar
to that of G(w). Figure 20 shows E'() superposed on (1), and from this figure we can form

a picture of the behaviour of W as ¢ varies, which is sketched, with W, in figure 21.
For given x, increase of (A-+z) lowers and broadens the peak-and-trough of £(w) and the
peak of E'(w), and consequently smooths down the irregularity of I/'and W near ¢ = #/f.
" The disturbance is thus confined to the neighbourhood of the surface, though not by an
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exponential factor. It cannot, however, travel as a self-sufficient pulse along the surface,
preserving its amplitude, since the Rayleigh-pulse alone has this property. Its energy must

be continually supplied by the local incident P-pulse.

From figures 18 and 21 we see that neither the displacements nor the velocities of
the surface S-pulse experience a sudden discontinuity; they start from zero and change
gradually, unlike those of the surface P-pulse sPs.

15. THE SECONDARY S- AND P-PULSES

Finally, we have to consider the two very similar expressions + ¥ mbm_ 05 We could
proceed to find displacements and velocities at a depth 2, but the expressions for them are
very complicated. We therefore simplify the algebra by considering the disturbance asso-
ciated with , %4 at z = 0. Retaining only the first terms . :

Uy=4./2f 5y cost i sin (39 + 1), (151)
W,o=16,/2 8187 x-4p~ cost ¢ sin (3 —3m), (15-2)
where r=t—x/f, p=~h{f, and ¢ =tan!(r)p). - (16°3)

Aswith the surface S-pulse, (15°1) and (15-2) are valid only in the immediate neighbourhood
of = 0, and when x/(k+z) is large.

If we now employ the method of the previous section to get a qualitative description of
U, and W, we obtain, on setting z = 0,

T T 16wt (1 —u?) (W)’
, wi(2w?~1) J[(1—w?) (w*—f?/a%)]
ad Cilw) = ot TV Tew (1 —w?) ()
If diagrams are made from the expressions (15-1) to (15-8) as before, it vnncaam clear that
the disturbance at the surface corresponding to , ¥ is of the same type as that given by the
surface $-pulse, . : : )
D, is very different. The approximation on T is obtained from that for ,i; by changing
the sign and interchanging zand . Ifin the resulting expression we putz = 0, the exponent
becormes . w[t—(x+A22x) (8], (16'7)
and @, represents a pulse which arrives at the surface with a sharp jerk in the displacements
ime f of the di al methods
at-time (x+4%/2x)/; it is thus a modification of the m:.oﬁ S-pulse. By ﬁro. usual metho
we obtain, when A/x is small,

(16:6)

Q. =4 /2hx -t H(T), A ?m.mv
Woz —a 2 ke (r) TV HT), ~ (159)
with . 7=t—(x+hY2x)[f and 7' =-—r1. , (16°10)

The usual shape of the pulse is distorted in W, as with SS.

U= IMI% M\RQ_ASVWWMINIJN&SV . .Cm.»v
Wy=2 . Gitw Pl (15:5)
where - T=t—uwxlf, P=hJw?—pF*a?[p,
Gy(w) o w(2w?—1)3 /(1 -~w?)
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displacement of G is continuous, but there is a jerk in velocity. Thus the displacement hyy

a definite instant of beginning. .Hro amplitude at time 7 varies like x~# wEunomemﬁoE (51 3).
{¢) Direct S-pulse S (¥, t = v/f): a jerk, amplitude at time 7 after onset varying .a o

(84 and 11). .
(d) Secondary P-pulse s? (:@gs £ = J{x2+4)[) is a blunt pulse except when G is at the

surface. Then it becomes part of the complicated disturbance at the arrival of the S-pulse

(§15). :

(¢) Reflected S-pulse S (¥s—,¥,, t = o'[f): this is remarkable in that the jerk given by
¥, is turned approximately back-to-front—a consequence of the change of phase of each
element of its spectrum on reflexion at the surface. The total displacement is given by the
~addition of this to —,'¥', which is a pulse opposite in sign to the initial pulse and proceeding
from the image point. Since the ratio of the displacements is proportional to (h+2)/x the
modification of — ¥, is small at large distances (§ 11). .

\, A h

Plo —= S ~7x ¢
(a)

o —F A J\ t

: \ ps R

ol mr\/ 5

. b R
, (5
W, < \ R
sWo 13 . 5 t
2

Fioure 22. Horizontal (U;) and (downward) vertical (W,) displacements due to
(a) initial P-pulse and (b) initial S-pulse.

(f) Rayléigh-pulse R (@, +,¥,, t = x/y): a blunt pulse, attenuated like g\v.\._uu\i-_
(irrotational part) and [(h+z) [75]! (distortional part) (§12).

Of the above effects, I (a), (), () and II (a), (c), (¢) are the same as those which %E
arise from an incident plane wave, whereas I (d), (e), (f) and II (3), (d), (f) are diffraction
. ‘wvosoaosm“ due to the curvature of the wave-fronts. Of these the Rayleigh-pulse is clearly
the most important. .

We are interested especially in the surface disturbances, derived by putting z = 0in the
above work. Then for an initial P-pulse, P, PP and PS combine, and S, pSp combine. For
an initial S-pulse sPs combines with SP, and S, 8§ and sP combine. The approximations for

Uand W at z= 0 on arrival of the various pulses are shown in tables 1 and 2 in order

A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM 97

of occurrence. Figure 22 (a) and (6) correspond to these tables, indicating the time of arrival
and the approximate form near that time for each pulse.

Figure 22 cannot give more than a rough sketch of the main features of the disturbance
at G, on account of the approximations of this work, but several points of interest emerge.

TABLE 1. INITIAL P-pULSE

27 and 2£2 are small
X approximations valid when ¥ 2%~ &r¢ s
time of .
pulse arrival A U, W,
2 h 2\
o J ) #o =2 () e
. 2 ) h 2
=% PP e J\ Ammv.ms ar Amm«va
a k 2 k2 2 :
0, PP : 162 &Ammv H(r) 1ef I\Ammvmi
ah 2 h 2
¥, PS ¥ >\ Amwﬂv H(7) 4t )\ Axﬂv H()
O pSp x 8 ) 01 Grtw) Exfw) d
Hﬁu S v # n &anu?c Es(w) dw a._. 1 O30) Elr) o “_
w(2w?—1)%/(1—w?) Y T A
, where Gy(w) =t Ty T T6uA (1 — o) (= 3(®) BPTFTE
w(@u—1) J[(1=u?) @=pYar)] o, 1P|
C5(v) = Ty 10wi (T —?) (e’ B5) pPET
T=t—ux/f, P=hWw'—pa?)/p %
0 R X wﬁhl&v T wAmml.bv (...».ll N
Ny R v ¥ m\y Ty T AV YR .<
where T=1I(~x/y, p=~h/y,
TABLE 2. INITIAL-S-PULSE
) o . %7 and h42, e small
time of approximations valid when x
pulse arrival .Qo Wo
S, SP x, h 55 wﬁv . B \Ammv Hir
Y. sPs A_. a' B lu—angn\w_‘.\Aiﬁu} Qﬁﬁv a4’ P ™
- h 2 (2
Yo S i ) 0 JG) o
- Ly 1\Aiux H(r)
o8 N2 +R) T @m Hm) x\L .
5. B2 S4Bt Azﬁm _
9y 5P (&) He R TNl
CLBE (D) s (|
¥, ss | SeBE (2w sl (57) ]
o R x ‘) 4 (g )
.ﬂ.\ R w\ T ..w\.|wm nn+ﬂn . A\YYa Yol ©FT

. where T=t—xly, g=hly,s

These tables are illustrated iri figure 22, which shows the time of arrival and the approximate form near

that time for each pulse.
13~2

ettt 1 b+
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The arrival of Pand the surface P-pulse occurs in cach case at a definite instant; the surfage
S-pulse and S, on the other hand, show no definite beginning, growing slowly out of the
previous disturbance. S, however, is a modified Jerk, while 4§ is a blunt pulse.

The general reciprocity between the consequences of initial P-and initial S-pulse is mey
tlearly shown in the Rayleigh-pulse—the coefficient in »Wo is equal to that in U, whil,
the ratio of the coefficients in, U, and , W, is equal to the corresponding ratio in sUyand W,
This can be proved by inserting the values of 4 and A’ and using the equation which gives
the velocity of the Rayleigh-wave.

The reality of the two surface-pulses first suggested by Nakano seems to be proved by this
investigation, and their difference brought out more clearly. The surface P-pulse is like a
doubly reflected pulse, shows a definite beginning, and is not sensitive to depth of focus.
The surface S-pulse, on the other hand, has no definite beginning, resembles the Rayleigh-
pulse except in its failure to persist in its own right, and is very sensitive to depth of focus.
Nakano’s failure to find this pulse by his second method (stationary phase) seems to have
been due to his overlooking a loop on the Riemann surface.

The diffraction effects examined in this paper czn be described as pulses only when Az
is small, and our description of the disturbance is only valid in the neighbourhood of the
critical instants when the pulses arrive. If 4/x is not small, the diffraction pattern is very
complicated and smudged; pulses will not be discernible. Earthquake shocks, however, are
nearly always observed at distances such that k/x is small, so that this case is the onc that
concerns us. -

Although our results have been obtained on a very restricted hypothesis, there is reason
to believe that they may apply in some degree to the phenomena of near earthquakes. For
such the neglect of the curvature of the earth introd aces a small error only. Our hypothesis

of a homogeneous semi-infinite solid means that our work cannot account for phenomena.

which are due to stratification (such as Love waves) or variation of velocity with depth, but
those pulses which it does predict should also appear in the more complicated cases. The
specialized form which we have taken for the initial pulse has been shown by Jeffreys (1931)
to be a fair representation of the shock for a wide class of earthquakes.

The treatment of the two-dimensional problem in place of the true three-dimensional
one means that we deal with cylindrical wavefronts instead of the true spherical ones. Lamb
showed, however, in a similar problem (1go4) that the general form of resultant disturbance
ata point of the surface is the same in the two cases, the main differences lying in the different
law of decrease of amplitude with distance, and in the cutting off of the infinite tails which
appear in the two-dimensional case. The essential features of our solution may consequently
be expected to appear in the three-dimensional problem.

Explanations may therefore be suggested for two apparent anomalies in earthquake
records: (a) seismograms of near earthquakes sometimes show Sg as having arrived 1 to 2sec.

before the time at which it would be expected after Pg (Jeffreys 1929, p. 98), and also (b) ‘up

to about 20°, the § residuals are spread over about 20sec. without any convincing moa.
centration of frequency’ (Jeffreys 1946, p. 61). Here Sg, Pg and S have their usual meanings

in seismology. In view of these facts it is worth while to examine in further detail the form

of our § and S, in order to find out how long before the instant £ = /(x?-+42)/f the disturb-
ance might become perceptible.
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Hrm question cannot be answered directly from our previous discussion, since ot sims

ifying assumption of an instantaneous shock at the focus leads to an infinite displacement
,_ﬁwn man of arrival of a jerk at G. Let us therefore modify our assumption of time variation
atthe t

as H(f) to time variation as i
H.‘, nnhewmzesm%. (16)
o . .

tan~!

“@l e

(16:1) has the limit §7sgn? as s> 0. About 70 % of the Stn.& owmsmo in tan~!¢fs Swnm place
between the values & 2s of £ This change in our m.wmc.:_v:ow will mean ﬂrma certain Snﬂa
previously neglected must now be taken into account, w.:ﬁ the smow.r follows owmoﬂw the
methods used in §§ 11 and 14. Collecting all the terms which contribute to the maz.:. ance
near { = x| we obtain for the rates of displacement at the surface, by the approximation
for large x/k and small 7:

el sn (0 —tn)_hiny—in_sftsniy iy, inr i) (9)

x1

A R Iy A G L A Ry I (R |
A sin 4y ) othn) ¢y —in) | sy —in))

31 72t T
P AV A G O I A G U R [(s+p)+77] 103)

Lt 2 =tan~!7 16-4

where ﬂﬂnlwﬂul..wva ¢ = tan ﬁ. . (16-4)
=1, b= L2 and ¥ = tan~1—— (18-5)

: s+p

(We deal in each case with a rate of’ &wﬁmonagm because it mm a &E:m.a in Q—M
quantity rather than in the displacement which indicates to an observer the arrv:
vomwnmmwuwvom (16-2) and (16-3) the first three terms describe the NB.?.& of Mwwsw zwo WMM mww
arrival of S. The times of arrival, given in (16-4) and (16:5), are not 1 Ms 1ca w d and
practical purposes their difference may be g%nonom... In owmr n@z.wnmw: MMMMMoo froe0
third terms give a significant contribution only in the »18&53 meNa oN: t has the sha m
but the first and fourth have a much wider spread. —sin @.ﬁ.f im/(s*+r vo m”,msn—mw« Mm_“
shown in figure 14: on!the steep side of the trough the ordinate falls to wo \omm:a on&nmwg
numerical value within 7/s = — 2, whereas on the gentler slope the same va :M ou 1 of this in
oceurs at 7/s = 38. The first term of U, and the mo:nnr.oh. Wo e fike nwm n ow .M —38. The
the line ¢ = 0, and so they rise to 20 %, of their u:Bnﬂo&. maximum w! M: a / lﬁ w00 w.Bm 1
first and last terms will dominate the middle terms when 4 is very small and sis M%iw o vo.mn.
+is the parameter which determines the sharpness of the shock at the focus. [Ewe SEPPOsC
that shock to have had a duration of the order of 1sec., we may sr.a_m M&wwmvo\ of its
k8,/88% is of the order of unity, or smaller, the rate of mav_wnnwpui. will att w %Mnowma
maximum at times of the order of 10sec. before and after x/f. As h increases or
this spread of the pulse contracts. . ar
Hrvo above B.m:ﬂy ent holds only for large values of x/(k+2)- Asa &Smr on it we may carry
m through the discussion of U, and W, by our second _.sonwom'
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Tosimplify the analysis, we work for the case when £ is negligible and obtaiy

. 1 &
A Whl&» 2sT M, ...NIN.NH_

e G e (g
. 1 dw s2_T2 25T
We=| 2[_ - 7
=L LM ], e
where T =
7’
M, = (2w~ 1)2 ¥, (10:)
M, = 20(2u—1) J(u?—2a2) N, : (18
My = suP (w2~ f2)a) (1610
with ' N = Buw /(1 w?)

(200 — 1)+ 16w (w? = P22y (T =%}

By a discussion like that of § 14 it can be shown that while the integrals containing M
and M; are small until ¢ is very near x/§, those containing M, attain Just under 209, of :5“
value at ¢ = x/f when ¢ = 0-97x/f. Thus the disturbance may become perceptible Mﬁ a time
of the order of 0-03x/fsec. in advance of the time /. This amounts to about 1-8sec. at
200 5.5. and 9sec. at 1000km. These figures can only be regarded as giving an order of
magnitude, but they are of the same order as the observed scatter in the readings of §
and S, Instances of early arrival of S, might therefore be explained directly by the Qman:nm
of p§ and the form of our S-pulse. The scatter of the S-pulse of seismology, which has a more
complex history than any considered here, may be due to similar namuozw.
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THE CALCULATION OF THE ABSOLUTE STRENGTHS
OF SPECTRAL LINES

By D. R. BATES avo AGNETE DAMGAARD
_ University College, London

(Communicated by H. S. W. Massey, F.R.S.—Received 13 December 1948— .
. Revised 2 March 1949)

It is shown that in calculating transition integrals it is permissible to neglect the departuze of the
potential of an atom or jon from its asymptotic Coulomb form. This enables a general analytical
expression for the transition integral to be derived. Tables are compiled from which the absolute
strengths of large numbers of spectral lines can at once be obtained if the term values of the upper
and lower levels are known. s-p, p~d and d-f transitions are all treated. Comparison with experi-
mental data shows that for the simpler systems (i.e. systems with a single electron outside closed
shells) the method gives remarkably accurate results; indeed, it appears superior to the normal
rather laborious procedure involving the computation of the necessary wave functions, in cach
individual case, by solution of the appropriate. Hartree or Fock differential equation. The method
(in its most elementary form) may not be so satisfactory for complex ‘systems (i.e. systems with
unclosed shells) owing to difficulties associated with the identification of certain encrgy parameters,
However, the rather scanty comparison data available suggest that even for such systems it yields
useful (and in some cases precise) information on the line strengths, ,_,

Incidentally, in the course of the work the accuracy of a few.wave m;:o.,mo:w based on the self-
consistent field approximation (including exchange) was tested by using them to evaluate line
strengths from both the dipole moment and the dipole velocity formulac} Appreciable defects
were revealed. . : 'y

\

4

1. INTRODUCTION

For 2 number of purposes, particularly in astrophysical applications, it is desirable to know
the oscillator strengths f and spontaneous transition probabilities 4 associated with spectral
lines. These related quantities can be expressed in terms of the line strengths S: thus

8m%me 1
— —_— . 1
S= 3he? w;rﬁ M
_ 84rt 1 a 2
== wllnt%moo. . . (2

™ ¢, ¢ and / have here their standard significance, A is the wave-length of the radiation

absorbed or emitted, and g, and g, are the respective statistical weights of the lower w:m
upper levels concerned in the transition (see Condon & Shortley 1935). It is convenient
tohave these formulae in numerical form. Substituting for the various constants it can readily
be seen that with din %uw.,ﬁwa units (10~8cm.) and S in atomic uniis (a3e?), then

3-04 x 10? : (3
f==—x 5 7
) joi8
and A= 202x 107 x“o Ssec.”1. i ©(4)
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