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INTRODUCTION.

1. Tus paper treats of the propagation of vibrations over the surface of u ‘* semi-
infinite ” isotropic elastic solid, t.c., & solid bounded only by a plane. For purposes
of description this plane may be conceived as horizontal, and the solid as lying below
it, ‘although gravity is not specially taken into account.®
The vibrations are supposed due to an arbitrary application of force at a point. In
the problem most fully discussed this foree consists of an impulse applied vertically to
the surface ; but some other cases, including that of an internal source of disturbance,
are also (more briefly) considered. Owing to the complexity of the problem, it has
been thought best to concentrate attention on the vibrations as they manifest
themselves at the free surface. The modifications which the latter introduces into
the character of the waves propagated into the interior of the solid #re accordingly
not examined minutely.
The investigation may perhaps claim some interest on theoretical mnocs;m, and
also in relation to the phenomena of earthquakes. Writers on geismology have
.naturally endeavoured from time to time to interpret the phenomena, at all events in
their bronder features, by the light of elastic theory.i Most of these attempta have
been based on the laws of iyé-wnowvmwﬁo: in an unlimited medium, a8 developed
by Greex and Stokes ; but Lord RAYLEIGH'S discovery t of a special type cf surface-
waves has made it evident that the influence of the free surface in modifying the
character of the vibrations is more definite and more serious than had been suspected.
The present memoir seeks to take a further step in the adaptation of theory

to actual conditions, by investigating cases of forced wives, and by abandoning

(ultimately) the restriction to simplé-harmonic vibratious. Although the circum-
stances of actual earthquakes must differ greatly from the bighly idenlized state of

% Professor BroMWICH has shown (¢ Proc. Lond. Math. Soc.,’ vol. 30, p. 98 ﬁg.mvv that in such
" problams as are here considered the offect of gravity. is, from a practical point of view, unimportant.

{ tProc. Lond. Math. Soc,,’ vol. 17, p- 4 (1886) ; * Scientific Papers,’ vol. 2, p- 441,

voL. conr.—A 359. © B :
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pJ PROFESSOR HORACE LAMB ON THE PROPAGATION OF

things which we aré obliged to assume as a basis of caleulution, it is hoped that the
solution of the problems here considered may not be altogether irrelevant.

It is found that the surface disturbance produced by a single impulse of short
duration may be analysed roughly into two parts, which we may distinguish as the
« minor tremor” and the main shock,” respectively. The minor tremor sets in
at any place, with some abruptness, after an interval equal to the time which
a wave of longitudinal displacement would take to traverse the distance from the
source. Except for certuin marked features nt the inception, and again (to a lesser
extent) at an epoch corresponding to that of direct arrival of transversal waves, it
may be described, in general terms, as consisting of a long undulation leading up to
the main shock, and dying out gradually after this has passed. Its time-seale is
more and more protracted, and its amplitude is more and more diminished, the
greater the distance from the source. The main shock, on the other hand, is pro-
pagated us a solitary wave (with one maximum and one minimum, in both the
horizontal and vertical displacements); its time-scale is constant ; and its amplitude
diminishes only in accordance with the usual law of annular divergence, so that its
total energy is maintained undiminished. Its velocity is that of free Rayleigh waves,
and is accordingly somewhat less than that of waves of transversal displacement in
an unlimited medium.*

The paper includes a number of subsidiary results. It is convenient to begin by
attacking the problems in their two-dimensional form, ealculating (for instance) the
effect of a pressure applied uniformly along a line of the surface. The interpretation
of the results is then comparatively simple, and it is found that a good deal of
the analysis can be utilized afterwards for the three-dimensional cases. Again, the
investigation of the effects of a simple-harmonic source of disturbance is a natural
preliminary to that of a source varying according to an arbitrary law.

Incidentally, new solutions are given of the well-known problems where a periodic
force acts transversely to a line, or at a point, in an unlimited solid. These serve, to
some extent, as tests of the analytical method, which presents some features of.
intricacy.

2. A few preliminary formules and conventions as to notation may be put in
evidence at the outset, for convenience of reference.

The usual notation of Besser's Functions « of the first kind ” is naturally adhered to;
thus we write :

.qgﬁnmm*og@sms% )

l

# Compare the concluding passage of Lord RAYLEIGH'S paper :

“T¢ # not improbable that the surface-waves here investigated play an important part in earthquakes,
and iA the collision of elastic solids. Diverging in two dimensions only, they must acquire at » great
distance from the source a continually increasing preponderance.”

The cnlenlations indicate that the preponderance is much greater than wounld be inferred from a mere
compurison of the ordinary laws of two-di ional and three-di jonal divergence.
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TREMORS OVER THE SURFACE OF AN ELASTIC SOLID.

By & known theorem we have also

.woﬁvﬂwhamnﬁ,oomv:vaa. N 1)

provided mhum real m:.m positive. For our present purpose it is convenient- to follow
H. WeBeR* in adopting as the standard function *of the second kind "

Hmeﬁv.”mhcoimoomr:v&:. S .. coo. (8)

ks

It is further necessary to have a special symbol for that combination of the two

functions (2) mz.m (8) which is appropriate to the representation of a diverging wave-
system ; we write, after Lord RavLercm,t

2 [ oot
o c;suloi Sduoooo L),
Do) =Ko(@) =i (@). - - . . . . . . (3
“We %& also write, in accordance with the usual conventions,
() ==, K () =~—~K,() D,({)==D,4() . . ()

For lurge values of { we have the agymptotic expansion

[ L . (7).

1T(8T) " 218y —
In the two-dimensional problems of this
number of solutions of the equation

D= A/ ey Ty T )

paper we shall have to deal with a

9% o : . .
%+%+§u?......1A$
constructed from the type |

. p=Aevet . 9),"
where € is real, and v . @
a=,/(6=h%), or =¢ /(=€) . . . ... (10),
* ! Part. Diff-Gleichungen d. math. Physik,' Brunswick, 1899-1901, vol. I, p. 176. HEINE (* Kugel-

?__aa.o:o?. Berlin, 1878-1881, vol. 1, p. 185) omite the factor /. In terms of the more usual
notation,

Ko= 2= Yo+ Qog2 - 7)oy

where vy is EULER'S constant. The function $7Ko has been tabulated (see J. H. MicHELL, * Eﬁ%?@h

Jan., 1398).

t .H.Er Mag., vol. 43, p. 359 (1897); *Soientific Vwﬂo:ﬂ. vol. 4, p. 283. I have introduced the
factor $/w, and yeversed the sign,
o B 2
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4 PROFESSOR HORACE LAMB ON THE PROPAGATION OF

according as §2Z A*, the radicals being taken positively. In particular, we shall
meet with the solution

L[ emendE 0 "o e (11);

T a mJo o

and it is important to recognize that this is identical with D, (hr), where
r=/(a*+4*). To see this, we remark that ¢, as given by (11), is an even
function of x, and that for @ = 0 it assumes the form

2 (" [ nwm. 2 (° &«;&SI_{E&NQ
= it R G ¢ PA N
ﬁ o _. -—o (\A\ww IT dmv A v

0 a m

by the method of contour-integration.* This is obviously eyual to D, (hy). Again,
the mean value of any function ¢ which satisfies (8), taken round the circurnference
of a circle of radius » which does not enclose any singularities, is known to be equal
to Jo (k7). ¢y, where ¢, is the value at the centre.t We can therefore adapt an
argument of THoMSON and Tarr} to show that a solution’ of (8) which has no
singularities in the region y > 0, and is symmetrical with respect to the axis of y, is
determined by its values at points of this axis. We have, accordingly,

uossvuwﬁ ereRd L. ().

— o

Again, in some three-dimensional problems where there is symmetry about the
axis of 2z, we have to do with solutions of

mmﬁm.._ mw I.
um~+%+%+§lo .......:&.
based on the type ’

p=AeJo(bw) . . . . . . ... (15),

where @ = \/(2* + ¢*), and a is defined as in (10). In particular, we have the

solution . .
p=[ChlE=)Ede ),

0 a

which (again) reduces to & known function. At points on the axis of symmetry
(= = 0) it takes the form ) .

@..I.hmuum&wuﬁaé&anﬁh C ),

o i Nﬁ
s :

*amtoopsﬁa .m«m..w:.qorang_‘usamawﬁsmq parts in the second and third members of (12), we
reproduce known results,

t H cﬁwmaw. ' Math. Ann.,’ vol. 1 (1868).
} *Natural Philosophy,’ §498,

Ak

where

S il =t btk

TREMORS OVER THE SURFACE OF AN ELASTIC SOLID. 5

Since the mean value of a function ¢ which satisfies (14), taken over the surface of

& sphere of radius r not enclosing any singularities, is equal to

sin hr

P
whers ¢, is the value at the centre,* the argument already borrowed from THoMsON
and TAIT enables us to assert that

o [ £ (a8

L
r 0 a

r= (ot +2) = @ 4 g+ )
Finally, we shall require Fourizr's Theorem in the form

\.Euwwmuﬁ.w\@rﬁi5. N (T F:

and the m»_&owocm formula
Flw) = m.imav_m%ﬁ ST @D . . (20)

As particular cases, if in (19) we have f(x) = 1 for 2® < a?, and = 0 for #* > @, then

S@=l] nfteae=2 [0 Bfoosgpdg . L (@)

and, if in (20) f(w) =1 for @ < a, and = 0 for » > @, then

S =af LT (Ede . . . ... (e2)

0
These are of course well-known results.|)

* H. WengR, ‘ Crelle,’ vol. 69 (1868). .
t If in (18) we put 2 = 0, and then aquate separately the real and imaginary parts, we deduce
‘Muc ({ cosh u) cosh 1w du = ,ao.wm.
ﬁ.minmm: u) sin u du = m..wk.,. ,_
Thego are known results. Cf. RAYLEIGH, ‘ Scientific Papers,’ vol. 3, pp. 46, 98 (1883) ; mogo? ¢ Proc.
Lond. Math. Soc.,’ vol. 25, p. 71 (1893) ; and SONINE, ¢ Math. Ann.,’ vol. 16). )

$ H. WEBER, * Part. Diff.-Gl ete.,’ vol. 2, p. 190. Since A occurs hore and in (20) only as an inter-

-mediute variable, no confusion is likely to be caused by its subsequent use to denote an elastic constant.

§ H. WEBER, ‘Part. Diff.-Gl. etc.,” vol. 1, p. 193.
|| It may be noticed that if in (20) we put f (v) = e~%=/w, we reproduce formulw given in the foot-note t
above, ’




.6 PROFESSOR HORACE LAMB ON THE PROPAGATION OF

PART 1L
Two-DIMENSIONAL PROBLEMS.

3. The equations of motion of an isotropic elastic solid in two dimensions (x, y) are

*u oA % oA

oy 2, = (X — Aved PR 23
Pam =0 tn)y +uVu pag = +3.¥+¢ v (23),
where u, v are the component displacements, p is the density, A, p are the elastic
constants of LAME, and

ou , ov
A== &.,....‘....Aﬁb.
These equations are satisfied by
T 25)%
=Ty VT a T o (29,
provided .
¢ At 2y Y _ s
=, o =5V (26)

In the case of simple-harmonic motion, the time-factor being e, the latter
eyuutions take the forms

(VM) ¢=0, (V+EB)y=0 . . . . . . (27),
where
. 2 PP gy = PP — e :
h Xt 2 a?, ¥ - P .o Lo (28),

the symbols ¢, b denoting (as generally in this paper) the wave-slownesses,t i.e., the

reciprocals of the wave-velocities, corresponding to the irrotational and equivoluminal
“ types of disturbance respectively. .

The formuls (25) now give, for the component stresses,

Doz _ N p g 90U _ o — ¢ AR

w ot T2 ¢ =25 T 2any

Py O _ o B g o0

Pt rRb kPR R R 0 N )
, Pu Ay g o gy o8, 3

rop + oy ¢ wm.«n wm&mw,

* GREEN, ‘Camb. Trans.,” vol. 6 (1838); * Math, Papers,” p. 261.

1 The introduction of special symbols for wave-slownesses rather than for wave-velocities is prompted by
analytical considerations. The term * wave-slowness” is accredited in Optics by Sir W. R. HaMivton.
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In the applications which we have in view, the vibrations of the solid are supposed
due to preseribed forces acting at or near the plane y = 0. We therefore assume as
a typical solution of (27), applicable to the tegion 3 > 0,

¢ =Ae™e¥, g=Be . |, (80),
A
. where £ is real, and a, 8 are the positive real, or positive imaginary,* quantities
B determined by . - :
; . = —p B=FEF T (31).
: For the region y < 0, the corresponding assumption would be

L= Alewdt =B, . . .. . . . (32).

The time-factor is here (and often in the sequel) temporarily omitted. :
The expressions (30), when substituted in (25) and (29), give for the displacements
and stresses at the plane y = 0
i y = (€A — BB) e, 4y =(—ah —ifB)eit* . . . . (33),

and
[pa)y = p {— 2iéaA + (262 — k*) B} ¢
[ Dyodo = 1 {(28 — E) A 4+ 2i£8B} Q_”r.

The forins corresponding to (32) would be obtained by affixing accents to A and B,
and reversing the signs of «, 8. ’

4. In order to illustrate, and at the same time test, our method, it is convenient to
begin with the solution of a known problem, viz., where a periodic force acts
transversally on a line of matter, in an unlimited elastic solid. t

Let us imagine, in the fireh instance, that an extraneous force of amount Ye® per
unit area acts parallel to & on a thin stratum coincident with the plane y = 0. The
normal stress will then be discontinuous at this plane, viz.,

i

Co oL (34)

- ) [Podymso = [Pplimmo ==Y . . . . . . (85),

. . . whilst the tangential stress is continuous. Theae conditions give, by (34),

(28 — ) (A — A') + 2i8(B + B) = — W &
— 2ita(A + A) + (28 — ¥) (B — B) = 0 _

Again, the continuity of % and v requires

.. (386)

¢.2>|,Slm~w+w\v~uo N 14
a(A+4)+iEB-B)=0[ ‘

* This convention should be carefully attended to; it runs S:.c:.m:o:w the paper.
t RaYLEIGH, ‘ Theory of Sound,’ 2nd ed., § 376.
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o . TREMORS OVER THE SURFACE OF AN ELASTIC SOLID, 9
Hence ) . force does work in generating the cylindrical waves which travel outwards from the
A= — Al = Y B=B = € Y .o . . . (38). ‘ source of disturbance. The formulze (40) give, for the value of du/¢ at the origin,
‘ 2 \n»t. ’ E 2 Nnmt, ,., . .
| 5 Qe (8 |
We bave, then, for ¥ > 0, B T Ak .‘.ua 5 a ... . ?ww.
¢ = ¥ = MI ...m..m.i: L L. (89) . . . . , ;

2k B This expression is really infinite, but we are only concerned with the part of it in the

: hase with the force,* which is finite. i i
To pass to the cuse of an extraneous force Q concentrated on the line w = 0, y =0, same p i orce, which is finite. Taking this alone, we have

we mmake use of (19). Assuming that the f(A) of this formula vanishes for all but

dvy __ E & E2lE Y Qeirt
infinitesimal values of \, for which it becomes infinite in such a way that EN = :Lw;\om\mnv.tl ;wd — (= £9) && = (4 A2) @m» Y (44).
.’.l Sydh=Q, . Discarding imaginary parts, we find that the mean rate, per unit length of the axis

of z, at which a force.Q cos pt does work is
we write, in (39), Y = Q£/2m, and integrate with respect to £ from — = to + =¥ L dﬂ = AH + M\Mvséw At P . . . .. (45)

‘We thus obtain, for y > 0,

16p — 16p (A + 2p)

$= Q qu et dg, = 2Q _J fetetdE (40), 5. We may proceed to the case of & “semi-infinite” elastic solid, bounded (say)
drkipd oo Al ) B . . by the plane y = 0, and lying on the positive side of this plane. We examine, in
or, on reference to (13) the first place, the effect of given periodic forces applied to the boundary. e
o ’ Asg a typical distribution of normal force, we take .

. Il‘bs‘ Dy(hr), ¥ = Q mc;?.v, Coe e (41,

2 Oy 44 B . [(Podi =0, [Pyl=Yet. . . . . . . . (46).
where » = ,/(2* + 7). ) ‘_ the factor et ,uo:pm a8 usual understood. The constants A, Bin (30) are megnBEmm
If we put @ = 2 cos §, y = rsin 6, we find from (25), on inserting the time-factor, ~ . cv« means of (34), viz. : _

that for large values of 7 the radial and transverse displacements are . — 2t o (26~ BB =0, ‘

m@ Q. 2 gt g S Ypooooococos o (40

+ a% A0+ NE i €T sin 0 . ) L (26° = ¥) A+ 2ig8B =
B _ W _ @ _ Aot=tr=m goc B ;\ . . Hence . 1
o6 or . ¢ A=2-F Y p_ %« Y (48)
: FO x PTRE s A .

. respectively.t Use has here been made of (7).

) where, for shortness,
A simple expression can be obtained for the rate (W, say) at which the extraneous

F(é)=(@28 1P =dafef . . . . . . . (49)
* The indeterminateness of the formula (19) in this case may be ovaded by supposing, in the first

‘instance, that the force Q, instead of being concentrated on the line #=0, is uniformly distributed over
the portion of the plane y=0 lying between n= +a. It appears from (21) that we should then have

We shall find it convenient, presently, to write also

SE) =@ =P +48%B. . . . . . . . (50).

y=3 sinde g
e . * The awkwardness is evaded if (as in a previous instance) we distribute the force uniformly ov veralength

naamorovnzo»ﬁHrsf:_us,&:oowmgoon A mv E_moa;osgmq&emis «ra 38:@
ga
member of (44). .
VOL. OCIIL—A, o]

1i we finally make a =0 we obtain the results (40).
t The second of these results.is equivalent to that given by RayLEton, loc. cif., for the case o»
incompressibility (A = ).

I
_ ) ,
| .
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The surface-values of the displacements are now given by (33), viz. :

u. = (28 = B —2aB8) ¢ ¥
0 == .tllm. 7 U I |
(©) U ey
. Raets Y - \P
CTF() n o
A The effect of a concentrated force Q acting parallel to y at points of the line
2 =0, y=0 is deduced, as before, by writing Y = — Qdé¢/2w, and integrating

from — o to « ; thus

Uy == o= —-

ma,t

_ Q[ Kactrdt
= 7

% £(20 1 — 2af) ot
- FE

In a similar manner, corresponding to the tangential surface forces :

. (Pody=Xe¥, [pylo=0. . . . . . . . (83),
we should find
B X 280 -1 X \
A=~ m.l,. =2l 220 L 0 ... (B4).
F(E F@ w ©9
And, for the effect.of a concentrate’ force P acting parallel to « at the origin,
oo P " RBetdf
...:e = 2mp .mls m,Amv ’ AW , A.mmv
we= B[ ECEsE-mme| T T
° MS\. —n F Amv

The comparison of u, in (52) with e: in (55) gives an example of the general

principle of reciprocity.*

We may also consider the case of an internul source of disturbance, resident
(say) in the line =0, y =, the boundary y == 0 being now entirely free. ‘The
simplest type of source is one which would produce symmetrical radial motion (in

‘two dimensions) in an unlimited solid; say

. ﬁ"UoQS.Y Yy=0. . .. [ ...Ammv...
where 7, = /{a* + (y — f)*}, denotes distance from the source. If we superpose on
this an equal source in the line # = 0, y = — £, we obtain
, S ¢=Dy(hr) 4+ Dy(r), =0 . . . . . . . (57),

* RAYLEIGH, ‘ Theory of Sound,’ vol. 1, § 108,

()

S

( Yt
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where 7’ = /{a* 4+ (y + f)*}. It is evideny, without calculation, that the condition
of zero tangential stress at the plane y = 0 is already satisfied; the normal stress,
however, does not vanish. It appears from (13) that in ihe neighbourhood of the
plane y = 0 the preceding value of ¢ is equivalent to

N g QE 1 (T emeUNN s g

e R R M

_2 _.s cosh .«

w a

e"etdé L. L L L (58)

Substituting in (29) we find that this makes

L

[Pyl =0, _..%Sm_o = I\‘. e (59)

Comparing with (46), we see that the desired condition of zero stress on the
boundary will be fulfilled, provided we superpose on (57) the solution obtained from
(30) and (48) by putting ,
= — 2 wlnll;mw — & e~v dE,
) w a

and afterwards integrating with respect to £ from — o to ®. The surface-
displacements corresponding to this auxiliary solution are obtained from (51), and if
we incorporate the part of u, due to (58), we find, after a slight reduction,

Y —af it .
10y = — A;!_, Bée Ve &m

q e::é
w= -2 @ml@.ﬁkém ﬁ
0 T e F¢) J

\

These calculations might be greatly extended. MS.. example, it would be easy,
with the r&w of Art. 4, to work out the case where a 4@55& or a horizontal periodic
force acts on an internal line parallel to z. And, by Bou,:m of the reciprocal theorem
already adverted to, we could infér the horizontal or vertical displacement at an
internal point due to a given localized surface force. '

6. It remains to interpret, as far as possible, the definite’ integrals which occur in
the expressions we have obtained.

It is to be remarked, in the first place, that the integrals, as they stand, are to a
certain extent indeterminate, owing to the <§Er:.m of the function F (£) for certain
real values of £ It is otherwise evident @ priori that-on a particular solution of any
of our problems we can superpose a system of free surface waves having the wave-
ﬁonmg proper to the imposed period 2a/p. The theory of such waves has been given

c 2
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,c%. Lord RAYLEIGE,* and is moreover necessarily contained implicitly in our
analysis.
Thus, if we put Y = 0 in (47), we find that the conditions of zero surface-stress are
satisfied, provided
A:B=2: =k 2ixa; = = 2ikB, 2> — & . . . . (61),

A where « is a root of F (£§) = 0, and «,, 8, denote the corresponding values of a, 8,
Now, in the notation of (49) and (50), : :

F(£) £(€) = (262 — F) — 16 (& — %) (£ — k) &*

T 8 T R (R o S M)

Equating this to zero, we have a cubic in £%/k%, and since k> > k% it is plain that
there is a real root between 1 and . It muy also be shown without much difficulty
that the remaining roots, when real, lie between 0 and A%/k%.  The former root makes
«, B real and positive, and therefore cannot make f(£) = 0. The latter roots make
@, B positive imaginaries, and therefore cannot make F (§) = 0. This latter
equation has accordingly only two real roots ¢ = + «, where x > k.

Thus, in the case of incompressibility (A = o, h = 0) it is found that

xfk = 104678 ...,

and that the remaining roots of (62) are complex.t On Pomssox’s hypothesis as to
the relation between the elastic constants (A = p, A% = }i%), the roots of (62) are all

real, viz., they are
=% 13—-v3), 168+3),
kk=%,/(34 /3) =1087664...;

go that

this will usually be taken as the standard case for purposes of numerical illustration.
In analogy with (28), it will be convenient to write '

K=pc . . . . . . . . . . . (83),

where ¢ denotes the wave-slowness of tho Rayleigh waves. The corresponding
wave-velocity is ‘ .
¢l = \n b? "N( )\.:.
K K p

-According a8 wo suppose A = o, or A = p, this i3 9553 times, or ‘9194 times, the
velocity of propagation of plane transverse waves in an unlimited solid. B
The further properties of free Rayleigh waves are contained in the fornjule (61)
* *Proc. Lond, Math. Soc.,’ vol. 17 (1885) ; *Scientific Papers,’ vol. 2, p. 441. !

t Cf. RAYLEIGH (Joc. cit.), where it is also shown (virtually) that they are roots of f (£), not of F ), it
2, 3 he chosen 8o a8 to have their resl parts positive.

Cmenansgs d0e

sl
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and (30). 'We merely note, for purposes of reference, that if in (33) we put £ =+ «,
and accordingly, from (61),

»PHAMRuIN%VO. kun_uws.xa:@ e e e e Amhy

we obtain by superposition a system of standing waves in which

Uy = — 2k (2% — &* =~ 22,8)) Csin wx . ¥, vy = 242, C cos k. e , (65).

The theory here recapitulated indicates the method to be pursued in treating the
definite integrals of Art. 5. We fix our attention, in the first instance, on their
“ principal values,” in CAUCHY'S sense, and afterwards superpose such a system of free
Rayleigh waves as will make the final vesult consist solely of waves travelling
outwards from the origin of disturbance. A

It may be remarked that an alternative proceduve is possible, in which even
temporary indeterminateness is avoided. This consists i inserting in the equations
of motion (23) frictional terms proportional to the velocities, and finally making the
coefficients of these terms vanish. This method has some advantages, especially as
regards the positions of the “singular points” to be referred to. The chief problem
of this paper was, in fact, first worked through in this manner; but as the method -
seemed rather troublesome to expound as regards some points of detail, it was
abandoned in favour of that explained above.

7. The most important case, and the one here chiefly considered, is that ot a

. concentrated wertical force applied to the surface, to which the formule (52) relate.

The case of a horizontal force, expressed by the formule (55), could be treated i an
exactly similar manner. . '
Since u, is evidently an odd, and 4, an even, funotion of =, it will be sufficient to
take the case of a positive. ‘ '
As regards the horizontal* displacement 1, we consider the integral

. _ n wmm.l\qw -9, .Mnnlwem Nu'bm *Q&a& )
Jrwa=MEER IR I

taken round a suitable contour in the plane of the complex variable {, = ¢ 4 iy
If this contour does. not include either “poles” (4 «, 0), or « branch-points ”
(= &, 0), (4= %, 0) of the function to e integrated, the result will be zero.

A convenient contour for our purpose is a rectangle, one side of which eonsists of
the axis of £ except for small semicircular indentations surrounding the singular
points specified, whilst the remaining sides are at an infinite distance on the side 5> 0,
It is easily seen that the parts of the integral due to these infinitely distant sides
will vanish of themselves. If we adopt for the radicals \/({* — 4%) and \/({* — &2),

* Tho senso in which tho terms *horizontal” and “vertical” are uscd is indicated in the second
sentence of tho Introduction. )

o bt i s
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ki

N y gt : y
“ap -ap ' «h
Fig. 1.

at points of the axis of £, the consistent system of values indicated in fig. 1,* we
find, for the various parts of the first-mentioned side,t

i ~k £(f2 — k2 — 2ufB) et dE el U — k2 — 20, 8) e **
_.nsGAmv&w.l _. £(2& G B)e ( =" )e ,

[*o@ar=["teE= Nwmvs?iﬁ . |

.’v va &N ww‘q mﬁwmw — N\W,MWVMPEV o &m _ s.a. AM‘A« _— m\ A‘Xvwﬁ._mﬂv w.un

where the terms with ¥’ (— ) and ¥/ (x) in the denominator are due to the small
gemicircles sbout the points (& «, 0). Equating the sum of these expressions to
zero, we find, since F' (— x) = — F'(x),

%mfz:iémn
%hn‘s F (@) Va — 2tm H cos ki
Co b [2f2 — 2 — 20B _ 282 — I + 208 4 i
+L 55 7(8) %mmgm
12) wfe d¢
FE) /() s (6

% Tho function under the integral sign in (66) is uniquely determined (by continuity) within and on
the contour when once the values of the radicals /{{* — A2 and /((* - k?) at tome one point are
assigned. The convention implied in the. text is that the radicals 2re both positive at the point (+ o, 0).

It will be moticed that over the portion of the axis of £ between -~ kand — & tho function in (66)
diffurs from that involved in the value of u as given by (52). This is allowed for in the second membor
of (67). Corrections, or rather adjustments, of this kind occur repeatedly in the transformutions of this
paper.

t The symbol P is used to &m»SNE-r the * principal value” of an integral (with wwm?on to a real
variable) to which it is prefixed.

= — 2irH cos rxt — &ﬂ_, €028 —

.

o oo

b e o oo b b iAo s A b st i bbbt e s i
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where

_ k(28— — 2a.8))
H= P .o

a numerical msmbﬁww depending only on the ratio A : p.
’

To examine the value of v, we take the integral

R A /(2 — 1) %
Tﬁﬁ?ﬁl?m?l?% I/MA)\Q& VEVM\RN me (69)

round the same contour. Integrating along the axis of £ we find

b — et df . = Eay oiex

[Cr@a=nl =g ™= ry”

~h _ lvlix..won:n&m . S
Cvoa=[ =75 | S

° _ Bactdf . tez
.'.L. GADQRI mw.ml. wE T m< Axv ¢

.»umdvgom,c%mm%zow.mw,_._omgm«omemzmﬂo?m Emumgq&m?awgom?o
contour vanish as before, ) -

Kae®df _ _ -+ 2k dE
mwmxallwﬁmv l w@a.ﬂoomxa.*.mw_ 10

+ hm * M ) L KPac® d§ ‘ .

? Pae™ df

= — 27K cos xz + 23 _.

e F(§)
288 — B)tae~ dé ‘
+u [y o
where .
' kKa
Kem =L . 0 0 v v v e e 71).
v5 (1)

Hence ww to the principal values of the expressions in (52) we add the system of
free Rayleigh waves,

T D=1 .luw.HmE.ﬁh~ ﬂ. ee_ﬂlmlwwncmxa.. D Q.wv.
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which is evidently of the type (63), we obtain, on inserting the time-factor,

_  Q e _ 20 PRERE S L0 1) S £ 62 0E (1),

Uy = = ‘MH P .\Ix ,Nwwwllwmvmﬁlmla«mﬂﬁmw.“ bmv Q% - mwv
= Qp[ o BB
o= B GE T e =R VE =)

_Qp B B/~ 1) et dE
%.,@mlmvﬁ;m;mwla..v%lmwv

c . Aﬁv_.

This is for z positive ; the corresponding results for = negative would be obtained by
changing the sign of z in the exponentiale, and reversing the sign of u,

The solution thus found is made up of waves travelling outwards, right and left,
from the origin, and so satisfies all the conditions of the question. -

The first term in u, gives, on each side, a train of waves travelling unchanged with
the velocity ¢™*. The second term gives an aggregate of waves travelling with
velocities ranging from b~ to ™% Aszis increasad, this term diminishes indefinitely,
owing to the more and more rapid fluctuations in the value of e~

On the other hand, the part of v, which corresponds to the first term of v, remains
embedded in the first defnite integral in (74). To disentangle it we must have
recourss to another treatment of the integral [¥ (£) d¢. Onpe way of doing thisis to take
the integral round the pair of contours shown in fig. 2, where a consistent scheme of

ivViien® || ViASe Y

M ~ ik (| VRS ~

) p a-f ap ap

values to be attributed to the radicals /({2 — A%) and /({® — #*) is indicated. For
the only parte of the left-hand contour which need be taken into account we find

l

S TS

i
£
|
i
4
W,

o
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YN R
~A _ I?N..m?ﬁ‘ﬁhn&m ) ’
Croa=[ 150"
P = RBaetdf
[ roa=[ =k,
= =1 —i/ () Remid
[, YO d= | i L e )y T
Similarly, in the right-hand contour,
P ydr={ DRVA Ui o L X
.A..,, O ...,@% + B = dn® /(1 + 77) (I + )
- » 12,087 L Ba .
[ v@ar=p [ Kl =i 0

We infer, by addition,

B[ B e[
SN 0 (. EEU U WP SR W VA (e o L
+ [ vy a2 e S e o

If we E:?.mw_% this by — Q/2mp, and add in the term due to the free- Rayleigh
waves represented by (72), we obtain, as an equivalent form of (74), -

B s | R (= Lol

R S

BE TR a8 /(0 = 8 = 8
- %.ﬂ B (8 — 1) /(B = £) et dE

T Awm& - .a.nvv + ;m* & \..‘nv‘.@.u‘h. m&v

+ Q .ﬁa B/ 4 n) e dn )
e @ BY = /(0 ) /(B )

1t is evident that all terms after the first diminish indefinitely as z is increased.

(76).*

+ From this we can deduce, by the same ‘method as in Art. 4, an expression for the mean rate W at
which a vertical pressure Q cos p! does work in generating waves, viz.,

S.uwxal@fw%m% k(2 - e
g 2mp

D L I L WG Y. S
* \wﬂ, m;@m» TR IS E - B (- £
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If in (73) and (76) We regard only the terms which are sensible at a great distance
from the origin, we have, for & positive, . :

Uy = — .mw., Hert, eo...hl m..w\me.s,c\nv wA....QJ“

and similarly for @ negative we should find
Uy = @m@.i::u , Y= —1 Q Kertt+ed . . . . (78).
B P
These formulee represent a system of free Rayleigh waves, except for the

discontinuity st the origin, where the extraneous force is applied. The vibrations
are elliptic, with horizontal and vertical axes in the ratio of the two nunsbers

H and K, whica are defined by (68) and (71), respectively. To caleulate these, we

have, since ¥ (x) = 0, .
.\.Axv =2 (2~ P = 8, By,
and therefore (268 — I P (228 — P
& — .2 2k2a, (262 — &
H= ", === ZAL0 (79)
= (6 £ () —F (97 ® )
where, by differentiation of (62),
At 12\ wt

!mé\?vu;?TlAal»@Vm‘:AHlmvmw .. (80).

Iu the case of muoovammm?z.—S, I find
H = ‘05921, K= 10890; -

whilst on Porssox’s hypothesis
H = 12500, K = ‘18349,

so that the amplitudes are, for the same value of p and for the same m@mmom force,
about double what they are in the case of incompressibility.

A imilar treatment applies to the formulee (55), which represent the effect of &
concentrated horizontal force Pet. Taking account only of the more important terms,
1 find, for w.omx?o. ) E
Uy = lél.wm‘aifﬁ. ecHWHm@.Z?& Lo (1),
and, for = negative, t #

Uy = — P grgreen, = — Prigneres . (82),
b B

H=- BB 2B, (21 — K)? .
T e (83).

where

K K@@= —2a8) _ B¢ =K

¥ T (D
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) ,ng 3&4 of H' to K’ is, of course, equal to that of H to K ; K’ is, moreover,
identical with H, in conformity with the principle of reciprocity already referred to.
It appears, thersfore, from the numerical values of H, K above given, that for A = e

e H = -03219, . K’ = '05921;
and for A = p : . )
H = 08516, K'==°12500.

,FPW&P i the case of the internal source (56) 1 find, for large positive values of &,
1y = — 8xH'e™/e? =), oy, = 8ikKle e, L L L . (84),

and, for large negative values,

1t = BKHe~ /e &+, vy = BixKle™/e ¢t T (85).

The factor aw..\ indicates how the surface effect (at a sufficient distance) varies
with the depth of the source.

8. If in any of the preceding cases we wish t0 examine more closely the nature and

magnitude of the residual disturbance, go far as it is manifested at the surface, it is

more oovcwmnmmun to use the system of contours shown in fig. 3. With this system ‘we

1

W |

K -k ~h o \_, k k&
Fig. 3.

can so adjust matters that the radicals /(£ - h?) and /(£ - 12) shall assume in all
parts of- the-axis of ¢ exactly the values «, 8 with which we are concerned in formule
such as (52). It is convenient, for brevity, to denote by 4o, B’ the values assumed
by.the same radicals on the two sides of the lines g=—h, and by o, & 8" their
values on the two sides of the line £ = — %, these values being supposed determined

D 2

piee e g g e
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in accordance with the requirements of continuity. Thus, with the allocation shown
in the figure, we shall have, for small values of 7,

W= — e, B=iE=) |
W= =), B = = /(%) eir
# approximately. A

Taking the integral (66) round the several contours, in the directions shown by
the arrows, we find . ;

s%mwlmlmamvim
Bl T

1

)

= = 2irH cos kz

e ﬁ 20 — 1 = 248" 20 — 1 + 208"

[}

R o e L

([ =B =28 . 20—R+2/8 \, .
+ e T% R iPeF (B0 — PP 4 o) e,

= — 2i7H cos xx + dee™™ ﬁ. R (20 — I) "B Le™ dy

o

o BB =) F 160 (=) (B =0

L gggmie [T R (2L = k%) o B Lo d
i | e e = =)
where, in the first integral, { = — k - i3, and, in the second, { = — h + 7.
The integral (69), taken round the same contours, gives
® Bae®df_ I P o n
o B = emsinnet e[ {gpm iy gemmrrane
e[ o' — 1 .
e, ,ﬂﬁmnswlkawd%:mf%& \T »idy
— . Ve @ bwﬂﬁ wa.l 3 :‘lauN h
= ek s s it | ;mm%usﬁﬁwfg . |
o b L] bm A&lewnwvmn.\wii&d
e r @E—Ry 16 (C=) (=) * " 7 (88),

on the same understanding. '

The definite integrals in these resuits-can all be expanded in asymptotic forms by
means of the formula A

T.x (m) e dn nmm“@xev + Wm@&m@ +Fe@.v. K%B +.. . (89);

and ﬁ&as hx, end therefore also kw, is sufficiently large, the first terms in the
expansions will give an adequate approximation,

xzth;v.:,\ gf& = 3.,.

vt proas s o

A e AT AR T S i 7

S

st 1 ey ¢ 4 2 3 A8

TREMORS OVER THE SURFACE OF AN ELASTIC SOLID, 21

Thus, taking account of (86), the last members of (87) and (88) are equivalent to’

Je—ttsin

— 2irH o.om xx + 2,/(27) )\Aw - WMV T

L o an) BE S EBR) et

(B — 21?3 (hx)t
and . et
. e ge =tk + in)
27K sin xz'— 4,/(2m) Aw - va ey
L2k Cgei-tz +im

~ e oy Sy T

am%moa?&%mavmnrémumFﬂmmyw&@mmmnmg%oa%mgaﬁwvmmwomoam,so ?5&,
for large positive values of x, .

= Qg £ @ 0 /2 /(1) £0
Uy = ﬂmeh .+:)\a)\~ 7 =

132 3 o ) g pt=Arim
_Q /2 BR J(E =1 e Gy T - (0

: w V@ TE =2k
Vomm e Hwb ,2 t -~ Kz} Mwl@.\ Iw. . A — NN.WV a s.@:s.lmkl »av
[ u Kl + p p 1 i )y

Q 2 125

&@»C&! hx = §m)

0V 7 =2 (ha)

+ +&e . .. (91)

The first terms in these expressions have already been interpreted. The residual
disturbance constitutes a sort of fringe to the cylindrical elastic waves which are
propagated into the interior of the solid, and consists of two parts. In one of these
the wave-velocity p/k, or b=, is that of équivoluminal waves; the vibrations (at the
surface) are elliptic, the ratio of the vertical to the horizontal diameter of the orbit
being 2,/(1 — h*/k?), or 1'638 for A = . The remaining part has the wave-velocity
p/h, or a~l, of irrotational waves; the surface vibrations which it represents
are rectilinear, the ratio of the vertical to the horizontal amplitude being
(B — 2h2)/2h (k2 — 1)}, or '3535 for A= p. With increasing -distance x the
amplitude of each part diminishes as z~!, whereas in an unlimited solid the law
is =Y, as appears from (42).

Similar results will obviously hold in the case of the other problems considered in
Art. 5. ,

9. Tt has been assumed, up to this stage, that the primary disturbance varies ns a
simple-harmonic function of the time. It is proposed now to generalize the law
of variation, and in particular to examine the effeot of a single impulse of short
duration. From this the general case can be inferred by superposition.

S T R e e e 4 s e i 2 o ey
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It is to be noticed, in all our formulz, that if we write

&= pb, >|%P k=pb, x=pc,

the symbol p which determines the frequency will disappear, 88%_(, in the
exponentials; this greatly facilitates the desired generalization by means of
Fourier's theorem. * Thus, in the case of a concentrated vertical pressure Q (t) acting
on the surface, the formule (73) and (74) lead to .

120 (260 —17) S =) SIP—C)
sllloqlsvlﬁl i mv,._v.z%%w&%lmuv Q(t—6z) d6 . (92),

_& 12 Aw%u — v»vm /\Amn — va :
o (267 — b*)* + 166* (6° — a°) (b*— v
1 ‘— b /(8 — a?)

k) I CY- g o Ty (s e (e

1

Vo= — —

. Q(t— 6z)do

Q(t— 6x)do . (93).

The definite integrals represent aggregates of waves, of the same general type,
travelling with slownesses ranging from a to b, and from b to «, respectively.

If we suppose that Q(t) vanishes for all but small values of ¢, it appears from
(92) that the horizontal disturbance at a distance z begins (as we should expect)
after a time ax, which is the time a wave of expansion would take to travel the
distance ; it lasts till a time bz, which is the time distortional waves would teke to
travel the distance ; and then, for a while, ceases.* Finally, about the time cx, comes
» solitary wavs of short duration (the same as that of the primary impulse) represented
by the first term of (92). This wave is of unchanging type, whereas the duration
of the ?&.BEPQ disturbance varies directly as z,-and its amplitude (as will be seen
immediately) varies inversely as .

If we put . .

g={Q@a . . . . ... .. . (o4),

the integration extending over the short range for which 0 is. mmbmu_&au the
preliminary horizontal disturbance will be given by

don..||wIQIW. Almv e .. Ce 'Awmv.

BP0 ) S |
.G.Amvl A.Nwwlbmvfn_l 166% %m stwv AA@w..l %uvv e e ﬁwmv.

provided

where @ < 8 < b. The following table gives the values of U (6) for a series of values
of /a, on the hypothesis of X = p, or bja = 1-7321.

* This temporary cessation of the horizontal motion'is spacial to the case of a .:onB& impulse, “R

the impulse be Snmaaei_ the contrast v&ioon the wcuaoazp and vertical motions, E this 3&-8». is
reversed.

AL
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6/a. U (). 6fa. U (6). 6/a. U (9). 6/a. U (6).
1-000 0 1-025 +-62777 | 1-10 | +-29789 | 1650 | 16122
1-001 +°31247 | 1-030 +-69351 | 1-156 | 4+-10295 | 1600 | - -16842

©1-002 +°42080 | 1-035 +°65806 | 1-20 | +-02722 | 1625 | ~-15927
1-003 © 449148 1-040 + +52308 1-26 - +02311 1650 - 15681
1-004 +°54191 | 1-050 445741 | 1°30 | =—-05905 | 1676 | ~-14845
1005 +°57926 | 1-060 +°39889 | 1-35 | ~-08622 | 1700 | ~--12795
1-010 +°66493 | 1-070 +°34746 | 1-40 | --10771 | 1726 | --07021
1-016 +-67536 | 1-080 | +-30238 | 1-46 | -—-12597 ba 0
1-020 +°66744 | 1-090 +°26279 | 1-50 | —-13975 _ —

The function has a maximum value -+ ‘67643 when /¢ = 101368 ; it changessign
when /@ == 1'22474; and it bas a minimum value — ‘159319 when 6/x == 1'62076.*
The graph of this function is shown in the :Eé. part of fig. 4. If the scales be

.
|
I
e
\
|
i

/
[
i
\

Fig 4.

properly chosen, the curve will represent the variation of 1w, with ¢, during the
¢ preliminary ” disturbance, at any assigned point #. For this purpose the horizontal
scale must vary directly, and the vertical scale inversely, as .

* The calculations were made almost entirely by Mr. H. J. WoopaLL, to whom I am much indebted.

B
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The interpretation of the expression (93) for the vertical displacement t, is not
quite so simple. For a given value of «, the most important part is that corre-
sponding to t = ¢z, or § =¢, nearly, when the integrand in the second term changes
sign by passing through infinity. This is the epoch of the main ghock ; the minor

disturbance which sets in when t = ax leads up continuously to this, and only dies

out gradually after it.
As a first step we may tabulate the function V (6) defined by

b (262 - W J(P—-at)
Vi) == 55— _%V.\.ﬁ 166 %m...& gy Tre<f<h

= : AT =) -—aui, fO .o X
- (26° — B — 44 JE=a) JE = ) for@>10 (97)

1
bja I v (6). ‘ 8ja ' v (6). , 6ja. f v (). , oja. v (6).
©1-000 o - 1025 - 39425 1-10 —~ +08981 1-550 - +22781
1-001 - +21995 1-030 - +36340 1-15 - 02454 1-600 —~ +31645
1-002 ~ +29488 1-036 - +3329% 1-20 - 00218 1-625 - +37299
1:003 —~+34284 1-040 - +30387 1:25 ~+00193 1650 - .m»:o
1-004 -~ +37630 14050 - 25142 1-30 ~+01508 1-675 —+52493
1005 — 40039 1-060 —~.+20681 1:35 -~ +03796 1-700 — +63087
1:010 — +44907 1-070 ~ 16932 1-40 -~ +06941 1:725 - 76935
1-015 - 44543 1080 - +13795 1-45 — +10989 bja —+81649
1-020 - 42324 1-090 -+11173 1-50 - 16137 — —
f o/a. r v (6). 8. d v (6). # 8ja. ’ v (6). ' o/a. v (o).
bja —-0°81649 1-90 + 20438685 d 2+10 +1+99591 2-6 + 91464
175 ~1:39031 195 + 5-42335 2°16 +1:69743 3-0 + 60196
1-80 ~-2+98197 2:00 + 3:317569 2-20 +1-4R801 40 ++38179
1:85 - B8-65843 2-05 + 2:46398 2-25 +1-33404 10:0 + 13292
cla © — — — — —_ —
The function has & minimum value -— ‘45120 when §/a = 1'01170, and a zero

maximum when f/a = 122474 ; it changes from — o to 4+ o when /b = 1:08767,
or 6ja = 188389.* Its graph is shown in the lower part of fig. 4, and also (on &
smaller scale, 80 as to bring in a greater range of 6) in fig. 5.

It is postulated that the function Q (¢) is sensible only for values of ¢ lying within
a short range on each sideof 0; the function Q(t — 6x) will therefore be sensible
only for values of 6 in the neighbourhood of t/z. We will suppose that for given
values of = and ¢ its graph (as a function of 6) has some such form as that of the

# Ag in the case of U (), the calculations are due chiefly to Mr. WooDALL. '

A
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dotted curve in fig. 5. If-x be constant, the effect of increasing t will be to cause

this graph to travel uniformly from left to right; and if we imagine that in each of

Vi)

Qt-bxr
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Fig. 5.

its positions the integral of the product of the ordinates of the two curves is taken,
we get a mental picture of the variation of v, as a function of ¢, on a certain scale.

For the greater part of the range of ¢, the ‘integral will be approximately
proportional to the ordinates of the curve V (), viz., we shall bave

v, = awsdAmv S (o)
in snalogy with (95). But for a short range of ¢, in the neighbourhood or ¢z, the
statement must be modified, the dotted curve being then in the neighbourhood of the
vertical asymptote of the function V(6). Since the principal valne of the integral is
to be taken, it is evident that as ¢ approaches the critical epoch and passes it, v, will
sink to a relatively low minimum, and then passing through zero will attain a
correspondingly high maximum, after which it will decrease asymptotically to zero,
the later stages coming again under the formula (98). )

Although the above argument gives perhaps the best view of the whole course of

the disturbance, we are not dependent upon it for a knowledge of what takes place
VOL. COIIL—A. B
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about the critical epoch cw. We may proceed, instead, by generalizing. the expres-
sions (77). This introduces, in addition to the given fumetion Q(t), whose Fourier

expression is

os||_ &l QM eosp(t=Ndh . . . . . (99),
the related function

Q)= J ai QWsinp(E =N . . . . (100);
viz., we have A

:H.HIWHC,QIaBV..Tko; eoﬂwa,ﬁlaevl_n&o. . . (1o1).

It does not appear that the connection between the functions Q(¢) and Q' (¢) has
been specially studied, p;r%mr it presents itself in more than one department of
mathematical physics, The following cases may be noted as of interest from our
present point of view :

CA«v"IW.m nﬂah» D,Anvl..h mmwi]_nnu . . . Cowv"
Q) =57 “L, @,Qvulwmwt C e L (108);
Q(t Illw <, e
© " Q)= %35 AMWJV .. (104),
=0 for £2 > %,

It is evident, generally, that if Q be an odd function, Q' will be an even function,
and vice versd,

The values of u, and vy, as given by (101), are represented graphically mz.m@ 6,

tor the case where Q (¢) and Q' (t) have the forms given in (102).* Moreover, writing

HQ/2mpr = f, KQ/2mpr:=g, t— cx=rtan X
we have

%y = — (1 4 cos 2x) . £, :ImEMXQ .o . (105);

the orbit of a surface-particle is therefore an ellipse with horizontal and vertical semi-
axes f and g. And if from the equilibrium position O we project any other position
P of the particle on to a vertical straight line, the law of P’s motion is that the
projecticn (R) describes this line with constant velocity. See mm 7, where the
positive direction of y is supposed to be downwards.

* The relation between tho scales of the ordinates in the grapha of u, and v, depends npon the ratio of
the elastic constants r The figures are constructed on the hypothesis of A= p,

_.
4
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Tig. 7.

Fig. 6.

. A similar treatment would apply to the formule (81), and (with some modification)
to (84).

It remains to justify these approximations by showing that the residual disturbance
tends with increasing @ to the limit 0. For this purpose we have recourse to the
formulee of Art. 8. As. a sufficient example, take the second term in the last
member of (88). If we multiply by e?, take. the real part, and substitute n = p¢,
k = pb, the corresponding term in the value of v, as given by (52}, assumes the form*

;m. 8%@..3%@@@-3&+ m a@el@f@ﬂi&.
0
where the functions F (¢) and f(¢), which do not involve p, are of the order ¢~ when
- ¢ islarge. If we generalize this expression by Fourier's Theorem (see equation (99)),
we obtain, in the case of an impulse Q of short duration,

m.hwg &i e cosp (t = bo)dp + n.?@&i e~ sin p (¢ — bx) dp

ap o
F) g + 2 i 000

* The symbols ¢, F, f are here used «ononw:_w in new senscs.
E 2
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For any particular phase of the motion, ¢ varies as x, and the expression (106)
therefore varies inversely as . This confirms, so far, our previous results (95) and
(98). Hence with increasing distance from the origin the disturbance tends to the
limiting form represented by (101).

Before leaving this part of the subject, it is to be remarked that the peculiar
protracted character of the minor tremor which we have found to precede and follow
the main shock is to some extent special to the two-dimensional form of the question,
Tt is connected with the fact, dwelt upon by the author in a recent paper,* that even
in an unlimited medium a solitary cylindrical wave, whether of the irrotational or
equivoluminal kind, is not sharply defined in the rear, as it is in front, but is prolonged
in the form of & “tail” In the three-dimensional problems, to which we are about
to proceed, this cause -operates in another way. The internal waves are now
spherical instead of cylindrical, and so far there is no reason to expect a protraction
of a disturbance which in its origin was of finite duration. But at the surface they
manifest themselves as annular waves, and accordingly we shall find clear indications
of the peculiarity of two-dimensional propagation to which reference has been made.
On the whole, however, it appears that the epochs of arrival of irrotational and
equivoluminal waves are relatively more clearly marked and isolated than in the two-

. dimensional cases. . .

! PART IL |
dmwmm-dugmzﬁogw PRroBLEMS. . i

10. Assuming symmetry. about the uxis of z, we write
w= (=43, u= IM o v=Yq .. .. . (107),

* 8o that g denotes displacement perpendicular to that axis.

A typical solution of the elastic equations, convenient for our purposes, is derived
at once from Art. 3, if we imagine an infinite number of two-dimensional vibration-
types of the kind specified by (25) and (30) to be arranged uniformly in all azimuths

- about the axis of z, and take the mean. In this way we obtain from (38), with the
necessary change of notation,

4= (i(A — AB) . L r = 0o o dw = — (§A + 1B8B) I, (¢m)
, . (108).

'

Wy = A.| ah — smmwv . '“‘ .’ chmens (1 Aﬁb. + am.wv .HcAma_v

'

<o

# Cited on p. 37 post.

v
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A

Also, m.oﬁ\?o.uy for the corresponding stresses at the plane z = 0, we have .
h (Dol = i {26=A + 1 (262 — F2) B} J, (€w)

,?iu.::wmplmv>+§.mmw:imav

Although the above derivation is sufficient for our purpose, it may be worth while
to give the direct investigation,* starting from the equations

coe e . (109).

Pu_ ) o8 2 o _ ) 98 2
Pap =0 tp) gy TV mmml?m+:v®.<+_:<s
' 2 ’
zw.m%u?.frvww.fuﬂe C e (),
where . - ) )
- =Ouy By O ;
>|%+%+mn. C e (a1

In the case of meBm._EaBoia motion (¢*) these are satisfied by

=% 4w, =% w="2% 4
u=t 4, elmw\.Te\. w=srtu o (112),

provided
(VEAMe=0 . . . . o (118),
and
(V2 + ) =0, (VE+E)v =0, (V4w =0
9w , o , ouw oo (114),

o mty e

o

where A2, %2 are defined as before by (28). A particular solution of (114) i

:\lmwn cfll.lml.w. :xnu.%k;.wf

= oxoz’ dyoz’ e o (115).

provided v
VE+B)x=0 . . . . . . . . . (116)

On the hypothesis of m%B:.,mﬁQ about Oz we have

: # 13, @
2 o = Pl Pty
V=g (117),

and the formule (112), (115) are o.@:?&@ue to

0 By, e L ()
g=5e o Y5 Tap T (18)

* (. * Proc. Lond. Math. Boc,,’ vol. 34, p. 276, for the corresponding st itical investigation.
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If we take, as the typical solution of (113) and (1186),
‘ ¢ =Ae=J,(fw), x=Be?*J, (=) . . . . . (119),

where «, 8 have the same meanings and are subject to the same convention as in
Art. 3, we have, from (118),

= A.I EAe 4 EBBe) h_ Am.a.v

10 = (— aAe™ 4 £2Be ) J, (£w) e e (120);

and thence for the stresses in the plane z = 0

(b= n [+ 29] = wizeat — (26 — &%) €8} 3, (6)
A i ’ : . (121).
[pd = [ra + 20 57 = pi(26 — ) A — 26881 3, (60) )
The formule differ from (108) and (109) only in the substitution of /¢B for B. The
uotation of (119) is adopted as the basis of the subsequent caleulations.

If we are to assume, in place of (119), .

b= Aedy (=), x=BeJo(fm) . . . . . . (122),

the corresponding forms of (120) and (121) would be obtained by affixing accents
to A and B, and changing the signs of « and 8 where they occur explicitly.
11. Asin Art. 4, we begin by applying the preceding formule to the solution of a
known problem, viz., where a given periodic force acts at a point in an unlimited solid.
Let us suppose, in the first place, that an extraneous force of amount Z.J, (&w) e?,
per unit area, acts parallel to z on an infinitely thin stratum coincident with the

plane z = 0. The formulwe (119) will then apply for z > 0, and (122) for 2 < 0. The
normal stress will be discontinuous, viz. :

—“Nu.d”_-n*e - ﬁNmn”_nﬂre =—2. «.—c Amav . .. ... Awwwv.

whilst p,, is continuous. Hence

(26 — 1) (A — &) — 28°8(B + B) =

. . (124).
— 2a (A + A') — (26* — k%) (B — B) = 0
Also, the continuity of ¢ and = requires N
| _ A—AN~-BB+B)=0 | , 195
_ B A N I L)
We infer : v
VY =B = .2
> — > = w&&‘h w —— w l. wx#&mm . . . . . . prmv.

s
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and therefore, for z > 0, : ”

elm@a@:&imﬂv‘ X = wm m..wfmav Coe .. (1e7)

To pass to the case of a concentrated foree Re?, acting parallel to z at the origin,
wo have recourse to the formula (20), where we suppose f(A) to vanish for all but
infinitesimal values of A, and to become infinite for these in such a way that

[royema=r

‘We therefore write Z = R& dé/2m, and 53@33 ﬁ:.._. respect to £ from 0 8 o ¥
We thus find, for z > 0,

R =~ R

s ‘
b= o ) T TR EdE x= o A 3, (Em) EE. . (198),
\
which are equivalent, by (18), to y
—i \ i
¢=- LI el w..wlm.l S (129)
A%b oz r /A% p

This will be found to agree with the known solution of the ?.oEoB..w Hm we retain
only. the terms which are most impor tant at a great m_mgsoo r, we find, from (118),

g= wﬁwhw 1T it mlum.wan.ﬁw H :
i wro b (130).

0= MT._URH @-t.,+wm®-i _ _
Inserting the time-factor, the radial displacement is
§+|ml§o,m‘ 2u) HACT e (8,
and the transverse displacement in the meridian plane is .
sw—zg R moe-w L L. (182)
r dmp 2

Returning to the exact formule (128), the expression for the velocity ?3:& t0z
at the plane z = 0 is found to be

dw _ iRe¥ [/ £ EdE . . . . . . (133),
o MQ.,MLA a“t vimx& (133)

* A more rigorous procedure would be to suppose in the first :nstance “that the force R is uniformly
m_ms..ggm over a circular Area of radins a, using the formula QMV If in the end we make a = 0, we

obtain the results in the tex , ) .
t Stoxes, ‘ Camb, Trans 9 (1849); * Mathematical and m.E.Eo_; Papers,’ vol. 2, p. 278.

R b e e p—— B o Ty " ek
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or, tuking the real part,

= iy 606+ L = 110 ] e

+termsinsinpt . . . . . . . . . (134)

H_..o terms in cos pt remain finite when we put == 0;* and the mean rate W at
which a force R cos pt does work in generating waves is thus found to be

EL Tl gy + [ v = ) ae)

Nww
..||.:|I w w|. m m
AE.TNPV w»q\u? +w~»v.....ﬁw$.
@ and b denoting as before the two elastic wave-slownesses. The result (135) can be
deduced, a8 a particular case, from formule given by Lord KeLvix.t

12. Proceeding to the case of a semi-infinite solid occupying (say) the region 2> 0,

we begin with the special distribution of surface-stress : _

[ph=Z. 3 (=), [pad=0. . . . . . . (136)
The coefficients A, B in (119) are now determined by

(28 — 1) A —2£28B =2
R § £:1'0 )
wn?lﬁwmw E)B=o0
whence
m.mw‘lﬁ.m =22  Z
= Hm,Am I.“ HﬂAmv T.. Ce e Amwmv.

the function F (£) having the same meaning as in Art. 5. The corresponding
. surface-displacements are

= $@8—E—2p) . Z .
% 2B 3, (6o - |
. T ¢ £ 1) 8
, wy = H.J.AMV ..._. Amav Pt

This result might have been deduced ::E&ESH% from A.ﬂv in the manner indicated
at the beginning of Art. 10,

* The terms in sin pt become infinite. If the force R be ngw:S: over a circular area,

is avoided. A factor
: A.,,: ﬁh&&
36

is thus introduced under the integral signs in the first line of-
radius of the circle. Finally, we cai make o infinitely amall,
t ‘Phil. Mag,,’ Aug. 1899, pp. 284, 235.

theawkwardness

(186), where a denotes {for the moment) the

,/ ' ~
. .
A
v N . |
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TR
"t we put Z = 0 in ?mvv we get a system of free annular surface-waves, in which
//»

@o= — k(2 =k — 2,8 . J; (kw) . Ceit
' , A e {140),
Wy ",Numo: . .Ho Axﬂ.v . Oo.w:

where « is the positive root of F (£) =0, and a,, B, are the corresponding values of
a, B.  These are of the nature of “standing” waves,

To pass to the case of a concentrated vertical pressire Re™ at O* we put in
accordance with (20), Z = —REdé/2m, and integrate from 0 eo ®.t The formule

(139) become |
0= ], T CEF mﬂ 228) 3, (m) ¢ H
. .. (141).
R o= = [T B 5 (e ae g
Again, the case of an internal source ,o». the type
u.mw.ﬁ X=0. . ... (42,

where 7. denotes distance from the point (0, 0, f), can be solved by a process similar
to that of Art. 5. First, superposing an equal source at (0, 0, — f), distance from
which is denoted by +, we have .

ﬁ".....;.T;.M!. X=0 . Lt oL L (148);

and therefore, by (18), in the neighbourhood of the plane z = 0,

b= T 3 (6w e+ [T SN0 (6 i
nwﬁ,o.glwka-i;m&m& L (ad)
This makes .y
monlia ) £dg w=0 L L (145)

* This may be regarded as the kinetic analogue of BOUSSINESQ'S well-linown statical problem.

t It might appear at firet sight that a simpler procedure would be -ossible, and that the effect of a
pressure concentrated at a point might be inferred by euperposing lincs of pressure (through O) uniformly
in all azimuths, and using the results of § 7. It is casily seen, however, that such a distribution of lines
of prossure is equivalent to a pressure-intensity varying inversely as ths distance (w) from.O. This is.
not an adequate representation of a localized pressure, since it makes the 8?,” pressure on & e_.gF_.
area having its centre at O increase indefinitely with the radins of the circle, .

YOL, OO,H:.GJ». . F ) R '
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and

[Pub=0, [p}=2| CE=F) o-v i (em) e . . (146).

The additions to (143) which are required in order to annul the stresses on the
plane z = 0 are aceordingly found by writing

L2 X1
2= v gag

o

Z=—2p-
I

Eﬁwwvpamnron_:womﬁmssmﬁ;r ammwmov nom ».38 ogoo.gnrmmﬂm%ém
obtain, finally, :

—4[ €L - :
b= i.o F (g N : (147)
_ (° BEQE — 1) _ o :
»eo|l-.w,'e m.Amv v .{.H:Amav&m;_

In a similar manner, with the help of Art. 11, we might calculate the effoct of a
periodic vertical force, acting at an internal point.

13. For the sake of comparison with our previous two-dimensional formuls, it _m
convenient to write, from (2) and (6),

£

,uo (fw) = — “ .mo (eltw comv — gmitweon) 7y,

. oo. (148).
.H Am._u.v _. A.waﬂno.: 1t + @l&ﬂnu:_ :v oOmT uw &g
, The formule (141) are thus eqiivalent to
o g2 0082 12
Qo= = MWN cosh 1 du ‘q&m..@.m m,Mwm,v.l.maE a..mwz._:_ d¢
} . (149).
R K mﬁ @ cosh
wy = w:..{.b;&: %Ia H:mv elmeomu g f

These results are closely comparable with (52), and our previous methods of treat-
ment will apply. It is, however, unnecessary to go through all the details of the
‘work, since the definite integrals with nomwmoa to ¢ which appear in (149) can be

derived from those in (52) by performing the operation — id/dx upon the latter, and
then replacing « by = cosh u.

Thus, from (67) and (70) we derive

P ‘m«am.:wmm HMMGMVI 228 v e £ = oneH sin (k@ cosh :v E
2 (* Mm Awm.u -k Rm e it@eosh v ’
. +aie | &1 Eziwv v g (150),

U,

[T — e e s
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P _...a %N Ammpv gl com &m = 27K sin (kw cosh u) — 2k% _.» H.Jmmv i cobr I
kE(282 — N&wﬂ -
—oie [FQE S e emag. L s,
1570 * as.

where H and K are ﬁro szamﬁo& ﬁ?pussmm defined by (68) and (71). Substituting
in (149) we have

Bao= = B HK () + ER[E ﬁmwmv&u (EmydE . (152)
R iR
mwsec = Nwal! K. ..wcoﬂav MS‘T. w.m‘_.nv H;!AIMV Cc Amav «.wm
. PR »mAwm\ — ) . o
Ne; F(£)1(€) D(éw)dé . . (153),

where the notation ot the various BessiL's Functions is ¢ in Art. 2.
Superposing the system of free waves in which

s.n&mw.m.ﬁ (<), ,s.,u..:: K. Jo(km). . . . (154),

we obtain, finally, on inserting the time-factor,

L w R [+ £ (28 — ) oB
@0 == 5. H. D, (xm) e + .sL £ m@x@ D, (¢w) ¥ dE. . (155),
iR e R FEQE = P o
) Yy = Nﬂ.t uwb HAJANVU Amﬂ.vw ANM Msu:\ _. Um,AmV .\.Am “Cc Am v@f &m‘ * Awmmv.

Sinece these expressions are made up entirely of diverging waves, they constitute

the complete solution of the problem where a periodic ncrmal force Re# is applied to
the surface at the origin.

An alternative form of (156), which puts in evidence that vE.ﬁ of the vertical
disturbance which is most- important at & great distance from the origin, is obtained
trom (75). Attending only to the “singular” term, we find *

S ) _.,u %»Mww gfeombn Jf = — 2imuK., cos (kw cosh u) + &a. . . (157),
-8
and therefore, from (149), . .
, %sol.x K.K (k@) + & . . . . ... . (158)
P@&Bm in ﬂum system ( Hmpv we have altogether

0= aw‘ JH. U— (kw) e™ + &e., wy= wa . K. Dy (km) e + ko« (139).

P2
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Hence, by (7), we have, at a great distance =,

2u TR TRET

Go= — uR H. 2 i T Hmm K. )\!wl. eitrt=xm=in_ (160).

This may be compared with (77). The vibrations are elliptic, with the same ratio of
horizontal and vertical diameters as in' the case of two dimensions; but the ampli-
tude diminishes with increasing distance according to the usual law w™# of annular
divergence.

In the same manner we obtaiu, in the case of an internal source of the type (142),

Q= — Mm\m.wm%b ¢"*' D, (km) ¢ + &e., )

, (o — g Sh L (161,
2 2 _ g »

Wy = !d....xmm\ Mxv - ) e~ Dy (k) ¢ 4 &e.

where the factor e~/ shows the effect of the depth of the source.

The expressions for the residual disturbance might be derived from the formulse
of Art. 8 by the same artifice. Without attempting to give the complete results,
which would be somewhat complicated, it may be sufficierit to ascertain their general
form, and order of magnitude, when = and ks are large. To take, for.example, the
parts due to the distortional waves, if we perform the operation — 18/0x on the
second terms of the unnumbered expressions which occur between equations (89)
and (90), above, and then replace « by = cosh u, the more important part of the
result in each case is

emdwemtu/(ka cosh u)*?,

multiplied by a constant factor. This result is to be substituted for the definite
integrals with respect to ¢ which occur in (149); the corresponding terms in
7o nd 1, are therefore of the types

1 .MB e~ itw cosh 1 «Ng

(k=)o (oo

1 s Qlﬁ‘ cosh u &ﬁ
o (cosh u)t ° and ._..

(kw)l Jo (cosh )t ’

respectively. By the method by which the asymptotic expansion (7) of the
function D, () is obtained, it may be shown, aguin, that these terms are ultimately
comparable with

o0k,

where the time-factor has been restored. In the same way, the terms in ¢, and Wy
which correspond to the expansional waves are ultimately comparable with

i {t=am) /(hw)?..

The attenuation with increasing distance is much more rapid than in the case of the

s
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annular Rayleigh waves, so that the lattsr ultimately predominate* It mw also
much more rapid than in the case of elassic ‘waves diverging from a centre in an
unlimited medium, where the amplitude vaiies inversely as the distance.

14. The generalization of the preceding results, so as to apply to an arbitrary
time-variation of the source, follows much the same course as in Art. 9. The full
interpretation is however more difficult, so far at least as regards the minor ﬁnﬁ.ﬁcam.

The main part of the disturbance, in the ¢ass of a local vertical pressure ﬁmwrom to-
the surface, is obtained by generalizing the formule (159). These may be written

_H .HA ‘w. as@i?as.,_:o du+&e., wy= i&m @Ia m ﬁei.uﬂ@%& du 4 &o. , Cawv.

mo.l,a.,*Nmﬂo T p Ot

Hence, corresponding. to an arbitrary pressure R (¢), we have

Qo= B xml._.uw (t—cuwr cosh w) &zufko; Sc"WM W« _,e R (t=cw cosh u) du&e. (163),
where, in analogy with (100), . L ‘ .
R(t) = wl [, ar r R(Nsinp(t—Ndh. . . . . (164).

The character of the function of ¢ represented by the first definite integral mb.ﬁ.mwv
has been examined by the authorf for various simple forms of R (t), and a similar
treatment applies to the second integral. For example, if we take

R s po=X_t _ . ... (5
RO=Tpyp FO=Tsrs ,A v
, ; . , ey S
it is found, on putting ) %.W%w\wf K= o O3
: t — cm = 7 tan x.§ v

that for values of = large compared with /¢, and for moderate values of x,

2r Co,

ﬁ.w (t — o= cosh u)du = R .Amm/ cus (37 — §x) Vicosx) . (166)f,

%aw, (t — cw cosh w)ydn = — W..ﬂ . ﬁww,v.mm: qu‘.wxv,\?omxv.?auv,

Yz
o = —Jsin (37 — §x) cos'x
..N.m_w\ P S ) Ao v.
g cos (3w — §x) cos! x ‘
* (f. the footnote on p. 2 anfe. . ) . o
t “On Wave-Propagation in Two Dir:.nsions,” ¢ Proc. Lond. Math. voo‘”. vol. 30, p. .?C Coo%v. o
1 ¢f. Equation (36) of the »xecm cited. It may be noticed that the functions on or.o, right hand of (166)

and (167) ars interchanged, with & change of sign, when we reverse tho signof x. |
§ The symbol x is no longer required in the senso of nn_-.aacuu (116), &e.

approximately. Substituting in (163), we have, mm,zoem:m the residual terms,

Wy
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|
- Re 2 Re |27
=H . T v = <. T
/ dmprt \/\ﬁeﬂ o 9=k 4mp )\ﬁnﬂ ’
The following numerical table is derived from one given on p. 155 of the paper
referred tor-—

where

; ; .
2x/m. | (f=ew)yT. _ il h wyig.
; . .
--9 ) ~-6-314 -+014 - -060
-8 -3:078 - 078 - 153
-7 -1-963 - 199 - 233
-6 -1-376 ~ +365 - -265%
-5 -1-000 - 549 - 228
-4 - T --719 ~--114
-3 - 510 - 838 - + *066
-2 - 325 . -~ -882* + 287
~-1 - 158 -~ 837 + 513
0 0 - +707 + 707

+-1 + 158 - =513 + 837
+°2 + +325 ~ +287 + +8K2%
+3 + +510 - 066 + 838
+4 + 727 ++114 + 719
+°5 +1-000 + -2 + -549
+°6 ; +1-376 + - 265% + - 365
47 . +1-963 +°233 +-199
+ 8 +3-078 . +-153 4+ -078

! ++9 : +6-314 i + - 060 +°014

. s 1

* Extremes.

The graphs of g, and w, as functions of ¢, in the neighbourhood of the critical
epoch ¢w, are shown in fig. 8, which may be compared with fig. 6.+ The corresponding
orbit of a surface particle is traced -in fig. 9, where the positive direction of z is
downwards; it may be derived by a homogencous strain from a portion of the curve
whose polar equation is v

: . ™ = a cos § (0 — 2).

The amplitude of this part of the disturbance diminishes, with increasing distance
from the source, according to the law w~*

Complete expressions for the disturbance are obtained b izl
. 2 eneralizing (155
(156). They may be written e g (199) and

Harp, 2t 2 ;
it ?rwﬁ cwcosh u)du — hﬂld@. £ rgéacs?{:.%. (169),

a =

- 5
fli%i.%@.gbfhl?8&5%.% C .. 7o),

where U (6) and V (6) are the functions defined and tabulated in Art, 9
Y A

t Sea the footnote on Pp- 26 ante,

R o e e
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Fig. 9.
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Fig. 8.

The method applied in that Article to obtain a general view of the whole progress
of the vertical displacement at any point might be employed again here, the upper and
‘lower curves in fig. 4 being combined with auxiliary movable graphs of

and 69 «Aaz (t — 0w cosh u) du,

3
b R (¢t — 0= coshu) du at ).

™ .
considered as functions of f. In the case of a primary impulse of the type (165), both
graphs would have somewhat the form of the lower curve in fig. 8, the functions being
practically (except for a constant factor) of the type
t — Oz

x = tan™ ;!

e sin (4 = 8x) cos'x,
in the more important part of the range. ‘Both graphs, it drawn to the mo&m.om
fig. 4 or 5, would be excessively contracted horizontally when we are concerned ‘“a,mwr
values of = large compared with 7/c,. Owing to the compensation &m?dm.b positive
and negative ordinates in the auxiliary graphs, it is plain that the ,Q_mncwgzeo
expressed by the f-integrals in (169) and (170) will be relatively very .me: except
when t/w has values @ for which the gradient of U (6) or V (f) is oo:.m.mo_.wzo. As

where

I bR SN
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. regards the horizontal displacement ¢, the minor tremor will. consist of a single
to-and-fro oscillation about the epoch aa, followed after an intervel by a somewhat
similar oscillation about the epoch bm, with almost complete quiescence between. As
regards the vertical displacement, there will be a to-and-fro oscillation about the epoch
@, then a period of comparative quiescence, and finally a gradually increasing
negative displacement (with a slight irregularity at the epoch bw) leading up to the
main shock, after which there is a gradually decreasing positive displacement.

The expression for the horizontal displacement. ¢, may be treated in & different
manner. Transforming (169) we have

=H ar - 2 [ er - i

S R oo eosh ) — 2 (L 000): g e oo ) .t
H a8 v

.Ilm.m‘lm bw.ﬁloa.agrav&:

,w_. . u
+t€m_a zdéidgx. _ wel? cosh ) du. 0 . (171)
A rough sketch of the graph of U (6) + U (6) is easily made, and the function

—Hﬁ (t — 6w cosh w) du .

i8, in such a case as (165), one-signed, but its integral with respect to 6 does not
converge when the lower limit is large and negative. The method therefore fails to
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give us a convenient view of the progress of ¢, us a function of t. The difficulty is
due to the peculiarities of annular propagation to which reference has already been
made.

In fig. 10 an attempt, based on the former method, is made {o represent (very
roughly) the whole progress of the horizontal and vertical displacements due to a
single impulse of the type (165) at a distance large compared with /e,

SuMMARY.

We may now briefly review the principal results of the foregoing investigation, so
far as they may be expected to throw light on the propagation of seismic tremors
over the surface of the earth. i

It has been necessary to idealize this problem in various ways in order to render it
amenable to caleulation. In the first place, the material is taken to be compact and
homogeneous, to have, in fact, the properties of the *“isotropic elastic solid” of
theory. Moreover, the curvature of the surface is neglected.  Again, instead of a
disturbance originating at an internal point, we study chiefly the case of an impulse

applied vertically to the surface. Under these conditions the disturbance spreads

-over the surface in the form of a symmetrical annular wave-system. The initial form

of this system will depend on the history of the primitive impulse, but if this be of
limited duration, the system gradually develops & characteristic form, marked by
three salient features travelling with the velocities proper to irrotational, equi-
voluminal, and Rayleigh waves, respectively. As the wave-system, thus established,
passes any point of the surface, the horizontal displacement shows first of all a single
well-marked oscillation followed by a period of comparative quiescence, and then
another oscillation corresponding to the epoch of arrival of equivoluminal waves.
The whole of this stage constitutes what we have called the “minor tremor”; it is,
of course, more and more protracted the greater the distance from the source, and
its amplitude continually diminishes, not only absolutely but also relatively to that
of the “ main shock,” which we identify with the arrival of the Rayleigh wave. It may
be remarked that the history of the minor tremor depends chiefly on the time-
integral of the primitive impulse; the main shock, on the other hand, follows the
time-scale of the primitive impulse, and is affected by every feature of the latter.*

Similar statements apply to the wvertical displacement, except thut the minor
tremor leads up more gradually to the main shock, being interrupted, however, by a
sort of jerk at the epoch of arrival of equivoluminal waves. :

The history of the horizontal and vertical displacements, about the ‘epoch of the
main shock, in the case of a typical impulse o»../.ﬂE type (165), is shown in fig. 8;

\

* Observational evidence in favour of the existence of %,«m threo critical opochs in an earthquake
disturbance has been collected and diseussed by R. D. OLDHAM, “On the Propagation of Earthquake
Motion to Great Distances,” ¢ Phil. Trans.," A, 1900, vol. 194, p. 130,
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whilst fig. 9 shows the corresponding orbit of a surface-particle. In fig. 10 a sketch

- is attempted of the whole progress of the disturbance.

These results are of a fuirly definite character, Lut they are based, as has been said,
on purely ideal assumptions, and it remains to inquire how far they are likely to he
modified by the actual conditions of the eartl. The substitution of an internal source’
for a surface impulse will clearly not affect the general character of the vesults at a
distance great compared with the depth of the source, although differences of detail
in the wave-profile at the critical epochs will oceur, and we can no longer assume that
the disturbance is the same in all vertical planes through the source, Again, the
chief qualitative difference introduced by the curvature of the earth will be that
the minor tremor, whose main features are evidently associnted with the outerop of
spherical elastic waves at the surfuce, will he propagated directly through the earth,
so that the first two epochs will (at distances comparable with the radius) be
aceelerated relatively to the main shock,* which being due to the Rayleigh waves
will travel, with the velocity proper to these, over the surfuce.t

It is a more difficult matter to estimate the nature and extent of the modifications
produced by heterogeneity. It is, perhaps, possible to exaggerate these, for the
qualitative effect of a gradual charge of elastic properties would not he serious, and
even considerable discontinuities would have little influence if their scale were small
compared with the wave-lengthi of the primitive impulse, A covering of loose
material over the solid rock probably causes only local, though highly irregular,
modifications, with some dissipation of energy.

It mnust be acknowledged that our theoretical curves differ widely in two respects
from the records of seismographs.  In the first place, they show nothing corresponding
to the long successions of to-and-fro vibrations which are characteristic of the latter,
It would appear that such indications, so far as they are real and not instrumental,
are to be ascribed to a succession of primitive shocks, in itself probable enough.
Again, the theory gives vertical and horizontal movements of the same order of
maguitude, and in the case of the Rayleigh waves, at all events, where a definite
comparison can be made, the vertical amplitude is distinctly the greater.  The
o?.@«m&o:@ on the other hand, make out the vertieal motion to bhe relatively small,
The difficulty must occur on almost any conceivable theory, and appears indeed to be
clearly recognised by seismologists, who are accordingly themselves dispoged to
question the competence of their instruments in this respect. ¢

* ¢f. R. D. Quouay, loc. cif,

t The theory of free Rayleigh waves on a spherical surface is known ;

1 This term is used in the same general sense in which in hydrodynam
a solitary wave travelling along a canal.
analogous to “cacillatory waves,”

sce Professor Bromwic, loc. eif.
ics we speak of the Iength ” of
There is no question, in the present connection, of anything
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