Location

Location ANSS

The ANSS event ID is us7000rlum and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000rlum/executive.

2026/01/01 06:54:59 60.479 -140.293 5.0 5.3 Yukon, Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2026/01/01 06:54:59.0  60.48 -140.29   5.0 5.3 Yukon, Canada
 
 Stations used:
   AK.BAE AK.BESE AK.CRQ AK.DHY AK.DIV AK.DOT AK.EYAK AK.GHO 
   AK.GREN AK.GRES AK.GRIN AK.GRNC AK.HDA AK.HIN AK.ISLE 
   AK.J25K AK.K24K AK.KHIT AK.KIAG AK.KNK AK.L26K AK.LOGN 
   AK.M23K AK.M26K AK.MCAR AK.PAX AK.PNL AK.PS08 AK.PS09 
   AK.PS10 AK.PS12 AK.PTPK AK.R32K AK.RIDG AK.RKAV AK.S31K 
   AK.S32K AK.SAW AK.SCM AK.TGL AK.VRDI AK.WAT6 AT.PMR AT.SIT 
   AV.EDCR AV.EDNW AV.EDSO AV.N25K AV.SPBL AV.SPCG AV.SPCP 
   AV.STLK AV.WACK AV.WAZA CN.BRWY CN.BVCY CN.DAWY CN.PLBC 
   CN.WHY CN.YUK3 IM.IL31 PQ.KLONY PQ.OGILY US.WRAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.62e+23 dyne-cm
  Mw = 5.10 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1      270    53   106
   NP2       65    40    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.62e+23     76     232
    N   0.00e+00     13      81
    P  -5.62e+23      7     349

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.22e+23
       Mxy     1.20e+23
       Mxz    -1.45e+23
       Myy     1.76e+21
       Myz    -9.48e+22
       Mzz     5.20e+23
                                                     
                                                     
                                                     
                                                     
                     -- P ---------                  
                 ------   -------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         -----------################-----------      
        -------##########################------#     
        ----################################--##     
       --########################################    
       -#####################################---#    
       ################   ##################-----    
       ################ T #################------    
        ###############   ################------     
        ################################--------     
         #############################---------      
          -########################-----------       
           ---#################--------------        
             ------------------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.20e+23  -1.45e+23   9.48e+22 
 -1.45e+23  -5.22e+23  -1.20e+23 
  9.48e+22  -1.20e+23   1.76e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20260101065459/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 65
      DIP = 40
     RAKE = 70
       MW = 5.10
       HS = 2.0

The NDK file is 20260101065459.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2026/01/01 06:54:59.0  60.48 -140.29   5.0 5.3 Yukon, Canada
 
 Stations used:
   AK.BAE AK.BESE AK.CRQ AK.DHY AK.DIV AK.DOT AK.EYAK AK.GHO 
   AK.GREN AK.GRES AK.GRIN AK.GRNC AK.HDA AK.HIN AK.ISLE 
   AK.J25K AK.K24K AK.KHIT AK.KIAG AK.KNK AK.L26K AK.LOGN 
   AK.M23K AK.M26K AK.MCAR AK.PAX AK.PNL AK.PS08 AK.PS09 
   AK.PS10 AK.PS12 AK.PTPK AK.R32K AK.RIDG AK.RKAV AK.S31K 
   AK.S32K AK.SAW AK.SCM AK.TGL AK.VRDI AK.WAT6 AT.PMR AT.SIT 
   AV.EDCR AV.EDNW AV.EDSO AV.N25K AV.SPBL AV.SPCG AV.SPCP 
   AV.STLK AV.WACK AV.WAZA CN.BRWY CN.BVCY CN.DAWY CN.PLBC 
   CN.WHY CN.YUK3 IM.IL31 PQ.KLONY PQ.OGILY US.WRAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.62e+23 dyne-cm
  Mw = 5.10 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1      270    53   106
   NP2       65    40    70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.62e+23     76     232
    N   0.00e+00     13      81
    P  -5.62e+23      7     349

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.22e+23
       Mxy     1.20e+23
       Mxz    -1.45e+23
       Myy     1.76e+21
       Myz    -9.48e+22
       Mzz     5.20e+23
                                                     
                                                     
                                                     
                                                     
                     -- P ---------                  
                 ------   -------------              
              ----------------------------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         -----------################-----------      
        -------##########################------#     
        ----################################--##     
       --########################################    
       -#####################################---#    
       ################   ##################-----    
       ################ T #################------    
        ###############   ################------     
        ################################--------     
         #############################---------      
          -########################-----------       
           ---#################--------------        
             ------------------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.20e+23  -1.45e+23   9.48e+22 
 -1.45e+23  -5.22e+23  -1.20e+23 
  9.48e+22  -1.20e+23   1.76e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20260101065459/index.html
	
W-phase Moment Tensor (Mww)
Moment 1.010e+17 N-m
Magnitude 5.27 Mww
Depth 11.5 km
Percent DC 82%
Half Duration 0.50 s
Catalog US
Data Source US
Contributor US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	234	47	74
NP2	77	45	106
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.054e+17	79	71
N	-0.095e+17	11	245
P	-0.959e+17	1	335

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    65    40    70   5.01 0.4878
WVFGRD96    2.0    65    40    70   5.10 0.5401
WVFGRD96    3.0    55    45    60   5.09 0.4793
WVFGRD96    4.0   220    60    45   5.02 0.4252
WVFGRD96    5.0   215    70    35   4.99 0.4191
WVFGRD96    6.0   215    75    35   4.99 0.4227
WVFGRD96    7.0   210    80    30   5.00 0.4304
WVFGRD96    8.0   210    85    30   5.00 0.4391
WVFGRD96    9.0    25    75   -30   5.02 0.4549
WVFGRD96   10.0    25    75   -30   5.05 0.4644
WVFGRD96   11.0    20    65   -35   5.07 0.4769
WVFGRD96   12.0    20    60   -35   5.09 0.4879
WVFGRD96   13.0    20    60   -35   5.10 0.4969
WVFGRD96   14.0    20    60   -35   5.11 0.5034
WVFGRD96   15.0    20    60   -35   5.12 0.5073
WVFGRD96   16.0    20    60   -35   5.13 0.5093
WVFGRD96   17.0    20    60   -35   5.13 0.5095
WVFGRD96   18.0    20    60   -40   5.14 0.5089
WVFGRD96   19.0    20    60   -40   5.15 0.5073
WVFGRD96   20.0    20    60   -40   5.17 0.4970
WVFGRD96   21.0    20    60   -40   5.18 0.4929
WVFGRD96   22.0    15    55   -45   5.19 0.4883
WVFGRD96   23.0    15    55   -45   5.20 0.4830
WVFGRD96   24.0    15    55   -45   5.21 0.4768
WVFGRD96   25.0    15    55   -45   5.21 0.4701
WVFGRD96   26.0    15    50   -40   5.23 0.4636
WVFGRD96   27.0    15    50   -40   5.23 0.4566
WVFGRD96   28.0    15    50   -40   5.24 0.4488
WVFGRD96   29.0    15    50   -40   5.25 0.4420

The best solution is

WVFGRD96    2.0    65    40    70   5.10 0.5401

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Fri Jan 2 08:38:38 EST 2026