The ANSS event ID is us7000rlum and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000rlum/executive.
2026/01/01 06:54:59 60.479 -140.293 5.0 5.3 Yukon, Canada
USGS/SLU Moment Tensor Solution
ENS 2026/01/01 06:54:59.0 60.48 -140.29 5.0 5.3 Yukon, Canada
Stations used:
AK.BAE AK.BESE AK.CRQ AK.DHY AK.DIV AK.DOT AK.EYAK AK.GHO
AK.GREN AK.GRES AK.GRIN AK.GRNC AK.HDA AK.HIN AK.ISLE
AK.J25K AK.K24K AK.KHIT AK.KIAG AK.KNK AK.L26K AK.LOGN
AK.M23K AK.M26K AK.MCAR AK.PAX AK.PNL AK.PS08 AK.PS09
AK.PS10 AK.PS12 AK.PTPK AK.R32K AK.RIDG AK.RKAV AK.S31K
AK.S32K AK.SAW AK.SCM AK.TGL AK.VRDI AK.WAT6 AT.PMR AT.SIT
AV.EDCR AV.EDNW AV.EDSO AV.N25K AV.SPBL AV.SPCG AV.SPCP
AV.STLK AV.WACK AV.WAZA CN.BRWY CN.BVCY CN.DAWY CN.PLBC
CN.WHY CN.YUK3 IM.IL31 PQ.KLONY PQ.OGILY US.WRAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.62e+23 dyne-cm
Mw = 5.10
Z = 2 km
Plane Strike Dip Rake
NP1 270 53 106
NP2 65 40 70
Principal Axes:
Axis Value Plunge Azimuth
T 5.62e+23 76 232
N 0.00e+00 13 81
P -5.62e+23 7 349
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.22e+23
Mxy 1.20e+23
Mxz -1.45e+23
Myy 1.76e+21
Myz -9.48e+22
Mzz 5.20e+23
-- P ---------
------ -------------
----------------------------
------------------------------
----------------------------------
------------------------------------
-----------################-----------
-------##########################------#
----################################--##
--########################################
-#####################################---#
################ ##################-----
################ T #################------
############### ################------
################################--------
#############################---------
-########################-----------
---#################--------------
------------------------------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
5.20e+23 -1.45e+23 9.48e+22
-1.45e+23 -5.22e+23 -1.20e+23
9.48e+22 -1.20e+23 1.76e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20260101065459/index.html
|
STK = 65
DIP = 40
RAKE = 70
MW = 5.10
HS = 2.0
The NDK file is 20260101065459.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2026/01/01 06:54:59.0 60.48 -140.29 5.0 5.3 Yukon, Canada
Stations used:
AK.BAE AK.BESE AK.CRQ AK.DHY AK.DIV AK.DOT AK.EYAK AK.GHO
AK.GREN AK.GRES AK.GRIN AK.GRNC AK.HDA AK.HIN AK.ISLE
AK.J25K AK.K24K AK.KHIT AK.KIAG AK.KNK AK.L26K AK.LOGN
AK.M23K AK.M26K AK.MCAR AK.PAX AK.PNL AK.PS08 AK.PS09
AK.PS10 AK.PS12 AK.PTPK AK.R32K AK.RIDG AK.RKAV AK.S31K
AK.S32K AK.SAW AK.SCM AK.TGL AK.VRDI AK.WAT6 AT.PMR AT.SIT
AV.EDCR AV.EDNW AV.EDSO AV.N25K AV.SPBL AV.SPCG AV.SPCP
AV.STLK AV.WACK AV.WAZA CN.BRWY CN.BVCY CN.DAWY CN.PLBC
CN.WHY CN.YUK3 IM.IL31 PQ.KLONY PQ.OGILY US.WRAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.62e+23 dyne-cm
Mw = 5.10
Z = 2 km
Plane Strike Dip Rake
NP1 270 53 106
NP2 65 40 70
Principal Axes:
Axis Value Plunge Azimuth
T 5.62e+23 76 232
N 0.00e+00 13 81
P -5.62e+23 7 349
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.22e+23
Mxy 1.20e+23
Mxz -1.45e+23
Myy 1.76e+21
Myz -9.48e+22
Mzz 5.20e+23
-- P ---------
------ -------------
----------------------------
------------------------------
----------------------------------
------------------------------------
-----------################-----------
-------##########################------#
----################################--##
--########################################
-#####################################---#
################ ##################-----
################ T #################------
############### ################------
################################--------
#############################---------
-########################-----------
---#################--------------
------------------------------
----------------------------
----------------------
--------------
Global CMT Convention Moment Tensor:
R T P
5.20e+23 -1.45e+23 9.48e+22
-1.45e+23 -5.22e+23 -1.20e+23
9.48e+22 -1.20e+23 1.76e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20260101065459/index.html
|
W-phase Moment Tensor (Mww) Moment 1.010e+17 N-m Magnitude 5.27 Mww Depth 11.5 km Percent DC 82% Half Duration 0.50 s Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 234 47 74 NP2 77 45 106 Principal Axes Axis Value Plunge Azimuth T 1.054e+17 79 71 N -0.095e+17 11 245 P -0.959e+17 1 335 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 65 40 70 5.01 0.4878
WVFGRD96 2.0 65 40 70 5.10 0.5401
WVFGRD96 3.0 55 45 60 5.09 0.4793
WVFGRD96 4.0 220 60 45 5.02 0.4252
WVFGRD96 5.0 215 70 35 4.99 0.4191
WVFGRD96 6.0 215 75 35 4.99 0.4227
WVFGRD96 7.0 210 80 30 5.00 0.4304
WVFGRD96 8.0 210 85 30 5.00 0.4391
WVFGRD96 9.0 25 75 -30 5.02 0.4549
WVFGRD96 10.0 25 75 -30 5.05 0.4644
WVFGRD96 11.0 20 65 -35 5.07 0.4769
WVFGRD96 12.0 20 60 -35 5.09 0.4879
WVFGRD96 13.0 20 60 -35 5.10 0.4969
WVFGRD96 14.0 20 60 -35 5.11 0.5034
WVFGRD96 15.0 20 60 -35 5.12 0.5073
WVFGRD96 16.0 20 60 -35 5.13 0.5093
WVFGRD96 17.0 20 60 -35 5.13 0.5095
WVFGRD96 18.0 20 60 -40 5.14 0.5089
WVFGRD96 19.0 20 60 -40 5.15 0.5073
WVFGRD96 20.0 20 60 -40 5.17 0.4970
WVFGRD96 21.0 20 60 -40 5.18 0.4929
WVFGRD96 22.0 15 55 -45 5.19 0.4883
WVFGRD96 23.0 15 55 -45 5.20 0.4830
WVFGRD96 24.0 15 55 -45 5.21 0.4768
WVFGRD96 25.0 15 55 -45 5.21 0.4701
WVFGRD96 26.0 15 50 -40 5.23 0.4636
WVFGRD96 27.0 15 50 -40 5.23 0.4566
WVFGRD96 28.0 15 50 -40 5.24 0.4488
WVFGRD96 29.0 15 50 -40 5.25 0.4420
The best solution is
WVFGRD96 2.0 65 40 70 5.10 0.5401
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00