The ANSS event ID is us6000rsy1 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000rsy1/executive.
2025/12/06 20:41:49 60.359 -139.546 10.0 7.0 Alaska-Yukon
USGS/SLU Moment Tensor Solution
ENS 2025/12/06 20:41:49.0 60.36 -139.55 10.0 7.0 Alaska-Yukon
Stations used:
AK.BAE AK.BERG AK.BESE AK.CCB AK.CUT AK.DHY AK.FID AK.FIRE
AK.GHO AK.GLI AK.GREN AK.GRES AK.GRIN AK.HDA AK.J25K
AK.K24K AK.KHIT AK.KIAG AK.KNK AK.L26K AK.M23K AK.M26K
AK.MCAR AK.MCK AK.MESA AK.POKR AK.PPD AK.PS08 AK.PS09
AK.PS10 AK.PS12 AK.PWL AK.R32K AK.RAG AK.RIDG AK.S32K
AK.SKN AK.SSN AK.SWD AK.VMT AK.VRDI AK.WRH AT.PMR AV.EDES
AV.EDSO AV.N25K CN.DAWY CN.HYT CN.PLBC CN.WHY CN.YUK3
PQ.KLONY US.WRAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +80
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.05 n 3
Best Fitting Double Couple
Mo = 1.80e+26 dyne-cm
Mw = 6.77
Z = 16 km
Plane Strike Dip Rake
NP1 55 80 20
NP2 321 70 169
Principal Axes:
Axis Value Plunge Azimuth
T 1.80e+26 21 280
N 0.00e+00 68 81
P -1.80e+26 7 187
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.71e+26
Mxy -4.70e+25
Mxz 3.05e+25
Myy 1.50e+26
Myz -5.72e+25
Mzz 2.10e+25
--------------
----------------------
###-------------------------
#######-----------------------
############----------------------
###############-------------------##
##################---------------#####
#####################-----------########
## ##################-------##########
### T ###################----#############
### ####################################
########################----##############
#####################--------#############
##################-----------###########
###############---------------##########
##########--------------------########
######------------------------######
-----------------------------#####
----------------------------##
---------------------------#
------- ------------
--- P --------
Global CMT Convention Moment Tensor:
R T P
2.10e+25 3.05e+25 5.72e+25
3.05e+25 -1.71e+26 4.70e+25
5.72e+25 4.70e+25 1.50e+26
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251206204149/index.html
|
STK = 55
DIP = 80
RAKE = 20
MW = 6.77
HS = 16.0
The NDK file is 20251206204149.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/12/06 20:41:49.0 60.36 -139.55 10.0 7.0 Alaska-Yukon
Stations used:
AK.BAE AK.BERG AK.BESE AK.CCB AK.CUT AK.DHY AK.FID AK.FIRE
AK.GHO AK.GLI AK.GREN AK.GRES AK.GRIN AK.HDA AK.J25K
AK.K24K AK.KHIT AK.KIAG AK.KNK AK.L26K AK.M23K AK.M26K
AK.MCAR AK.MCK AK.MESA AK.POKR AK.PPD AK.PS08 AK.PS09
AK.PS10 AK.PS12 AK.PWL AK.R32K AK.RAG AK.RIDG AK.S32K
AK.SKN AK.SSN AK.SWD AK.VMT AK.VRDI AK.WRH AT.PMR AV.EDES
AV.EDSO AV.N25K CN.DAWY CN.HYT CN.PLBC CN.WHY CN.YUK3
PQ.KLONY US.WRAK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +80
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.05 n 3
Best Fitting Double Couple
Mo = 1.80e+26 dyne-cm
Mw = 6.77
Z = 16 km
Plane Strike Dip Rake
NP1 55 80 20
NP2 321 70 169
Principal Axes:
Axis Value Plunge Azimuth
T 1.80e+26 21 280
N 0.00e+00 68 81
P -1.80e+26 7 187
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.71e+26
Mxy -4.70e+25
Mxz 3.05e+25
Myy 1.50e+26
Myz -5.72e+25
Mzz 2.10e+25
--------------
----------------------
###-------------------------
#######-----------------------
############----------------------
###############-------------------##
##################---------------#####
#####################-----------########
## ##################-------##########
### T ###################----#############
### ####################################
########################----##############
#####################--------#############
##################-----------###########
###############---------------##########
##########--------------------########
######------------------------######
-----------------------------#####
----------------------------##
---------------------------#
------- ------------
--- P --------
Global CMT Convention Moment Tensor:
R T P
2.10e+25 3.05e+25 5.72e+25
3.05e+25 -1.71e+26 4.70e+25
5.72e+25 4.70e+25 1.50e+26
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251206204149/index.html
|
W-phase Moment Tensor (Mww) Moment 3.537e+19 N-m Magnitude 6.97 Mww Depth 11.5 km Percent DC 69% Half Duration 7.50 s Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 314 64 146 NP2 61 60 31 Principal Axes Axis Value Plunge Azimuth T 3.210e+19 42 276 N 0.581e+19 48 101 P -3.792e+19 2 8 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 60 70 35 6.70 0.4163
WVFGRD96 2.0 60 65 30 6.71 0.4359
WVFGRD96 3.0 60 65 30 6.72 0.4447
WVFGRD96 4.0 55 75 25 6.70 0.4507
WVFGRD96 5.0 55 75 20 6.70 0.4543
WVFGRD96 6.0 55 75 20 6.70 0.4565
WVFGRD96 7.0 55 80 25 6.71 0.4599
WVFGRD96 8.0 55 80 20 6.72 0.4632
WVFGRD96 9.0 55 80 20 6.73 0.4664
WVFGRD96 10.0 55 80 25 6.74 0.4695
WVFGRD96 11.0 55 80 25 6.74 0.4715
WVFGRD96 12.0 55 80 25 6.75 0.4727
WVFGRD96 13.0 55 80 20 6.76 0.4733
WVFGRD96 14.0 55 80 20 6.76 0.4743
WVFGRD96 15.0 55 80 20 6.77 0.4748
WVFGRD96 16.0 55 80 20 6.77 0.4748
WVFGRD96 17.0 55 80 20 6.78 0.4744
WVFGRD96 18.0 235 90 -20 6.79 0.4680
WVFGRD96 19.0 55 85 20 6.80 0.4720
WVFGRD96 20.0 55 80 20 6.81 0.4704
WVFGRD96 21.0 55 80 20 6.81 0.4683
WVFGRD96 22.0 55 80 20 6.82 0.4657
WVFGRD96 23.0 55 80 20 6.83 0.4626
WVFGRD96 24.0 230 90 -25 6.82 0.4550
WVFGRD96 25.0 230 90 -20 6.83 0.4517
WVFGRD96 26.0 55 80 20 6.84 0.4523
WVFGRD96 27.0 55 80 20 6.85 0.4482
WVFGRD96 28.0 55 80 20 6.86 0.4439
WVFGRD96 29.0 230 90 -20 6.85 0.4359
The best solution is
WVFGRD96 16.0 55 80 20 6.77 0.4748
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +80 rtr taper w 0.1 hp c 0.02 n 3 lp c 0.05 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00