Location

Location ANSS

The ANSS event ID is ak2025xbznhg and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak2025xbznhg/executive.

2025/11/23 20:30:18 59.303 -154.503 143.0 4.1 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/11/23 20:30:18.0  59.30 -154.50 143.0 4.1 Alaska
 
 Stations used:
   AK.HOM AK.N15K AK.N18K AK.O14K AK.O18K AK.O19K AK.Q19K 
   AV.ACH AV.RED AV.SPCL AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.5 -30 o DIST/3.5 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.78e+22 dyne-cm
  Mw = 4.10 
  Z  = 168 km
  Plane   Strike  Dip  Rake
   NP1      170    80   -35
   NP2      267    56   -168
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.78e+22     16     223
    N   0.00e+00     54     336
    P  -1.78e+22     31     123

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.01e+21
       Mxy     1.41e+22
       Mxz     8.27e+20
       Myy    -1.52e+21
       Myz    -9.88e+21
       Mzz    -3.49e+21
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 -------###############              
              ----------##################           
             -----------###################          
           -------------#####################        
          --------------######################       
         --------------------------############      
        ---------#######-----------------#######     
        -----############--------------------###     
       ----##############----------------------##    
       --################------------------------    
       ###################-----------------------    
       ###################-----------------------    
        ##################----------------------     
        ###################-----------   -------     
         ##################----------- P ------      
          ####   ###########----------   -----       
           ### T ###########-----------------        
             #   ############--------------          
              ###############-------------           
                 #############---------              
                     ##########----                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.49e+21   8.27e+20   9.88e+21 
  8.27e+20   5.01e+21  -1.41e+22 
  9.88e+21  -1.41e+22  -1.52e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251123203018/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 170
      DIP = 80
     RAKE = -35
       MW = 4.10
       HS = 168.0

The NDK file is 20251123203018.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -30 o DIST/3.5 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   260    75    10   3.27 0.3433
WVFGRD96    4.0    85    85    35   3.37 0.3634
WVFGRD96    6.0    85    90    35   3.39 0.3743
WVFGRD96    8.0   260    85   -35   3.43 0.3736
WVFGRD96   10.0    80    35    -5   3.52 0.3745
WVFGRD96   12.0    80    40    -5   3.52 0.3732
WVFGRD96   14.0    85    40    10   3.54 0.3725
WVFGRD96   16.0    85    40    10   3.55 0.3709
WVFGRD96   18.0    95    40    20   3.57 0.3745
WVFGRD96   20.0    95    40    20   3.59 0.3775
WVFGRD96   22.0    95    40    20   3.61 0.3803
WVFGRD96   24.0    90    40    20   3.63 0.3829
WVFGRD96   26.0    90    40    15   3.65 0.3836
WVFGRD96   28.0    90    40    15   3.67 0.3820
WVFGRD96   30.0    90    40    15   3.69 0.3761
WVFGRD96   32.0    90    40    15   3.70 0.3657
WVFGRD96   34.0    90    40    15   3.71 0.3506
WVFGRD96   36.0    90    45    15   3.72 0.3315
WVFGRD96   38.0    90    50    20   3.72 0.3115
WVFGRD96   40.0    95    40    25   3.80 0.2787
WVFGRD96   42.0   100    60    40   3.76 0.2660
WVFGRD96   44.0   100    65    45   3.76 0.2570
WVFGRD96   46.0   100    65    45   3.77 0.2489
WVFGRD96   48.0   110    55    55   3.81 0.2412
WVFGRD96   50.0   115    55    65   3.82 0.2354
WVFGRD96   52.0   110    60    60   3.82 0.2310
WVFGRD96   54.0   110    60    60   3.83 0.2264
WVFGRD96   56.0   110    60    60   3.84 0.2216
WVFGRD96   58.0   115    55    65   3.86 0.2189
WVFGRD96   60.0   110    60    60   3.86 0.2155
WVFGRD96   62.0   110    60    60   3.86 0.2145
WVFGRD96   64.0   195    50    15   3.83 0.2244
WVFGRD96   66.0   195    45    20   3.86 0.2405
WVFGRD96   68.0   195    45    20   3.88 0.2575
WVFGRD96   70.0   190    50    15   3.89 0.2754
WVFGRD96   72.0   175    65    -5   3.88 0.3019
WVFGRD96   74.0   175    65    -5   3.90 0.3393
WVFGRD96   76.0   175    65    -5   3.92 0.3769
WVFGRD96   78.0   175    70   -25   3.92 0.4143
WVFGRD96   80.0   175    70   -30   3.94 0.4549
WVFGRD96   82.0   175    75   -30   3.95 0.4938
WVFGRD96   84.0   175    75   -30   3.96 0.5284
WVFGRD96   86.0   175    75   -35   3.97 0.5567
WVFGRD96   88.0   175    75   -35   3.98 0.5790
WVFGRD96   90.0   175    75   -35   3.99 0.5986
WVFGRD96   92.0    -5    90    25   3.98 0.6142
WVFGRD96   94.0   175    80   -30   3.99 0.6336
WVFGRD96   96.0    -5    90    25   3.99 0.6339
WVFGRD96   98.0    -5    90    25   4.00 0.6379
WVFGRD96  100.0   175    80   -30   4.01 0.6524
WVFGRD96  102.0   175    80   -30   4.01 0.6563
WVFGRD96  104.0   175    80   -30   4.02 0.6604
WVFGRD96  106.0   175    80   -30   4.02 0.6643
WVFGRD96  108.0   175    80   -30   4.02 0.6675
WVFGRD96  110.0   175    80   -30   4.03 0.6707
WVFGRD96  112.0   175    80   -30   4.03 0.6748
WVFGRD96  114.0   175    80   -30   4.03 0.6779
WVFGRD96  116.0   175    80   -30   4.04 0.6815
WVFGRD96  118.0   175    80   -30   4.04 0.6841
WVFGRD96  120.0   175    80   -30   4.04 0.6859
WVFGRD96  122.0   175    80   -30   4.05 0.6895
WVFGRD96  124.0   175    80   -30   4.05 0.6918
WVFGRD96  126.0   175    80   -30   4.05 0.6941
WVFGRD96  128.0   175    80   -30   4.06 0.6955
WVFGRD96  130.0   175    80   -30   4.06 0.6982
WVFGRD96  132.0   175    80   -30   4.06 0.7002
WVFGRD96  134.0   175    80   -30   4.07 0.7008
WVFGRD96  136.0   175    80   -30   4.07 0.7026
WVFGRD96  138.0   175    80   -30   4.07 0.7039
WVFGRD96  140.0   175    80   -30   4.08 0.7048
WVFGRD96  142.0   175    80   -30   4.08 0.7055
WVFGRD96  144.0   175    80   -30   4.08 0.7068
WVFGRD96  146.0   175    80   -30   4.08 0.7065
WVFGRD96  148.0   175    80   -30   4.09 0.7077
WVFGRD96  150.0   175    80   -30   4.09 0.7076
WVFGRD96  152.0   175    80   -30   4.09 0.7074
WVFGRD96  154.0   175    80   -30   4.10 0.7076
WVFGRD96  156.0   170    80   -35   4.09 0.7087
WVFGRD96  158.0   170    80   -35   4.09 0.7086
WVFGRD96  160.0   170    80   -35   4.09 0.7104
WVFGRD96  162.0   170    80   -35   4.09 0.7095
WVFGRD96  164.0   170    80   -35   4.10 0.7112
WVFGRD96  166.0   170    80   -35   4.10 0.7107
WVFGRD96  168.0   170    80   -35   4.10 0.7113
WVFGRD96  170.0   170    80   -35   4.11 0.7111
WVFGRD96  172.0   170    80   -35   4.11 0.7107
WVFGRD96  174.0   170    80   -35   4.11 0.7105
WVFGRD96  176.0   170    80   -35   4.11 0.7098
WVFGRD96  178.0   170    80   -35   4.11 0.7095

The best solution is

WVFGRD96  168.0   170    80   -35   4.10 0.7113

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -30 o DIST/3.5 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sun Nov 23 19:06:06 CST 2025