The ANSS event ID is ak2025wzudcl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak2025wzudcl/executive.
2025/11/22 15:38:53 61.195 -151.242 61.7 4.9 Alaska
USGS/SLU Moment Tensor Solution
ENS 2025/11/22 15:38:53.0 61.19 -151.24 61.7 4.9 Alaska
Stations used:
AK.BAE AK.BPAW AK.BRLK AK.CAPN AK.CAST AK.CUT AK.FIRE
AK.GHO AK.GLB AK.GLI AK.HOM AK.J19K AK.J20K AK.KNK AK.L19K
AK.L22K AK.N18K AK.O18K AK.O19K AK.PPLA AK.PWL AK.RC01
AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 AT.PMR
AV.RED AV.SPCL AV.STLK
Filtering commands used:
cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.35e+23 dyne-cm
Mw = 4.95
Z = 71 km
Plane Strike Dip Rake
NP1 80 70 45
NP2 331 48 153
Principal Axes:
Axis Value Plunge Azimuth
T 3.35e+23 45 305
N 0.00e+00 42 99
P -3.35e+23 13 201
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.24e+23
Mxy -1.83e+23
Mxz 1.65e+23
Myy 7.15e+22
Myz -1.11e+23
Mzz 1.52e+23
--------------
#####-----------------
#############---------------
#################-------------
#####################-------------
########################------------
######## ###############------------
######### T ################------------
######### #################-----------
###############################----------#
################################------####
#################################--#######
###############################--#########
--#####################---------########
---------------------------------#######
--------------------------------######
-------------------------------#####
-----------------------------#####
---------------------------###
------ ----------------###
--- P ---------------#
------------
Global CMT Convention Moment Tensor:
R T P
1.52e+23 1.65e+23 1.11e+23
1.65e+23 -2.24e+23 1.83e+23
1.11e+23 1.83e+23 7.15e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251122153853/index.html
|
STK = 80
DIP = 70
RAKE = 45
MW = 4.95
HS = 71.0
The NDK file is 20251122153853.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/11/22 15:38:53.0 61.19 -151.24 61.7 4.9 Alaska
Stations used:
AK.BAE AK.BPAW AK.BRLK AK.CAPN AK.CAST AK.CUT AK.FIRE
AK.GHO AK.GLB AK.GLI AK.HOM AK.J19K AK.J20K AK.KNK AK.L19K
AK.L22K AK.N18K AK.O18K AK.O19K AK.PPLA AK.PWL AK.RC01
AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 AT.PMR
AV.RED AV.SPCL AV.STLK
Filtering commands used:
cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.35e+23 dyne-cm
Mw = 4.95
Z = 71 km
Plane Strike Dip Rake
NP1 80 70 45
NP2 331 48 153
Principal Axes:
Axis Value Plunge Azimuth
T 3.35e+23 45 305
N 0.00e+00 42 99
P -3.35e+23 13 201
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.24e+23
Mxy -1.83e+23
Mxz 1.65e+23
Myy 7.15e+22
Myz -1.11e+23
Mzz 1.52e+23
--------------
#####-----------------
#############---------------
#################-------------
#####################-------------
########################------------
######## ###############------------
######### T ################------------
######### #################-----------
###############################----------#
################################------####
#################################--#######
###############################--#########
--#####################---------########
---------------------------------#######
--------------------------------######
-------------------------------#####
-----------------------------#####
---------------------------###
------ ----------------###
--- P ---------------#
------------
Global CMT Convention Moment Tensor:
R T P
1.52e+23 1.65e+23 1.11e+23
1.65e+23 -2.24e+23 1.83e+23
1.11e+23 1.83e+23 7.15e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251122153853/index.html
|
W-phase Moment Tensor (Mww) Moment 4.038e+16 N-m Magnitude 5.00 Mww Depth 90.5 km Percent DC 85% Half Duration 0.50 s Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 341 56 171 NP2 76 83 34 Principal Axes Axis Value Plunge Azimuth T 4.182e+16 29 304 N -0.306e+16 55 87 P -3.877e+16 18 204 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 310 45 -75 4.15 0.2048
WVFGRD96 4.0 170 55 10 4.15 0.2378
WVFGRD96 6.0 170 65 20 4.21 0.2620
WVFGRD96 8.0 170 60 20 4.29 0.2735
WVFGRD96 10.0 170 60 20 4.33 0.2749
WVFGRD96 12.0 170 65 20 4.36 0.2707
WVFGRD96 14.0 170 65 20 4.39 0.2607
WVFGRD96 16.0 295 90 -25 4.47 0.2579
WVFGRD96 18.0 110 90 30 4.49 0.2582
WVFGRD96 20.0 290 90 -30 4.51 0.2598
WVFGRD96 22.0 110 90 35 4.53 0.2641
WVFGRD96 24.0 260 75 -35 4.53 0.2777
WVFGRD96 26.0 260 75 -35 4.55 0.2918
WVFGRD96 28.0 260 80 -35 4.57 0.3071
WVFGRD96 30.0 80 90 40 4.60 0.3257
WVFGRD96 32.0 80 90 40 4.62 0.3485
WVFGRD96 34.0 80 85 40 4.64 0.3717
WVFGRD96 36.0 80 80 40 4.66 0.3962
WVFGRD96 38.0 80 75 35 4.68 0.4220
WVFGRD96 40.0 80 75 45 4.78 0.4516
WVFGRD96 42.0 80 75 45 4.80 0.4601
WVFGRD96 44.0 80 75 45 4.82 0.4658
WVFGRD96 46.0 80 75 45 4.84 0.4742
WVFGRD96 48.0 80 75 45 4.85 0.4840
WVFGRD96 50.0 80 75 45 4.86 0.4936
WVFGRD96 52.0 80 75 45 4.88 0.5029
WVFGRD96 54.0 80 75 45 4.89 0.5114
WVFGRD96 56.0 80 70 45 4.90 0.5180
WVFGRD96 58.0 80 70 45 4.91 0.5248
WVFGRD96 60.0 80 70 45 4.92 0.5299
WVFGRD96 62.0 80 70 45 4.92 0.5350
WVFGRD96 64.0 80 70 45 4.93 0.5384
WVFGRD96 66.0 80 70 45 4.94 0.5432
WVFGRD96 67.0 80 70 45 4.94 0.5438
WVFGRD96 68.0 80 70 45 4.94 0.5458
WVFGRD96 69.0 80 70 45 4.94 0.5451
WVFGRD96 70.0 80 70 45 4.95 0.5465
WVFGRD96 71.0 80 70 45 4.95 0.5472
WVFGRD96 72.0 80 70 45 4.95 0.5460
WVFGRD96 73.0 80 70 45 4.95 0.5463
WVFGRD96 74.0 80 70 45 4.95 0.5455
WVFGRD96 76.0 75 70 50 4.97 0.5439
WVFGRD96 78.0 75 70 50 4.97 0.5428
WVFGRD96 80.0 75 70 50 4.97 0.5399
WVFGRD96 82.0 75 70 45 4.97 0.5360
WVFGRD96 84.0 75 70 45 4.97 0.5326
WVFGRD96 86.0 75 70 45 4.97 0.5264
WVFGRD96 88.0 75 70 45 4.98 0.5227
WVFGRD96 90.0 75 70 45 4.98 0.5165
WVFGRD96 92.0 75 70 45 4.98 0.5104
WVFGRD96 94.0 75 70 45 4.98 0.5036
WVFGRD96 96.0 75 70 45 4.98 0.4966
WVFGRD96 98.0 75 70 45 4.98 0.4910
The best solution is
WVFGRD96 71.0 80 70 45 4.95 0.5472
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00