Location

Location ANSS

The ANSS event ID is ak2025wzudcl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak2025wzudcl/executive.

2025/11/22 15:38:53 61.195 -151.242 61.7 4.9 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/11/22 15:38:53.0  61.19 -151.24  61.7 4.9 Alaska
 
 Stations used:
   AK.BAE AK.BPAW AK.BRLK AK.CAPN AK.CAST AK.CUT AK.FIRE 
   AK.GHO AK.GLB AK.GLI AK.HOM AK.J19K AK.J20K AK.KNK AK.L19K 
   AK.L22K AK.N18K AK.O18K AK.O19K AK.PPLA AK.PWL AK.RC01 
   AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 AT.PMR 
   AV.RED AV.SPCL AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.35e+23 dyne-cm
  Mw = 4.95 
  Z  = 71 km
  Plane   Strike  Dip  Rake
   NP1       80    70    45
   NP2      331    48   153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.35e+23     45     305
    N   0.00e+00     42      99
    P  -3.35e+23     13     201

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.24e+23
       Mxy    -1.83e+23
       Mxz     1.65e+23
       Myy     7.15e+22
       Myz    -1.11e+23
       Mzz     1.52e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #####-----------------              
              #############---------------           
             #################-------------          
           #####################-------------        
          ########################------------       
         ########   ###############------------      
        ######### T ################------------     
        #########   #################-----------     
       ###############################----------#    
       ################################------####    
       #################################--#######    
       ###############################--#########    
        --#####################---------########     
        ---------------------------------#######     
         --------------------------------######      
          -------------------------------#####       
           -----------------------------#####        
             ---------------------------###          
              ------   ----------------###           
                 --- P ---------------#              
                       ------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.52e+23   1.65e+23   1.11e+23 
  1.65e+23  -2.24e+23   1.83e+23 
  1.11e+23   1.83e+23   7.15e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251122153853/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 80
      DIP = 70
     RAKE = 45
       MW = 4.95
       HS = 71.0

The NDK file is 20251122153853.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2025/11/22 15:38:53.0  61.19 -151.24  61.7 4.9 Alaska
 
 Stations used:
   AK.BAE AK.BPAW AK.BRLK AK.CAPN AK.CAST AK.CUT AK.FIRE 
   AK.GHO AK.GLB AK.GLI AK.HOM AK.J19K AK.J20K AK.KNK AK.L19K 
   AK.L22K AK.N18K AK.O18K AK.O19K AK.PPLA AK.PWL AK.RC01 
   AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 AT.PMR 
   AV.RED AV.SPCL AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.35e+23 dyne-cm
  Mw = 4.95 
  Z  = 71 km
  Plane   Strike  Dip  Rake
   NP1       80    70    45
   NP2      331    48   153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.35e+23     45     305
    N   0.00e+00     42      99
    P  -3.35e+23     13     201

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.24e+23
       Mxy    -1.83e+23
       Mxz     1.65e+23
       Myy     7.15e+22
       Myz    -1.11e+23
       Mzz     1.52e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 #####-----------------              
              #############---------------           
             #################-------------          
           #####################-------------        
          ########################------------       
         ########   ###############------------      
        ######### T ################------------     
        #########   #################-----------     
       ###############################----------#    
       ################################------####    
       #################################--#######    
       ###############################--#########    
        --#####################---------########     
        ---------------------------------#######     
         --------------------------------######      
          -------------------------------#####       
           -----------------------------#####        
             ---------------------------###          
              ------   ----------------###           
                 --- P ---------------#              
                       ------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.52e+23   1.65e+23   1.11e+23 
  1.65e+23  -2.24e+23   1.83e+23 
  1.11e+23   1.83e+23   7.15e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251122153853/index.html
	
W-phase Moment Tensor (Mww)
Moment 4.038e+16 N-m
Magnitude 5.00 Mww
Depth 90.5 km
Percent DC 85%
Half Duration 0.50 s
Catalog US
Data Source US
Contributor US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	341	56	171
NP2	76	83	34
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.182e+16	29	304
N	-0.306e+16	55	87
P	-3.877e+16	18	204

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   310    45   -75   4.15 0.2048
WVFGRD96    4.0   170    55    10   4.15 0.2378
WVFGRD96    6.0   170    65    20   4.21 0.2620
WVFGRD96    8.0   170    60    20   4.29 0.2735
WVFGRD96   10.0   170    60    20   4.33 0.2749
WVFGRD96   12.0   170    65    20   4.36 0.2707
WVFGRD96   14.0   170    65    20   4.39 0.2607
WVFGRD96   16.0   295    90   -25   4.47 0.2579
WVFGRD96   18.0   110    90    30   4.49 0.2582
WVFGRD96   20.0   290    90   -30   4.51 0.2598
WVFGRD96   22.0   110    90    35   4.53 0.2641
WVFGRD96   24.0   260    75   -35   4.53 0.2777
WVFGRD96   26.0   260    75   -35   4.55 0.2918
WVFGRD96   28.0   260    80   -35   4.57 0.3071
WVFGRD96   30.0    80    90    40   4.60 0.3257
WVFGRD96   32.0    80    90    40   4.62 0.3485
WVFGRD96   34.0    80    85    40   4.64 0.3717
WVFGRD96   36.0    80    80    40   4.66 0.3962
WVFGRD96   38.0    80    75    35   4.68 0.4220
WVFGRD96   40.0    80    75    45   4.78 0.4516
WVFGRD96   42.0    80    75    45   4.80 0.4601
WVFGRD96   44.0    80    75    45   4.82 0.4658
WVFGRD96   46.0    80    75    45   4.84 0.4742
WVFGRD96   48.0    80    75    45   4.85 0.4840
WVFGRD96   50.0    80    75    45   4.86 0.4936
WVFGRD96   52.0    80    75    45   4.88 0.5029
WVFGRD96   54.0    80    75    45   4.89 0.5114
WVFGRD96   56.0    80    70    45   4.90 0.5180
WVFGRD96   58.0    80    70    45   4.91 0.5248
WVFGRD96   60.0    80    70    45   4.92 0.5299
WVFGRD96   62.0    80    70    45   4.92 0.5350
WVFGRD96   64.0    80    70    45   4.93 0.5384
WVFGRD96   66.0    80    70    45   4.94 0.5432
WVFGRD96   67.0    80    70    45   4.94 0.5438
WVFGRD96   68.0    80    70    45   4.94 0.5458
WVFGRD96   69.0    80    70    45   4.94 0.5451
WVFGRD96   70.0    80    70    45   4.95 0.5465
WVFGRD96   71.0    80    70    45   4.95 0.5472
WVFGRD96   72.0    80    70    45   4.95 0.5460
WVFGRD96   73.0    80    70    45   4.95 0.5463
WVFGRD96   74.0    80    70    45   4.95 0.5455
WVFGRD96   76.0    75    70    50   4.97 0.5439
WVFGRD96   78.0    75    70    50   4.97 0.5428
WVFGRD96   80.0    75    70    50   4.97 0.5399
WVFGRD96   82.0    75    70    45   4.97 0.5360
WVFGRD96   84.0    75    70    45   4.97 0.5326
WVFGRD96   86.0    75    70    45   4.97 0.5264
WVFGRD96   88.0    75    70    45   4.98 0.5227
WVFGRD96   90.0    75    70    45   4.98 0.5165
WVFGRD96   92.0    75    70    45   4.98 0.5104
WVFGRD96   94.0    75    70    45   4.98 0.5036
WVFGRD96   96.0    75    70    45   4.98 0.4966
WVFGRD96   98.0    75    70    45   4.98 0.4910

The best solution is

WVFGRD96   71.0    80    70    45   4.95 0.5472

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sat Nov 22 10:27:20 CST 2025