Location

Location ANSS

The ANSS event ID is ak025dxe5mlz and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak025dxe5mlz/executive.

2025/10/30 17:33:14 59.631 -150.233 23.6 5.4 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/10/30 17:33:14.0  59.63 -150.23  23.6 5.4 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.GLI 
   AK.HIN AK.KLU AK.KNK AK.L22K AK.O18K AK.O19K AK.P23K AK.PWL 
   AK.RC01 AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD AK.WAT6 
   AT.PMR AV.RED AV.SPCL AV.WAZA II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.81e+23 dyne-cm
  Mw = 5.23 
  Z  = 39 km
  Plane   Strike  Dip  Rake
   NP1      165    60   -50
   NP2      286    48   -138
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.81e+23      7     228
    N   0.00e+00     34     322
    P  -8.81e+23     55     128

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.84e+23
       Mxy     5.71e+23
       Mxz     1.86e+23
       Myy     3.00e+23
       Myz    -3.99e+23
       Mzz    -5.84e+23
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ----##################              
              -------#####################           
             -------#######################          
           ---------#########################        
          ------###-----------################       
         ---#######----------------############      
        -##########--------------------#########     
        ###########----------------------#######     
       #############-----------------------######    
       #############-------------------------####    
       #############--------------------------###    
       ##############------------   -----------##    
        #############------------ P ------------     
        ##############-----------   ------------     
         ##############------------------------      
          ##############----------------------       
           #   ##########--------------------        
             T ###########-----------------          
               #############--------------           
                 #############---------              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.84e+23   1.86e+23   3.99e+23 
  1.86e+23   2.84e+23  -5.71e+23 
  3.99e+23  -5.71e+23   3.00e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251030173314/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 165
      DIP = 60
     RAKE = -50
       MW = 5.23
       HS = 39.0

The NDK file is 20251030173314.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2025/10/30 17:33:14.0  59.63 -150.23  23.6 5.4 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.GLI 
   AK.HIN AK.KLU AK.KNK AK.L22K AK.O18K AK.O19K AK.P23K AK.PWL 
   AK.RC01 AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.SWD AK.WAT6 
   AT.PMR AV.RED AV.SPCL AV.WAZA II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 8.81e+23 dyne-cm
  Mw = 5.23 
  Z  = 39 km
  Plane   Strike  Dip  Rake
   NP1      165    60   -50
   NP2      286    48   -138
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.81e+23      7     228
    N   0.00e+00     34     322
    P  -8.81e+23     55     128

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.84e+23
       Mxy     5.71e+23
       Mxz     1.86e+23
       Myy     3.00e+23
       Myz    -3.99e+23
       Mzz    -5.84e+23
                                                     
                                                     
                                                     
                                                     
                     -#############                  
                 ----##################              
              -------#####################           
             -------#######################          
           ---------#########################        
          ------###-----------################       
         ---#######----------------############      
        -##########--------------------#########     
        ###########----------------------#######     
       #############-----------------------######    
       #############-------------------------####    
       #############--------------------------###    
       ##############------------   -----------##    
        #############------------ P ------------     
        ##############-----------   ------------     
         ##############------------------------      
          ##############----------------------       
           #   ##########--------------------        
             T ###########-----------------          
               #############--------------           
                 #############---------              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.84e+23   1.86e+23   3.99e+23 
  1.86e+23   2.84e+23  -5.71e+23 
  3.99e+23  -5.71e+23   3.00e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251030173314/index.html
	
W-phase Moment Tensor (Mww)
Moment 1.412e+17 N-m
Magnitude 5.37 Mww
Depth 35.5 km
Percent DC 92%
Half Duration 0.50 s
Catalog US
Data Source US
Contributor US

Nodal Planes
Plane	Strike	Dip	Rake
NP1	291	46	-133
NP2	164	58	-54
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.382e+17	7	230
N	0.057e+17	30	324
P	-1.439e+17	59	128

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    45    45   -90   4.51 0.1503
WVFGRD96    2.0    45    45   -90   4.66 0.2079
WVFGRD96    3.0   310    35    75   4.70 0.2037
WVFGRD96    4.0   290    40    50   4.69 0.2048
WVFGRD96    5.0    20    80    65   4.71 0.2150
WVFGRD96    6.0    15    80    65   4.73 0.2433
WVFGRD96    7.0    15    80    60   4.75 0.2682
WVFGRD96    8.0    20    75    65   4.83 0.2855
WVFGRD96    9.0    20    75    65   4.85 0.3060
WVFGRD96   10.0    20    75    60   4.87 0.3222
WVFGRD96   11.0    15    70    55   4.89 0.3375
WVFGRD96   12.0    15    70    55   4.91 0.3510
WVFGRD96   13.0    15    65    50   4.92 0.3621
WVFGRD96   14.0    15    65    50   4.94 0.3704
WVFGRD96   15.0    15    70    50   4.95 0.3772
WVFGRD96   16.0    15    70    50   4.97 0.3832
WVFGRD96   17.0    15    70    50   4.98 0.3877
WVFGRD96   18.0    15    70    50   5.00 0.3908
WVFGRD96   19.0    15    70    50   5.01 0.3935
WVFGRD96   20.0    15    80    55   5.02 0.3975
WVFGRD96   21.0    15    80    55   5.04 0.4022
WVFGRD96   22.0   175    70   -40   5.05 0.4161
WVFGRD96   23.0   175    70   -40   5.06 0.4297
WVFGRD96   24.0   175    70   -40   5.07 0.4424
WVFGRD96   25.0   170    65   -40   5.08 0.4548
WVFGRD96   26.0   170    65   -40   5.10 0.4671
WVFGRD96   27.0   170    65   -40   5.11 0.4794
WVFGRD96   28.0   170    65   -45   5.12 0.4919
WVFGRD96   29.0   165    55   -40   5.13 0.5030
WVFGRD96   30.0   165    55   -40   5.14 0.5155
WVFGRD96   31.0   165    60   -45   5.15 0.5263
WVFGRD96   32.0   165    60   -45   5.16 0.5362
WVFGRD96   33.0   165    60   -50   5.17 0.5438
WVFGRD96   34.0   165    60   -50   5.18 0.5512
WVFGRD96   35.0   165    60   -50   5.19 0.5555
WVFGRD96   36.0   165    60   -50   5.19 0.5585
WVFGRD96   37.0   165    60   -50   5.20 0.5599
WVFGRD96   38.0   165    60   -50   5.21 0.5596
WVFGRD96   39.0   165    60   -50   5.23 0.5600
WVFGRD96   40.0   160    60   -60   5.31 0.5326
WVFGRD96   41.0   160    60   -55   5.32 0.5358
WVFGRD96   42.0   160    60   -60   5.34 0.5376
WVFGRD96   43.0   160    60   -60   5.35 0.5352
WVFGRD96   44.0   160    60   -60   5.35 0.5324
WVFGRD96   45.0   160    60   -60   5.36 0.5271
WVFGRD96   46.0   160    60   -60   5.37 0.5215
WVFGRD96   47.0   160    60   -60   5.37 0.5146
WVFGRD96   48.0   155    55   -60   5.37 0.5068
WVFGRD96   49.0   160    60   -60   5.38 0.4989
WVFGRD96   50.0   160    60   -60   5.38 0.4900
WVFGRD96   51.0   160    60   -60   5.39 0.4812
WVFGRD96   52.0   160    60   -60   5.39 0.4717
WVFGRD96   53.0   160    60   -60   5.39 0.4618
WVFGRD96   54.0   160    60   -60   5.39 0.4523
WVFGRD96   55.0   160    60   -60   5.39 0.4423
WVFGRD96   56.0   160    60   -60   5.39 0.4334
WVFGRD96   57.0   160    60   -60   5.39 0.4236
WVFGRD96   58.0   160    60   -65   5.39 0.4157
WVFGRD96   59.0   155    55   -65   5.38 0.4079

The best solution is

WVFGRD96   39.0   165    60   -50   5.23 0.5600

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Oct 31 06:48:19 CDT 2025