Location

Location ANSS

The ANSS event ID is ak025dnijfwa and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak025dnijfwa/executive.

2025/10/24 20:03:26 61.884 -151.243 66.5 4.6 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/10/24 20:03:26.0  61.88 -151.24  66.5 4.6 Alaska
 
 Stations used:
   AK.BAE AK.CAPN AK.DHY AK.GHO AK.GLI AK.KNK AK.L19K AK.L22K 
   AK.MCK AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW 
   AK.SKN AK.SWD AK.WAT6 AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 9.66e+22 dyne-cm
  Mw = 4.59 
  Z  = 78 km
  Plane   Strike  Dip  Rake
   NP1      355    88   110
   NP2       90    20     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.66e+22     43     285
    N   0.00e+00     20     175
    P  -9.66e+22     40      67

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.41e+21
       Mxy    -3.29e+22
       Mxz    -6.45e+21
       Myy    -2.88e+15
       Myz    -9.04e+22
       Mzz     5.41e+21
                                                     
                                                     
                                                     
                                                     
                     #####---------                  
                 ##########------------              
              #############---------------           
             ##############----------------          
           ################------------------        
          ##################------------------       
         ###################-------------------      
        ####################----------   -------     
        #######   ##########---------- P -------     
       ######## T ##########----------   --------    
       ########   ##########---------------------    
       ######################--------------------    
       -#####################-------------------#    
        -####################------------------#     
        --###################-----------------##     
         --##################----------------##      
          --#################---------------##       
           ---###############-------------###        
             ----############----------####          
              -------#########-----#######           
                 -------------#########              
                     ---------#####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.41e+21  -6.45e+21   9.04e+22 
 -6.45e+21  -5.41e+21   3.29e+22 
  9.04e+22   3.29e+22  -2.88e+15 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251024200326/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 90
      DIP = 20
     RAKE = 5
       MW = 4.59
       HS = 78.0

The NDK file is 20251024200326.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2025/10/24 20:03:26.0  61.88 -151.24  66.5 4.6 Alaska
 
 Stations used:
   AK.BAE AK.CAPN AK.DHY AK.GHO AK.GLI AK.KNK AK.L19K AK.L22K 
   AK.MCK AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW 
   AK.SKN AK.SWD AK.WAT6 AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 9.66e+22 dyne-cm
  Mw = 4.59 
  Z  = 78 km
  Plane   Strike  Dip  Rake
   NP1      355    88   110
   NP2       90    20     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.66e+22     43     285
    N   0.00e+00     20     175
    P  -9.66e+22     40      67

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.41e+21
       Mxy    -3.29e+22
       Mxz    -6.45e+21
       Myy    -2.88e+15
       Myz    -9.04e+22
       Mzz     5.41e+21
                                                     
                                                     
                                                     
                                                     
                     #####---------                  
                 ##########------------              
              #############---------------           
             ##############----------------          
           ################------------------        
          ##################------------------       
         ###################-------------------      
        ####################----------   -------     
        #######   ##########---------- P -------     
       ######## T ##########----------   --------    
       ########   ##########---------------------    
       ######################--------------------    
       -#####################-------------------#    
        -####################------------------#     
        --###################-----------------##     
         --##################----------------##      
          --#################---------------##       
           ---###############-------------###        
             ----############----------####          
              -------#########-----#######           
                 -------------#########              
                     ---------#####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.41e+21  -6.45e+21   9.04e+22 
 -6.45e+21  -5.41e+21   3.29e+22 
  9.04e+22   3.29e+22  -2.88e+15 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251024200326/index.html
	
Regional Moment Tensor (Mwr)
Moment 9.865e+15 N-m
Magnitude 4.60 Mwr
Depth 76.0 km
Percent DC 84%
Half Duration -
Catalog US
Data Source US
Contributor US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	352	89	105
NP2	85	15	3
Principal Axes
Axis	Value	Plunge	Azimuth
T	9.419e+15	44	277
N	0.838e+15	15	172
P	-10.257e+15	42	68

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   245    90    15   3.65 0.1770
WVFGRD96    4.0    65    80   -10   3.75 0.1874
WVFGRD96    6.0   295    60    30   3.78 0.2118
WVFGRD96    8.0   300    55    30   3.87 0.2367
WVFGRD96   10.0   300    60    25   3.91 0.2477
WVFGRD96   12.0   300    65    20   3.95 0.2579
WVFGRD96   14.0   300    65    20   3.98 0.2644
WVFGRD96   16.0   305    65    20   4.01 0.2669
WVFGRD96   18.0   305    65    20   4.04 0.2673
WVFGRD96   20.0   305    65    20   4.06 0.2656
WVFGRD96   22.0   305    65    20   4.08 0.2655
WVFGRD96   24.0   145    80   -25   4.13 0.2692
WVFGRD96   26.0   145    80   -25   4.15 0.2722
WVFGRD96   28.0   105    60   -10   4.15 0.2770
WVFGRD96   30.0   105    60   -10   4.17 0.2820
WVFGRD96   32.0   100    55    -5   4.20 0.2849
WVFGRD96   34.0    95    55   -20   4.20 0.2943
WVFGRD96   36.0    95    55   -25   4.22 0.3030
WVFGRD96   38.0   105    45    15   4.26 0.3130
WVFGRD96   40.0   110    35    20   4.37 0.3273
WVFGRD96   42.0   105    35    15   4.40 0.3514
WVFGRD96   44.0   105    35    15   4.42 0.3714
WVFGRD96   46.0   105    35    15   4.44 0.3877
WVFGRD96   48.0   105    35    15   4.45 0.4019
WVFGRD96   50.0   100    35    10   4.47 0.4163
WVFGRD96   52.0   100    35    10   4.48 0.4317
WVFGRD96   54.0   100    35    10   4.49 0.4452
WVFGRD96   56.0    95    30     5   4.51 0.4573
WVFGRD96   58.0    95    30     5   4.52 0.4714
WVFGRD96   60.0    90    25     5   4.54 0.4864
WVFGRD96   62.0    90    25     5   4.55 0.5017
WVFGRD96   64.0    90    25     5   4.56 0.5136
WVFGRD96   66.0    90    25     5   4.56 0.5235
WVFGRD96   68.0    90    25     5   4.57 0.5340
WVFGRD96   70.0    90    25     5   4.58 0.5407
WVFGRD96   72.0    85    25     0   4.59 0.5473
WVFGRD96   74.0    85    25     0   4.59 0.5506
WVFGRD96   76.0    90    20     5   4.59 0.5516
WVFGRD96   78.0    90    20     5   4.59 0.5548
WVFGRD96   80.0    90    20     5   4.59 0.5541
WVFGRD96   82.0    90    20     5   4.60 0.5509
WVFGRD96   84.0    90    20     5   4.60 0.5499
WVFGRD96   86.0    90    20     5   4.60 0.5454
WVFGRD96   88.0    90    20     5   4.60 0.5411
WVFGRD96   90.0    95    25    10   4.59 0.5378
WVFGRD96   92.0    95    25    10   4.59 0.5323
WVFGRD96   94.0    95    25    10   4.60 0.5276
WVFGRD96   96.0    95    25    10   4.60 0.5224
WVFGRD96   98.0   100    25    15   4.59 0.5181

The best solution is

WVFGRD96   78.0    90    20     5   4.59 0.5548

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Oct 24 16:36:45 CDT 2025