The ANSS event ID is ak025dnijfwa and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak025dnijfwa/executive.
2025/10/24 20:03:26 61.884 -151.243 66.5 4.6 Alaska
USGS/SLU Moment Tensor Solution
ENS 2025/10/24 20:03:26.0 61.88 -151.24 66.5 4.6 Alaska
Stations used:
AK.BAE AK.CAPN AK.DHY AK.GHO AK.GLI AK.KNK AK.L19K AK.L22K
AK.MCK AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW
AK.SKN AK.SWD AK.WAT6 AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 9.66e+22 dyne-cm
Mw = 4.59
Z = 78 km
Plane Strike Dip Rake
NP1 355 88 110
NP2 90 20 5
Principal Axes:
Axis Value Plunge Azimuth
T 9.66e+22 43 285
N 0.00e+00 20 175
P -9.66e+22 40 67
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.41e+21
Mxy -3.29e+22
Mxz -6.45e+21
Myy -2.88e+15
Myz -9.04e+22
Mzz 5.41e+21
#####---------
##########------------
#############---------------
##############----------------
################------------------
##################------------------
###################-------------------
####################---------- -------
####### ##########---------- P -------
######## T ##########---------- --------
######## ##########---------------------
######################--------------------
-#####################-------------------#
-####################------------------#
--###################-----------------##
--##################----------------##
--#################---------------##
---###############-------------###
----############----------####
-------#########-----#######
-------------#########
---------#####
Global CMT Convention Moment Tensor:
R T P
5.41e+21 -6.45e+21 9.04e+22
-6.45e+21 -5.41e+21 3.29e+22
9.04e+22 3.29e+22 -2.88e+15
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251024200326/index.html
|
STK = 90
DIP = 20
RAKE = 5
MW = 4.59
HS = 78.0
The NDK file is 20251024200326.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/10/24 20:03:26.0 61.88 -151.24 66.5 4.6 Alaska
Stations used:
AK.BAE AK.CAPN AK.DHY AK.GHO AK.GLI AK.KNK AK.L19K AK.L22K
AK.MCK AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND AK.SAW
AK.SKN AK.SWD AK.WAT6 AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 9.66e+22 dyne-cm
Mw = 4.59
Z = 78 km
Plane Strike Dip Rake
NP1 355 88 110
NP2 90 20 5
Principal Axes:
Axis Value Plunge Azimuth
T 9.66e+22 43 285
N 0.00e+00 20 175
P -9.66e+22 40 67
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.41e+21
Mxy -3.29e+22
Mxz -6.45e+21
Myy -2.88e+15
Myz -9.04e+22
Mzz 5.41e+21
#####---------
##########------------
#############---------------
##############----------------
################------------------
##################------------------
###################-------------------
####################---------- -------
####### ##########---------- P -------
######## T ##########---------- --------
######## ##########---------------------
######################--------------------
-#####################-------------------#
-####################------------------#
--###################-----------------##
--##################----------------##
--#################---------------##
---###############-------------###
----############----------####
-------#########-----#######
-------------#########
---------#####
Global CMT Convention Moment Tensor:
R T P
5.41e+21 -6.45e+21 9.04e+22
-6.45e+21 -5.41e+21 3.29e+22
9.04e+22 3.29e+22 -2.88e+15
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251024200326/index.html
|
Regional Moment Tensor (Mwr) Moment 9.865e+15 N-m Magnitude 4.60 Mwr Depth 76.0 km Percent DC 84% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 352 89 105 NP2 85 15 3 Principal Axes Axis Value Plunge Azimuth T 9.419e+15 44 277 N 0.838e+15 15 172 P -10.257e+15 42 68 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 2.0 245 90 15 3.65 0.1770
WVFGRD96 4.0 65 80 -10 3.75 0.1874
WVFGRD96 6.0 295 60 30 3.78 0.2118
WVFGRD96 8.0 300 55 30 3.87 0.2367
WVFGRD96 10.0 300 60 25 3.91 0.2477
WVFGRD96 12.0 300 65 20 3.95 0.2579
WVFGRD96 14.0 300 65 20 3.98 0.2644
WVFGRD96 16.0 305 65 20 4.01 0.2669
WVFGRD96 18.0 305 65 20 4.04 0.2673
WVFGRD96 20.0 305 65 20 4.06 0.2656
WVFGRD96 22.0 305 65 20 4.08 0.2655
WVFGRD96 24.0 145 80 -25 4.13 0.2692
WVFGRD96 26.0 145 80 -25 4.15 0.2722
WVFGRD96 28.0 105 60 -10 4.15 0.2770
WVFGRD96 30.0 105 60 -10 4.17 0.2820
WVFGRD96 32.0 100 55 -5 4.20 0.2849
WVFGRD96 34.0 95 55 -20 4.20 0.2943
WVFGRD96 36.0 95 55 -25 4.22 0.3030
WVFGRD96 38.0 105 45 15 4.26 0.3130
WVFGRD96 40.0 110 35 20 4.37 0.3273
WVFGRD96 42.0 105 35 15 4.40 0.3514
WVFGRD96 44.0 105 35 15 4.42 0.3714
WVFGRD96 46.0 105 35 15 4.44 0.3877
WVFGRD96 48.0 105 35 15 4.45 0.4019
WVFGRD96 50.0 100 35 10 4.47 0.4163
WVFGRD96 52.0 100 35 10 4.48 0.4317
WVFGRD96 54.0 100 35 10 4.49 0.4452
WVFGRD96 56.0 95 30 5 4.51 0.4573
WVFGRD96 58.0 95 30 5 4.52 0.4714
WVFGRD96 60.0 90 25 5 4.54 0.4864
WVFGRD96 62.0 90 25 5 4.55 0.5017
WVFGRD96 64.0 90 25 5 4.56 0.5136
WVFGRD96 66.0 90 25 5 4.56 0.5235
WVFGRD96 68.0 90 25 5 4.57 0.5340
WVFGRD96 70.0 90 25 5 4.58 0.5407
WVFGRD96 72.0 85 25 0 4.59 0.5473
WVFGRD96 74.0 85 25 0 4.59 0.5506
WVFGRD96 76.0 90 20 5 4.59 0.5516
WVFGRD96 78.0 90 20 5 4.59 0.5548
WVFGRD96 80.0 90 20 5 4.59 0.5541
WVFGRD96 82.0 90 20 5 4.60 0.5509
WVFGRD96 84.0 90 20 5 4.60 0.5499
WVFGRD96 86.0 90 20 5 4.60 0.5454
WVFGRD96 88.0 90 20 5 4.60 0.5411
WVFGRD96 90.0 95 25 10 4.59 0.5378
WVFGRD96 92.0 95 25 10 4.59 0.5323
WVFGRD96 94.0 95 25 10 4.60 0.5276
WVFGRD96 96.0 95 25 10 4.60 0.5224
WVFGRD96 98.0 100 25 15 4.59 0.5181
The best solution is
WVFGRD96 78.0 90 20 5 4.59 0.5548
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00