The ANSS event ID is tx2025ubulqx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2025ubulqx/executive.
2025/10/12 06:08:59 32.336 -101.070 5.3 4.3 Texas
USGS/SLU Moment Tensor Solution
ENS 2025/10/12 06:08:59.0 32.34 -101.07 5.3 4.3 Texas
Stations used:
4O.AT01 4O.BW01 4O.DBL01 4O.DBL02 4O.EE01 4O.EE03 4O.EE04
4O.EE05 4O.FOR01 4O.GV01 4O.GV02 4O.GV03 4O.MBBB2 4O.MID01
4O.MID02 4O.MID03 4O.MO01 4O.OE01 4O.SD01 4O.SM06 4O.VW02
TX.APMT TX.DKNS TX.MB03 TX.MB05 TX.MB09 TX.MB10 TX.MB11
TX.MB12 TX.MB13 TX.MB15 TX.MB15D TX.MB16 TX.MB18 TX.MB21
TX.MB22 TX.MB23 TX.MB27 TX.MNHN TX.ODSA TX.OZNA TX.POST
TX.SGCY TX.SN02 TX.SN03 TX.SN04 TX.SN07 TX.SN09
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +30
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 7.50e+21 dyne-cm
Mw = 3.85
Z = 5 km
Plane Strike Dip Rake
NP1 238 61 -99
NP2 75 30 -75
Principal Axes:
Axis Value Plunge Azimuth
T 7.50e+21 16 334
N 0.00e+00 7 242
P -7.50e+21 73 127
Moment Tensor: (dyne-cm)
Component Value
Mxx 5.37e+21
Mxy -2.41e+21
Mxz 3.06e+21
Myy 9.05e+20
Myz -2.56e+21
Mzz -6.27e+21
##############
## #################
##### T ####################
###### #####################
##################################
######################--------------
###################-------------------
#################-----------------------
##############--------------------------
############-----------------------------#
##########------------------------------##
#########-------------- --------------##
#######---------------- P -------------###
#####----------------- ------------###
-###--------------------------------####
-#-------------------------------#####
-#----------------------------######
####----------------------########
######--------------##########
############################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-6.27e+21 3.06e+21 2.56e+21
3.06e+21 5.37e+21 2.41e+21
2.56e+21 2.41e+21 9.05e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251012060859/index.html
|
STK = 75
DIP = 30
RAKE = -75
MW = 3.85
HS = 5.0
The NDK file is 20251012060859.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/10/12 06:08:59.0 32.34 -101.07 5.3 4.3 Texas
Stations used:
4O.AT01 4O.BW01 4O.DBL01 4O.DBL02 4O.EE01 4O.EE03 4O.EE04
4O.EE05 4O.FOR01 4O.GV01 4O.GV02 4O.GV03 4O.MBBB2 4O.MID01
4O.MID02 4O.MID03 4O.MO01 4O.OE01 4O.SD01 4O.SM06 4O.VW02
TX.APMT TX.DKNS TX.MB03 TX.MB05 TX.MB09 TX.MB10 TX.MB11
TX.MB12 TX.MB13 TX.MB15 TX.MB15D TX.MB16 TX.MB18 TX.MB21
TX.MB22 TX.MB23 TX.MB27 TX.MNHN TX.ODSA TX.OZNA TX.POST
TX.SGCY TX.SN02 TX.SN03 TX.SN04 TX.SN07 TX.SN09
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +30
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 7.50e+21 dyne-cm
Mw = 3.85
Z = 5 km
Plane Strike Dip Rake
NP1 238 61 -99
NP2 75 30 -75
Principal Axes:
Axis Value Plunge Azimuth
T 7.50e+21 16 334
N 0.00e+00 7 242
P -7.50e+21 73 127
Moment Tensor: (dyne-cm)
Component Value
Mxx 5.37e+21
Mxy -2.41e+21
Mxz 3.06e+21
Myy 9.05e+20
Myz -2.56e+21
Mzz -6.27e+21
##############
## #################
##### T ####################
###### #####################
##################################
######################--------------
###################-------------------
#################-----------------------
##############--------------------------
############-----------------------------#
##########------------------------------##
#########-------------- --------------##
#######---------------- P -------------###
#####----------------- ------------###
-###--------------------------------####
-#-------------------------------#####
-#----------------------------######
####----------------------########
######--------------##########
############################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-6.27e+21 3.06e+21 2.56e+21
3.06e+21 5.37e+21 2.41e+21
2.56e+21 2.41e+21 9.05e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20251012060859/index.html
|
egional Moment Tensor (Mwr) Moment 1.643e+15 N-m Magnitude 4.08 Mwr Depth 4.0 km Percent DC 99% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 247 60 -92 NP2 71 30 -87 Principal Axes Axis Value Plunge Azimuth T 1.640e+15 15 339 N 0.006e+15 2 248 P -1.646e+15 75 153 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 35 90 55 3.59 0.3066
WVFGRD96 2.0 35 90 70 3.81 0.3496
WVFGRD96 3.0 35 90 70 3.82 0.4372
WVFGRD96 4.0 80 25 -65 3.84 0.4714
WVFGRD96 5.0 75 30 -75 3.85 0.4722
WVFGRD96 6.0 75 35 -75 3.85 0.4503
WVFGRD96 7.0 70 35 -75 3.84 0.4199
WVFGRD96 8.0 75 35 -75 3.92 0.4025
WVFGRD96 9.0 240 55 -95 3.92 0.3650
WVFGRD96 10.0 65 35 -85 3.91 0.3287
WVFGRD96 11.0 120 60 30 3.87 0.3015
WVFGRD96 12.0 120 60 30 3.88 0.2849
WVFGRD96 13.0 120 65 30 3.89 0.2694
WVFGRD96 14.0 120 65 30 3.90 0.2554
WVFGRD96 15.0 120 65 30 3.91 0.2421
WVFGRD96 16.0 120 70 30 3.92 0.2310
WVFGRD96 17.0 120 70 30 3.93 0.2213
WVFGRD96 18.0 120 70 30 3.93 0.2124
WVFGRD96 19.0 300 65 25 3.94 0.2064
WVFGRD96 20.0 300 65 10 3.95 0.2010
WVFGRD96 21.0 300 65 5 3.97 0.1981
WVFGRD96 22.0 300 65 5 3.97 0.1962
WVFGRD96 23.0 300 60 5 3.98 0.1950
WVFGRD96 24.0 300 60 5 3.99 0.1949
WVFGRD96 25.0 300 60 5 3.99 0.1956
WVFGRD96 26.0 300 65 0 4.00 0.1968
WVFGRD96 27.0 295 60 -15 4.02 0.1987
WVFGRD96 28.0 295 60 -15 4.03 0.2021
WVFGRD96 29.0 295 60 -15 4.04 0.2048
The best solution is
WVFGRD96 5.0 75 30 -75 3.85 0.4722
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +30 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00