The ANSS event ID is nn00904812 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00904812/executive.
2025/09/22 19:55:46 41.245 -116.700 8.4 3.7 Nevada
USGS/SLU Moment Tensor Solution ENS 2025/09/22 19:55:46.0 41.24 -116.70 8.4 3.7 Nevada Stations used: BK.RAVE IM.NV31 IW.MFID LB.BMN NN.BEK NN.KVN NN.OUT1 NN.PYM2 NN.R11B NN.S11A UO.ADEL UO.PRONG US.DUG US.ELK UU.BGU UU.CTU UU.HDUT UU.NLU UU.SPU UW.IRON Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.63e+21 dyne-cm Mw = 3.64 Z = 8 km Plane Strike Dip Rake NP1 8 73 -132 NP2 260 45 -25 Principal Axes: Axis Value Plunge Azimuth T 3.63e+21 17 128 N 0.00e+00 40 23 P -3.63e+21 45 236 Moment Tensor: (dyne-cm) Component Value Mxx 6.92e+20 Mxy -2.45e+21 Mxz 4.04e+20 Myy 8.42e+20 Myz 2.29e+21 Mzz -1.53e+21 ##########---- ###############------- ##################---------- ####################---------- ######################------------ ############-----------######------- #########---------------##########---- #######------------------#############-- #####--------------------############### ####----------------------################ ###-----------------------################ ##-----------------------################# #------------------------################# --------- ------------################ --------- P -----------################# -------- -----------########## ### --------------------########### T ## -------------------########### # ----------------############## --------------############## ----------############ -----######### Global CMT Convention Moment Tensor: R T P -1.53e+21 4.04e+20 -2.29e+21 4.04e+20 6.92e+20 2.45e+21 -2.29e+21 2.45e+21 8.42e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250922195546/index.html |
STK = 260 DIP = 45 RAKE = -25 MW = 3.64 HS = 8.0
The NDK file is 20250922195546.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/09/22 19:55:46.0 41.24 -116.70 8.4 3.7 Nevada Stations used: BK.RAVE IM.NV31 IW.MFID LB.BMN NN.BEK NN.KVN NN.OUT1 NN.PYM2 NN.R11B NN.S11A UO.ADEL UO.PRONG US.DUG US.ELK UU.BGU UU.CTU UU.HDUT UU.NLU UU.SPU UW.IRON Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 3.63e+21 dyne-cm Mw = 3.64 Z = 8 km Plane Strike Dip Rake NP1 8 73 -132 NP2 260 45 -25 Principal Axes: Axis Value Plunge Azimuth T 3.63e+21 17 128 N 0.00e+00 40 23 P -3.63e+21 45 236 Moment Tensor: (dyne-cm) Component Value Mxx 6.92e+20 Mxy -2.45e+21 Mxz 4.04e+20 Myy 8.42e+20 Myz 2.29e+21 Mzz -1.53e+21 ##########---- ###############------- ##################---------- ####################---------- ######################------------ ############-----------######------- #########---------------##########---- #######------------------#############-- #####--------------------############### ####----------------------################ ###-----------------------################ ##-----------------------################# #------------------------################# --------- ------------################ --------- P -----------################# -------- -----------########## ### --------------------########### T ## -------------------########### # ----------------############## --------------############## ----------############ -----######### Global CMT Convention Moment Tensor: R T P -1.53e+21 4.04e+20 -2.29e+21 4.04e+20 6.92e+20 2.45e+21 -2.29e+21 2.45e+21 8.42e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250922195546/index.html |
Moment Tensor Moment 4.245e+14 N-m Magnitude 3.69 Depth 8.4 km Percent DC 97% Half Duration - Catalog NN Data Source NN Contributor NN Nodal Planes Plane Strike Dip Rake NP1 238 38 -65 NP2 27 57 -108 Principal Axes Axis Value Plunge Azimuth T 4.217e+14 10 130 N 0.055e+14 15 38 P -4.272e+14 72 252 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 260 80 -10 3.35 0.3103 WVFGRD96 2.0 265 80 -5 3.43 0.3787 WVFGRD96 3.0 265 65 -5 3.49 0.3954 WVFGRD96 4.0 265 55 -5 3.53 0.4052 WVFGRD96 5.0 260 40 -25 3.59 0.4247 WVFGRD96 6.0 260 45 -25 3.59 0.4428 WVFGRD96 7.0 260 45 -25 3.60 0.4486 WVFGRD96 8.0 260 45 -25 3.64 0.4584 WVFGRD96 9.0 260 50 -25 3.65 0.4569 WVFGRD96 10.0 260 50 -30 3.65 0.4545 WVFGRD96 11.0 260 50 -25 3.66 0.4551 WVFGRD96 12.0 265 55 -20 3.65 0.4543 WVFGRD96 13.0 90 50 -5 3.66 0.4517 WVFGRD96 14.0 90 50 -5 3.67 0.4488 WVFGRD96 15.0 90 55 -5 3.68 0.4452 WVFGRD96 16.0 90 55 -5 3.69 0.4414 WVFGRD96 17.0 90 55 -5 3.70 0.4369 WVFGRD96 18.0 265 60 -20 3.71 0.4359 WVFGRD96 19.0 265 60 -20 3.72 0.4314 WVFGRD96 20.0 265 60 -20 3.73 0.4262 WVFGRD96 21.0 265 60 -20 3.75 0.4208 WVFGRD96 22.0 265 60 -20 3.75 0.4151 WVFGRD96 23.0 265 60 -20 3.76 0.4088 WVFGRD96 24.0 265 60 -20 3.77 0.4021 WVFGRD96 25.0 265 60 -20 3.78 0.3948 WVFGRD96 26.0 265 60 -25 3.78 0.3873 WVFGRD96 27.0 265 60 -25 3.79 0.3792 WVFGRD96 28.0 265 60 -25 3.80 0.3705 WVFGRD96 29.0 260 60 -30 3.82 0.3614
The best solution is
WVFGRD96 8.0 260 45 -25 3.64 0.4584
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00