Location

Location ANSS

The ANSS event ID is uu80114071 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uu80114071/executive.

2025/08/19 17:14:53 44.808 -110.860 11.6 3.7 Wyoming

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/08/19 17:14:53.0  44.81 -110.86  11.6 3.7 Wyoming
 
 Stations used:
   IE.BCYI IM.PD31 IW.DLMT IW.FLWY IW.IMW IW.LOHW IW.MFID 
   IW.MOOW IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT 
   MB.CPMT MB.ECMT MB.FCMT MB.GBMT MB.HRY MB.JTMT MB.LIMT 
   MB.LRM MB.ODMT MB.SMMT MB.SRMT MB.SXMT MB.WCMT US.BOZ 
   US.BW06 US.EGMT US.HLID US.LKWY US.MSO US.RLMT WW.CNCL 
   WW.IRMR WW.TYLR WY.YDD WY.YHB WY.YHL WY.YMP WY.YMR WY.YPP 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 5.89e+21 dyne-cm
  Mw = 3.78 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      155    65   -30
   NP2      259    63   -152
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.89e+21      1     207
    N   0.00e+00     52     299
    P  -5.89e+21     38     116

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.94e+21
       Mxy     3.83e+21
       Mxz     1.15e+21
       Myy    -1.69e+21
       Myz    -2.63e+21
       Mzz    -2.26e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 --####################              
              -----#######################           
             -----#########################          
           -------###########################        
          ---------###########################       
         ----------############################      
        -----------#######-----------------#####     
        ---------------------------------------#     
       ---------####-----------------------------    
       ------########----------------------------    
       ---###########----------------------------    
       --#############---------------------------    
        ###############---------------   -------     
        ################-------------- P -------     
         ################-------------   ------      
          #################-------------------       
           #################-----------------        
             #################-------------          
              ##   #############----------           
                 T ###############-----              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.26e+21   1.15e+21   2.63e+21 
  1.15e+21   3.94e+21  -3.83e+21 
  2.63e+21  -3.83e+21  -1.69e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250819171453/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 155
      DIP = 65
     RAKE = -30
       MW = 3.78
       HS = 8.0

The NDK file is 20250819171453.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
UUSS
 USGS/SLU Moment Tensor Solution
 ENS  2025/08/19 17:14:53.0  44.81 -110.86  11.6 3.7 Wyoming
 
 Stations used:
   IE.BCYI IM.PD31 IW.DLMT IW.FLWY IW.IMW IW.LOHW IW.MFID 
   IW.MOOW IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT 
   MB.CPMT MB.ECMT MB.FCMT MB.GBMT MB.HRY MB.JTMT MB.LIMT 
   MB.LRM MB.ODMT MB.SMMT MB.SRMT MB.SXMT MB.WCMT US.BOZ 
   US.BW06 US.EGMT US.HLID US.LKWY US.MSO US.RLMT WW.CNCL 
   WW.IRMR WW.TYLR WY.YDD WY.YHB WY.YHL WY.YMP WY.YMR WY.YPP 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 5.89e+21 dyne-cm
  Mw = 3.78 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      155    65   -30
   NP2      259    63   -152
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.89e+21      1     207
    N   0.00e+00     52     299
    P  -5.89e+21     38     116

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.94e+21
       Mxy     3.83e+21
       Mxz     1.15e+21
       Myy    -1.69e+21
       Myz    -2.63e+21
       Mzz    -2.26e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 --####################              
              -----#######################           
             -----#########################          
           -------###########################        
          ---------###########################       
         ----------############################      
        -----------#######-----------------#####     
        ---------------------------------------#     
       ---------####-----------------------------    
       ------########----------------------------    
       ---###########----------------------------    
       --#############---------------------------    
        ###############---------------   -------     
        ################-------------- P -------     
         ################-------------   ------      
          #################-------------------       
           #################-----------------        
             #################-------------          
              ##   #############----------           
                 T ###############-----              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.26e+21   1.15e+21   2.63e+21 
  1.15e+21   3.94e+21  -3.83e+21 
  2.63e+21  -3.83e+21  -1.69e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250819171453/index.html
	
Moment Tensor (TDMT)
Moment 4.847e+14 N-m
Magnitude 3.72
Depth 6.0 km
Percent DC 92%
Half Duration -
Catalog UU
Data Source UU
Contributor UU
Nodal Planes
Plane	Strike	Dip	Rake
NP1	161	67	-15
NP2	257	77	-157
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.741e+14	6	27
N	0.206e+14	63	285
P	-4.947e+14	26	120

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   340    90    10   3.44 0.3406
WVFGRD96    2.0   155    65   -25   3.60 0.4301
WVFGRD96    3.0   150    65   -35   3.67 0.4696
WVFGRD96    4.0   150    60   -35   3.70 0.5033
WVFGRD96    5.0   155    65   -30   3.71 0.5236
WVFGRD96    6.0   155    65   -25   3.72 0.5357
WVFGRD96    7.0   155    65   -25   3.74 0.5401
WVFGRD96    8.0   155    65   -30   3.78 0.5482
WVFGRD96    9.0   155    65   -25   3.79 0.5424
WVFGRD96   10.0   160    65   -20   3.79 0.5348
WVFGRD96   11.0   160    65   -20   3.80 0.5268
WVFGRD96   12.0   160    65   -15   3.80 0.5177
WVFGRD96   13.0   160    70   -15   3.81 0.5087
WVFGRD96   14.0   160    70   -15   3.82 0.4989
WVFGRD96   15.0   160    70   -15   3.83 0.4892
WVFGRD96   16.0   165    70    10   3.85 0.4800
WVFGRD96   17.0   345    75    20   3.86 0.4768
WVFGRD96   18.0   345    75    20   3.87 0.4692
WVFGRD96   19.0   345    75    20   3.88 0.4610
WVFGRD96   20.0   165    70    10   3.88 0.4487
WVFGRD96   21.0   165    70    10   3.88 0.4403
WVFGRD96   22.0   165    70    10   3.89 0.4321
WVFGRD96   23.0   345    75    20   3.90 0.4260
WVFGRD96   24.0   165    70    10   3.90 0.4156
WVFGRD96   25.0   165    70    10   3.90 0.4079
WVFGRD96   26.0   165    70    10   3.91 0.4006
WVFGRD96   27.0   160    70   -10   3.91 0.3939
WVFGRD96   28.0   160    70   -10   3.91 0.3880
WVFGRD96   29.0   160    75   -10   3.92 0.3823

The best solution is

WVFGRD96    8.0   155    65   -30   3.78 0.5482

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Aug 19 14:48:02 CDT 2025