The ANSS event ID is ak025ads86o8 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak025ads86o8/executive.
2025/08/14 01:29:49 63.166 -147.768 14.9 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/08/14 01:29:49.0 63.17 -147.77 14.9 4.3 Alaska Stations used: AK.BAE AK.BERG AK.BMR AK.BPAW AK.CAST AK.CCB AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.FYU AK.GHO AK.GLB AK.H22K AK.H23K AK.H24K AK.HARP AK.HDA AK.HIN AK.I21K AK.I23K AK.I26K AK.I27K AK.ISLE AK.J19K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK AK.L19K AK.L22K AK.L26K AK.LOGN AK.M20K AK.M26K AK.MCAR AK.MCK AK.MLY AK.N19K AK.NEA2 AK.P23K AK.PAX AK.POKR AK.PPD AK.PPLA AK.PWL AK.RAG AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SUCK AK.VRDI AK.WAT6 AK.WAX AK.WRH AT.PMR AT.TTA CN.DAWY IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.17e+22 dyne-cm Mw = 3.98 Z = 16 km Plane Strike Dip Rake NP1 225 75 70 NP2 100 25 142 Principal Axes: Axis Value Plunge Azimuth T 1.17e+22 56 110 N 0.00e+00 19 230 P -1.17e+22 27 331 Moment Tensor: (dyne-cm) Component Value Mxx -6.64e+21 Mxy 2.76e+21 Mxz -6.03e+21 Myy 1.12e+21 Myz 7.50e+21 Mzz 5.52e+21 -------------- ---------------------- ----- -------------------- ------ P ------------------### -------- ---------------######## ------------------------############ -----------------------############### ---------------------################### -------------------##################### #-----------------######################## #----------------######################### #--------------############# ########### ##-----------############### T ########### ##---------################ ########## ###-------#############################- ###----##############################- ####-#############################-- ###--##########################--- #------##################----- ------------######---------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 5.52e+21 -6.03e+21 -7.50e+21 -6.03e+21 -6.64e+21 -2.76e+21 -7.50e+21 -2.76e+21 1.12e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250814012949/index.html |
STK = 225 DIP = 75 RAKE = 70 MW = 3.98 HS = 16.0
The NDK file is 20250814012949.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/08/14 01:29:49.0 63.17 -147.77 14.9 4.3 Alaska Stations used: AK.BAE AK.BERG AK.BMR AK.BPAW AK.CAST AK.CCB AK.DHY AK.DIV AK.DOT AK.EYAK AK.FID AK.FYU AK.GHO AK.GLB AK.H22K AK.H23K AK.H24K AK.HARP AK.HDA AK.HIN AK.I21K AK.I23K AK.I26K AK.I27K AK.ISLE AK.J19K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK AK.L19K AK.L22K AK.L26K AK.LOGN AK.M20K AK.M26K AK.MCAR AK.MCK AK.MLY AK.N19K AK.NEA2 AK.P23K AK.PAX AK.POKR AK.PPD AK.PPLA AK.PWL AK.RAG AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SKN AK.SUCK AK.VRDI AK.WAT6 AK.WAX AK.WRH AT.PMR AT.TTA CN.DAWY IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.17e+22 dyne-cm Mw = 3.98 Z = 16 km Plane Strike Dip Rake NP1 225 75 70 NP2 100 25 142 Principal Axes: Axis Value Plunge Azimuth T 1.17e+22 56 110 N 0.00e+00 19 230 P -1.17e+22 27 331 Moment Tensor: (dyne-cm) Component Value Mxx -6.64e+21 Mxy 2.76e+21 Mxz -6.03e+21 Myy 1.12e+21 Myz 7.50e+21 Mzz 5.52e+21 -------------- ---------------------- ----- -------------------- ------ P ------------------### -------- ---------------######## ------------------------############ -----------------------############### ---------------------################### -------------------##################### #-----------------######################## #----------------######################### #--------------############# ########### ##-----------############### T ########### ##---------################ ########## ###-------#############################- ###----##############################- ####-#############################-- ###--##########################--- #------##################----- ------------######---------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 5.52e+21 -6.03e+21 -7.50e+21 -6.03e+21 -6.64e+21 -2.76e+21 -7.50e+21 -2.76e+21 1.12e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250814012949/index.html |
Regional Moment Tensor (Mwr) Moment 1.312e+15 N-m Magnitude 4.01 Mwr Depth 17.0 km Percent DC 88% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 235 55 78 NP2 76 36 107 Principal Axes Axis Value Plunge Azimuth T 1.268e+15 76 107 N 0.083e+15 10 242 P -1.352e+15 10 334 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 60 45 -90 3.54 0.2872 WVFGRD96 2.0 60 45 -90 3.68 0.3635 WVFGRD96 3.0 65 45 -85 3.70 0.2682 WVFGRD96 4.0 315 30 5 3.71 0.3148 WVFGRD96 5.0 315 25 5 3.73 0.3740 WVFGRD96 6.0 320 25 10 3.74 0.4267 WVFGRD96 7.0 320 25 10 3.75 0.4679 WVFGRD96 8.0 220 85 70 3.84 0.5016 WVFGRD96 9.0 225 80 70 3.86 0.5462 WVFGRD96 10.0 225 80 70 3.88 0.5824 WVFGRD96 11.0 225 80 70 3.90 0.6111 WVFGRD96 12.0 225 75 70 3.92 0.6352 WVFGRD96 13.0 225 75 70 3.94 0.6530 WVFGRD96 14.0 225 75 70 3.95 0.6648 WVFGRD96 15.0 225 75 70 3.97 0.6716 WVFGRD96 16.0 225 75 70 3.98 0.6738 WVFGRD96 17.0 225 75 70 4.00 0.6712 WVFGRD96 18.0 225 75 70 4.01 0.6656 WVFGRD96 19.0 225 75 70 4.02 0.6562 WVFGRD96 20.0 225 80 70 4.03 0.6458 WVFGRD96 21.0 220 80 70 4.05 0.6337 WVFGRD96 22.0 220 80 70 4.06 0.6201 WVFGRD96 23.0 220 80 70 4.07 0.6056 WVFGRD96 24.0 220 80 70 4.08 0.5899 WVFGRD96 25.0 220 85 65 4.09 0.5730 WVFGRD96 26.0 215 85 65 4.10 0.5565 WVFGRD96 27.0 215 85 65 4.11 0.5380 WVFGRD96 28.0 35 90 -65 4.11 0.5181 WVFGRD96 29.0 35 85 -65 4.12 0.5017
The best solution is
WVFGRD96 16.0 225 75 70 3.98 0.6738
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00