The ANSS event ID is ak025a0u3q2q and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak025a0u3q2q/executive.
2025/08/06 18:38:57 62.447 -151.216 84.4 4.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/08/06 18:38:57.0 62.45 -151.22 84.4 4.6 Alaska Stations used: AK.BAE AK.BPAW AK.BRLK AK.CAST AK.DHY AK.FID AK.GHO AK.J19K AK.J20K AK.KNK AK.KTH AK.L19K AK.L22K AK.M20K AK.MCK AK.MLY AK.PAX AK.PPLA AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN AK.WAT6 AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.23e+23 dyne-cm Mw = 4.66 Z = 96 km Plane Strike Dip Rake NP1 45 90 70 NP2 315 20 180 Principal Axes: Axis Value Plunge Azimuth T 1.23e+23 42 296 N 0.00e+00 20 45 P -1.23e+23 42 154 Moment Tensor: (dyne-cm) Component Value Mxx -4.21e+22 Mxy -6.89e+15 Mxz 8.17e+22 Myy 4.21e+22 Myz -8.17e+22 Mzz -1.01e+16 -------------- ---##########--------- -####################------- #########################----# ################################## ############################---##### ###########################-------#### ######## ###############----------#### ######## T ##############------------### ######### ############--------------#### ######################-----------------### ####################-------------------### ##################---------------------### ###############-----------------------## ##############------------------------## ###########------------ -----------# ########-------------- P ----------# #####---------------- ---------# #----------------------------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P -1.01e+16 8.17e+22 8.17e+22 8.17e+22 -4.21e+22 6.89e+15 8.17e+22 6.89e+15 4.21e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250806183857/index.html |
STK = 45 DIP = 90 RAKE = 70 MW = 4.66 HS = 96.0
The NDK file is 20250806183857.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 0 50 10 3.67 0.1663 WVFGRD96 4.0 355 50 0 3.75 0.1927 WVFGRD96 6.0 355 60 -5 3.80 0.2152 WVFGRD96 8.0 355 55 0 3.88 0.2260 WVFGRD96 10.0 355 60 0 3.92 0.2308 WVFGRD96 12.0 355 60 5 3.95 0.2293 WVFGRD96 14.0 -5 60 10 3.98 0.2249 WVFGRD96 16.0 0 60 15 4.01 0.2175 WVFGRD96 18.0 0 65 25 4.03 0.2093 WVFGRD96 20.0 5 65 35 4.06 0.2067 WVFGRD96 22.0 5 65 35 4.09 0.2050 WVFGRD96 24.0 275 70 -20 4.12 0.2109 WVFGRD96 26.0 275 70 -20 4.14 0.2263 WVFGRD96 28.0 270 70 -20 4.17 0.2446 WVFGRD96 30.0 270 75 -25 4.19 0.2732 WVFGRD96 32.0 265 75 -25 4.22 0.3113 WVFGRD96 34.0 265 75 -30 4.24 0.3488 WVFGRD96 36.0 260 75 -30 4.26 0.3741 WVFGRD96 38.0 265 80 -30 4.29 0.3867 WVFGRD96 40.0 260 75 -40 4.37 0.4056 WVFGRD96 42.0 260 75 -40 4.39 0.4034 WVFGRD96 44.0 260 75 -40 4.41 0.4008 WVFGRD96 46.0 260 75 -40 4.42 0.4024 WVFGRD96 48.0 105 50 30 4.46 0.4080 WVFGRD96 50.0 105 50 30 4.47 0.4194 WVFGRD96 52.0 100 45 25 4.49 0.4296 WVFGRD96 54.0 230 80 -70 4.47 0.4393 WVFGRD96 56.0 230 80 -70 4.49 0.4564 WVFGRD96 58.0 230 85 -70 4.50 0.4746 WVFGRD96 60.0 225 85 -75 4.52 0.4945 WVFGRD96 62.0 50 90 70 4.53 0.5050 WVFGRD96 64.0 50 90 70 4.54 0.5235 WVFGRD96 66.0 45 90 75 4.56 0.5413 WVFGRD96 68.0 45 90 75 4.57 0.5582 WVFGRD96 70.0 45 90 75 4.58 0.5739 WVFGRD96 72.0 225 90 -75 4.59 0.5864 WVFGRD96 74.0 45 90 75 4.60 0.5992 WVFGRD96 76.0 45 90 75 4.61 0.6082 WVFGRD96 78.0 45 90 75 4.61 0.6175 WVFGRD96 80.0 225 90 -75 4.62 0.6234 WVFGRD96 82.0 45 90 75 4.63 0.6293 WVFGRD96 84.0 225 90 -75 4.63 0.6331 WVFGRD96 86.0 45 90 70 4.64 0.6360 WVFGRD96 88.0 225 90 -70 4.64 0.6411 WVFGRD96 90.0 225 90 -70 4.65 0.6436 WVFGRD96 92.0 225 90 -70 4.65 0.6464 WVFGRD96 94.0 45 90 70 4.66 0.6480 WVFGRD96 96.0 45 90 70 4.66 0.6486 WVFGRD96 98.0 225 90 -70 4.66 0.6480 WVFGRD96 100.0 45 90 70 4.67 0.6465 WVFGRD96 102.0 45 90 70 4.67 0.6432 WVFGRD96 104.0 45 90 70 4.67 0.6384 WVFGRD96 106.0 225 90 -70 4.67 0.6341 WVFGRD96 108.0 225 90 -70 4.67 0.6273 WVFGRD96 110.0 225 90 -70 4.67 0.6213 WVFGRD96 112.0 225 90 -70 4.67 0.6139 WVFGRD96 114.0 45 90 70 4.67 0.6055 WVFGRD96 116.0 45 90 70 4.67 0.5965 WVFGRD96 118.0 45 90 70 4.67 0.5874 WVFGRD96 120.0 50 85 70 4.66 0.5765 WVFGRD96 122.0 50 85 70 4.66 0.5682 WVFGRD96 124.0 50 85 70 4.66 0.5597 WVFGRD96 126.0 50 85 70 4.66 0.5496 WVFGRD96 128.0 50 85 70 4.66 0.5393 WVFGRD96 130.0 50 85 65 4.66 0.5301 WVFGRD96 132.0 225 90 -70 4.66 0.5120 WVFGRD96 134.0 50 85 65 4.66 0.5114 WVFGRD96 136.0 50 85 65 4.66 0.5023 WVFGRD96 138.0 50 85 65 4.65 0.4885 WVFGRD96 140.0 50 85 65 4.64 0.4447 WVFGRD96 142.0 55 80 60 4.61 0.3882 WVFGRD96 144.0 50 80 60 4.59 0.3343 WVFGRD96 146.0 55 75 55 4.56 0.2856 WVFGRD96 148.0 85 45 40 4.53 0.2543
The best solution is
WVFGRD96 96.0 45 90 70 4.66 0.6486
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00