The ANSS event ID is ak0258yp1qg3 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0258yp1qg3/executive.
2025/07/14 12:18:02 59.871 -153.331 134.8 4.4 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/07/14 12:18:02.0 59.87 -153.33 134.8 4.4 Alaska Stations used: AK.BRLK AK.CAST AK.FIRE AK.L19K AK.L22K AK.M16K AK.M20K AK.N18K AK.O18K AK.O19K AK.P17K AK.PPLA AK.Q19K AK.RC01 AK.SKN AK.SLK AK.SWD AV.ACH AV.RED AV.SPCL II.KDAK Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.43e+22 dyne-cm Mw = 4.19 Z = 134 km Plane Strike Dip Rake NP1 83 83 -119 NP2 340 30 -15 Principal Axes: Axis Value Plunge Azimuth T 2.43e+22 31 197 N 0.00e+00 29 87 P -2.43e+22 45 324 Moment Tensor: (dyne-cm) Component Value Mxx 8.17e+21 Mxy 1.07e+22 Mxz -2.01e+22 Myy -2.73e+21 Myz 3.99e+21 Mzz -5.44e+21 ---########### --------------######## --------------------######## -----------------------####### ---------------------------####### ---------- ----------------####### ----------- P -----------------####### ------------ ------------------####### ----------------------------------###### -----------------------------------####### ------------------------------------#----- ----------------------------########------ ###--------#########################------ ###################################----- ###################################----- ##################################---- ################################---- ########### ################---- ######### T ###############--- ######## ##############--- ####################-- ############## Global CMT Convention Moment Tensor: R T P -5.44e+21 -2.01e+22 -3.99e+21 -2.01e+22 8.17e+21 -1.07e+22 -3.99e+21 -1.07e+22 -2.73e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250714121802/index.html |
STK = 340 DIP = 30 RAKE = -15 MW = 4.19 HS = 134.0
The NDK file is 20250714121802.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 65 70 15 3.22 0.1928 WVFGRD96 4.0 200 50 -10 3.26 0.2040 WVFGRD96 6.0 200 55 -10 3.32 0.2392 WVFGRD96 8.0 200 50 -15 3.42 0.2675 WVFGRD96 10.0 200 55 -10 3.46 0.2832 WVFGRD96 12.0 200 55 -10 3.50 0.2909 WVFGRD96 14.0 200 60 -10 3.53 0.2928 WVFGRD96 16.0 195 55 -10 3.56 0.2906 WVFGRD96 18.0 195 55 -5 3.58 0.2859 WVFGRD96 20.0 195 55 -5 3.60 0.2788 WVFGRD96 22.0 195 55 0 3.62 0.2703 WVFGRD96 24.0 190 55 -10 3.64 0.2626 WVFGRD96 26.0 190 55 -5 3.65 0.2543 WVFGRD96 28.0 -5 70 -30 3.68 0.2465 WVFGRD96 30.0 -5 70 -30 3.69 0.2387 WVFGRD96 32.0 0 70 -15 3.68 0.2343 WVFGRD96 34.0 0 65 -10 3.70 0.2315 WVFGRD96 36.0 0 65 -10 3.71 0.2283 WVFGRD96 38.0 0 65 -10 3.74 0.2258 WVFGRD96 40.0 220 40 60 3.83 0.2283 WVFGRD96 42.0 220 40 65 3.86 0.2281 WVFGRD96 44.0 225 40 70 3.87 0.2254 WVFGRD96 46.0 -5 60 -20 3.88 0.2229 WVFGRD96 48.0 -5 60 -20 3.89 0.2234 WVFGRD96 50.0 -5 60 -20 3.91 0.2247 WVFGRD96 52.0 -5 60 -20 3.92 0.2256 WVFGRD96 54.0 -5 60 -20 3.93 0.2264 WVFGRD96 56.0 -5 60 -20 3.94 0.2284 WVFGRD96 58.0 160 90 -25 3.97 0.2340 WVFGRD96 60.0 340 55 -10 3.98 0.2498 WVFGRD96 62.0 340 55 -10 4.00 0.2724 WVFGRD96 64.0 335 60 -10 4.02 0.2976 WVFGRD96 66.0 330 60 -20 4.04 0.3351 WVFGRD96 68.0 330 60 -20 4.06 0.3787 WVFGRD96 70.0 330 55 -20 4.07 0.4195 WVFGRD96 72.0 330 55 -20 4.08 0.4511 WVFGRD96 74.0 330 55 -20 4.09 0.4669 WVFGRD96 76.0 335 50 -15 4.10 0.4767 WVFGRD96 78.0 335 50 -15 4.11 0.4879 WVFGRD96 80.0 335 50 -15 4.11 0.4973 WVFGRD96 82.0 335 50 -15 4.11 0.5058 WVFGRD96 84.0 335 50 -15 4.12 0.5135 WVFGRD96 86.0 335 50 -15 4.12 0.5184 WVFGRD96 88.0 335 50 -10 4.13 0.5248 WVFGRD96 90.0 335 50 -10 4.13 0.5322 WVFGRD96 92.0 330 30 -25 4.13 0.5386 WVFGRD96 94.0 330 25 -25 4.14 0.5490 WVFGRD96 96.0 330 25 -25 4.14 0.5610 WVFGRD96 98.0 335 25 -20 4.15 0.5723 WVFGRD96 100.0 335 25 -20 4.16 0.5813 WVFGRD96 102.0 335 25 -20 4.16 0.5917 WVFGRD96 104.0 335 25 -20 4.16 0.5998 WVFGRD96 106.0 335 25 -20 4.16 0.6055 WVFGRD96 108.0 335 25 -20 4.17 0.6136 WVFGRD96 110.0 335 25 -20 4.17 0.6173 WVFGRD96 112.0 335 25 -20 4.17 0.6244 WVFGRD96 114.0 335 25 -20 4.17 0.6285 WVFGRD96 116.0 335 25 -20 4.17 0.6337 WVFGRD96 118.0 335 25 -20 4.18 0.6383 WVFGRD96 120.0 335 25 -20 4.18 0.6407 WVFGRD96 122.0 335 25 -20 4.18 0.6447 WVFGRD96 124.0 340 30 -15 4.18 0.6459 WVFGRD96 126.0 340 30 -15 4.19 0.6503 WVFGRD96 128.0 340 30 -15 4.19 0.6500 WVFGRD96 130.0 340 30 -15 4.19 0.6532 WVFGRD96 132.0 340 30 -15 4.19 0.6522 WVFGRD96 134.0 340 30 -15 4.19 0.6550 WVFGRD96 136.0 340 30 -15 4.19 0.6538 WVFGRD96 138.0 340 30 -15 4.19 0.6548 WVFGRD96 140.0 340 30 -15 4.19 0.6527 WVFGRD96 142.0 340 30 -15 4.19 0.6512 WVFGRD96 144.0 340 30 -15 4.19 0.6482 WVFGRD96 146.0 340 30 -15 4.19 0.6464 WVFGRD96 148.0 340 30 -15 4.20 0.6440
The best solution is
WVFGRD96 134.0 340 30 -15 4.19 0.6550
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00