The ANSS event ID is ak0258ve2yvm and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0258ve2yvm/executive.
2025/07/12 12:36:33 62.077 -149.227 25.4 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/07/12 12:36:33.0 62.08 -149.23 25.4 4.5 Alaska Stations used: AK.BAE AK.BPAW AK.CAST AK.DHY AK.DIV AK.FID AK.FIRE AK.GHO AK.HDA AK.HIN AK.K24K AK.KLU AK.KNK AK.L22K AK.M20K AK.PAX AK.PPLA AK.PWL AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.WAT6 AT.PMR AV.RED AV.SPCL AV.STLK Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.01e+22 dyne-cm Mw = 4.40 Z = 50 km Plane Strike Dip Rake NP1 205 55 -75 NP2 360 38 -110 Principal Axes: Axis Value Plunge Azimuth T 5.01e+22 9 284 N 0.00e+00 12 16 P -5.01e+22 75 159 Moment Tensor: (dyne-cm) Component Value Mxx -1.48e+19 Mxy -1.06e+22 Mxz 1.37e+22 Myy 4.55e+22 Myz -1.19e+22 Mzz -4.55e+22 ##########---- ###################### ################-----####### ##############----------###### ##############-------------####### ##############---------------####### ##############-----------------####### ##########-------------------######## T #########---------------------####### # #########---------------------######## ############----------------------######## ###########-----------------------######## ###########---------- ----------######## #########----------- P ----------####### #########----------- ---------######## ########-----------------------####### #######----------------------####### ######---------------------####### ####--------------------###### ####-----------------####### ##--------------###### ----------#### Global CMT Convention Moment Tensor: R T P -4.55e+22 1.37e+22 1.19e+22 1.37e+22 -1.48e+19 1.06e+22 1.19e+22 1.06e+22 4.55e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250712123633/index.html |
STK = 205 DIP = 55 RAKE = -75 MW = 4.40 HS = 50.0
The NDK file is 20250712123633.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/07/12 12:36:33.0 62.08 -149.23 25.4 4.5 Alaska Stations used: AK.BAE AK.BPAW AK.CAST AK.DHY AK.DIV AK.FID AK.FIRE AK.GHO AK.HDA AK.HIN AK.K24K AK.KLU AK.KNK AK.L22K AK.M20K AK.PAX AK.PPLA AK.PWL AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.WAT6 AT.PMR AV.RED AV.SPCL AV.STLK Filtering commands used: cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 5.01e+22 dyne-cm Mw = 4.40 Z = 50 km Plane Strike Dip Rake NP1 205 55 -75 NP2 360 38 -110 Principal Axes: Axis Value Plunge Azimuth T 5.01e+22 9 284 N 0.00e+00 12 16 P -5.01e+22 75 159 Moment Tensor: (dyne-cm) Component Value Mxx -1.48e+19 Mxy -1.06e+22 Mxz 1.37e+22 Myy 4.55e+22 Myz -1.19e+22 Mzz -4.55e+22 ##########---- ###################### ################-----####### ##############----------###### ##############-------------####### ##############---------------####### ##############-----------------####### ##########-------------------######## T #########---------------------####### # #########---------------------######## ############----------------------######## ###########-----------------------######## ###########---------- ----------######## #########----------- P ----------####### #########----------- ---------######## ########-----------------------####### #######----------------------####### ######---------------------####### ####--------------------###### ####-----------------####### ##--------------###### ----------#### Global CMT Convention Moment Tensor: R T P -4.55e+22 1.37e+22 1.19e+22 1.37e+22 -1.48e+19 1.06e+22 1.19e+22 1.06e+22 4.55e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250712123633/index.html |
Regional Moment Tensor (Mwr) Moment 5.804e+15 N-m Magnitude 4.44 Mwr Depth 51.0 km Percent DC 99% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 356 37 -117 NP2 208 57 -71 Principal Axes Axis Value Plunge Azimuth T 5.818e+15 10 285 N -0.028e+15 16 18 P -5.791e+15 71 162 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 20 45 90 3.50 0.1694 WVFGRD96 2.0 15 45 85 3.65 0.2233 WVFGRD96 3.0 5 50 75 3.70 0.2176 WVFGRD96 4.0 330 40 -5 3.67 0.2377 WVFGRD96 5.0 325 45 -15 3.70 0.2605 WVFGRD96 6.0 335 45 20 3.72 0.2768 WVFGRD96 7.0 340 45 25 3.75 0.2978 WVFGRD96 8.0 345 40 35 3.82 0.3113 WVFGRD96 9.0 340 45 30 3.84 0.3250 WVFGRD96 10.0 340 45 30 3.86 0.3342 WVFGRD96 11.0 340 45 30 3.87 0.3389 WVFGRD96 12.0 340 45 30 3.89 0.3404 WVFGRD96 13.0 340 45 35 3.90 0.3392 WVFGRD96 14.0 250 65 45 3.92 0.3429 WVFGRD96 15.0 250 65 45 3.93 0.3435 WVFGRD96 16.0 250 65 45 3.95 0.3436 WVFGRD96 17.0 250 65 40 3.96 0.3439 WVFGRD96 18.0 250 65 40 3.98 0.3446 WVFGRD96 19.0 250 65 40 3.99 0.3444 WVFGRD96 20.0 230 65 -35 4.01 0.3502 WVFGRD96 21.0 230 65 -35 4.03 0.3563 WVFGRD96 22.0 230 65 -35 4.04 0.3601 WVFGRD96 23.0 230 65 -35 4.05 0.3635 WVFGRD96 24.0 230 70 -35 4.06 0.3651 WVFGRD96 25.0 230 70 -35 4.07 0.3670 WVFGRD96 26.0 230 70 -35 4.08 0.3674 WVFGRD96 27.0 230 70 -35 4.09 0.3687 WVFGRD96 28.0 230 80 -40 4.09 0.3699 WVFGRD96 29.0 230 80 -40 4.10 0.3743 WVFGRD96 30.0 225 75 -40 4.12 0.3805 WVFGRD96 31.0 45 55 -45 4.11 0.3919 WVFGRD96 32.0 40 50 -55 4.12 0.4067 WVFGRD96 33.0 45 50 -50 4.13 0.4223 WVFGRD96 34.0 40 50 -55 4.14 0.4367 WVFGRD96 35.0 35 45 -60 4.15 0.4522 WVFGRD96 36.0 35 45 -65 4.16 0.4630 WVFGRD96 37.0 35 45 -65 4.17 0.4723 WVFGRD96 38.0 20 35 -80 4.19 0.4831 WVFGRD96 39.0 15 35 -85 4.21 0.4933 WVFGRD96 40.0 15 35 -90 4.30 0.5248 WVFGRD96 41.0 195 55 -90 4.32 0.5333 WVFGRD96 42.0 195 55 -90 4.33 0.5395 WVFGRD96 43.0 195 55 -90 4.34 0.5442 WVFGRD96 44.0 200 55 -85 4.36 0.5491 WVFGRD96 45.0 200 55 -80 4.37 0.5539 WVFGRD96 46.0 200 55 -80 4.38 0.5561 WVFGRD96 47.0 205 55 -75 4.39 0.5590 WVFGRD96 48.0 205 55 -75 4.39 0.5611 WVFGRD96 49.0 205 55 -75 4.40 0.5622 WVFGRD96 50.0 205 55 -75 4.40 0.5626 WVFGRD96 51.0 205 55 -75 4.41 0.5607 WVFGRD96 52.0 205 55 -75 4.41 0.5588 WVFGRD96 53.0 205 55 -75 4.41 0.5549 WVFGRD96 54.0 205 55 -75 4.41 0.5526 WVFGRD96 55.0 205 55 -75 4.41 0.5477 WVFGRD96 56.0 205 55 -75 4.41 0.5432 WVFGRD96 57.0 205 55 -75 4.41 0.5381 WVFGRD96 58.0 205 55 -75 4.41 0.5327 WVFGRD96 59.0 205 55 -75 4.41 0.5277
The best solution is
WVFGRD96 50.0 205 55 -75 4.40 0.5626
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -40 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00