The ANSS event ID is ak0258n34qy5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0258n34qy5/executive.
2025/07/07 10:24:12 63.120 -150.853 122.2 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/07/07 10:24:12.0 63.12 -150.85 122.2 3.9 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.DHY AK.GHO AK.H23K AK.HDA AK.I21K AK.I23K AK.J20K AK.J25K AK.K24K AK.KNK AK.L22K AK.M20K AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.RND AK.SAW AK.SCM AK.SKN AK.WAT6 AT.PMR AV.SPCL IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 2.19e+22 dyne-cm Mw = 4.16 Z = 120 km Plane Strike Dip Rake NP1 60 55 70 NP2 272 40 116 Principal Axes: Axis Value Plunge Azimuth T 2.19e+22 72 279 N 0.00e+00 16 72 P -2.19e+22 8 164 Moment Tensor: (dyne-cm) Component Value Mxx -1.98e+22 Mxy 5.30e+21 Mxz 3.94e+21 Myy 4.79e+20 Myz -7.23e+21 Mzz 1.93e+22 -------------- ---------------------- ---------------------------- ------------------------------ -----------##########------------- -------#####################-------- -----###########################-----# ---#################################-### --##################################--## -############## ##################----## ############### T #################------# ############### ################-------- ################################---------- #############################----------- ##########################-------------- ######################---------------- #################------------------- ---------------------------------- ------------------------------ ---------------------------- --------------- ---- ----------- P Global CMT Convention Moment Tensor: R T P 1.93e+22 3.94e+21 7.23e+21 3.94e+21 -1.98e+22 -5.30e+21 7.23e+21 -5.30e+21 4.79e+20 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250707102412/index.html |
STK = 60 DIP = 55 RAKE = 70 MW = 4.16 HS = 120.0
The NDK file is 20250707102412.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 100 45 -90 3.32 0.1947 WVFGRD96 4.0 270 75 -75 3.35 0.1592 WVFGRD96 6.0 275 80 -75 3.35 0.2050 WVFGRD96 8.0 150 20 -35 3.45 0.2318 WVFGRD96 10.0 135 65 60 3.51 0.2584 WVFGRD96 12.0 165 55 55 3.55 0.2806 WVFGRD96 14.0 165 50 45 3.57 0.2874 WVFGRD96 16.0 165 50 45 3.60 0.2879 WVFGRD96 18.0 165 50 45 3.62 0.2833 WVFGRD96 20.0 165 50 45 3.64 0.2741 WVFGRD96 22.0 205 35 45 3.66 0.2638 WVFGRD96 24.0 230 40 50 3.68 0.2557 WVFGRD96 26.0 230 40 50 3.70 0.2458 WVFGRD96 28.0 235 45 60 3.71 0.2354 WVFGRD96 30.0 240 45 70 3.72 0.2266 WVFGRD96 32.0 205 45 -70 3.75 0.2420 WVFGRD96 34.0 205 45 -70 3.79 0.2751 WVFGRD96 36.0 205 45 -75 3.81 0.2991 WVFGRD96 38.0 205 45 -75 3.83 0.3092 WVFGRD96 40.0 260 50 -85 3.93 0.3084 WVFGRD96 42.0 200 45 -75 3.97 0.3081 WVFGRD96 44.0 265 50 -75 3.98 0.2989 WVFGRD96 46.0 265 50 -75 4.00 0.2921 WVFGRD96 48.0 265 50 -75 4.00 0.2839 WVFGRD96 50.0 240 55 65 3.99 0.2792 WVFGRD96 52.0 245 55 70 4.01 0.2893 WVFGRD96 54.0 250 35 75 4.01 0.3111 WVFGRD96 56.0 250 35 80 4.03 0.3422 WVFGRD96 58.0 250 35 85 4.05 0.3684 WVFGRD96 60.0 70 50 85 4.06 0.3948 WVFGRD96 62.0 65 50 80 4.07 0.4183 WVFGRD96 64.0 65 45 80 4.07 0.4366 WVFGRD96 66.0 65 45 80 4.08 0.4574 WVFGRD96 68.0 65 45 80 4.08 0.4777 WVFGRD96 70.0 60 50 75 4.09 0.4982 WVFGRD96 72.0 60 50 75 4.09 0.5184 WVFGRD96 74.0 60 50 75 4.09 0.5376 WVFGRD96 76.0 60 50 70 4.10 0.5551 WVFGRD96 78.0 60 50 70 4.10 0.5723 WVFGRD96 80.0 60 55 70 4.11 0.5894 WVFGRD96 82.0 60 55 70 4.12 0.6060 WVFGRD96 84.0 60 55 70 4.12 0.6205 WVFGRD96 86.0 60 55 70 4.12 0.6327 WVFGRD96 88.0 60 55 70 4.13 0.6447 WVFGRD96 90.0 60 55 70 4.13 0.6562 WVFGRD96 92.0 60 55 70 4.13 0.6655 WVFGRD96 94.0 60 55 70 4.13 0.6736 WVFGRD96 96.0 60 55 70 4.14 0.6806 WVFGRD96 98.0 60 55 70 4.14 0.6869 WVFGRD96 100.0 60 55 70 4.14 0.6925 WVFGRD96 102.0 60 55 70 4.14 0.6971 WVFGRD96 104.0 60 55 70 4.15 0.7010 WVFGRD96 106.0 60 55 70 4.15 0.7048 WVFGRD96 108.0 60 55 70 4.15 0.7069 WVFGRD96 110.0 60 55 70 4.15 0.7095 WVFGRD96 112.0 60 55 70 4.15 0.7110 WVFGRD96 114.0 60 55 70 4.16 0.7123 WVFGRD96 116.0 60 55 70 4.16 0.7147 WVFGRD96 118.0 60 55 70 4.16 0.7144 WVFGRD96 120.0 60 55 70 4.16 0.7151 WVFGRD96 122.0 60 55 70 4.17 0.7143 WVFGRD96 124.0 60 50 70 4.16 0.7138 WVFGRD96 126.0 60 50 70 4.16 0.7137 WVFGRD96 128.0 60 50 70 4.17 0.7126 WVFGRD96 130.0 60 50 70 4.17 0.7112 WVFGRD96 132.0 60 50 70 4.17 0.7089 WVFGRD96 134.0 60 50 70 4.17 0.7079 WVFGRD96 136.0 60 50 70 4.18 0.7057 WVFGRD96 138.0 60 50 70 4.18 0.7035 WVFGRD96 140.0 60 50 70 4.18 0.7006 WVFGRD96 142.0 60 50 70 4.18 0.6987 WVFGRD96 144.0 60 50 70 4.18 0.6960 WVFGRD96 146.0 60 50 70 4.19 0.6931 WVFGRD96 148.0 60 50 70 4.19 0.6913
The best solution is
WVFGRD96 120.0 60 55 70 4.16 0.7151
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00