Location

Location ANSS

The ANSS event ID is ak0258n34qy5 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0258n34qy5/executive.

2025/07/07 10:24:12 63.120 -150.853 122.2 3.9 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/07/07 10:24:12.0  63.12 -150.85 122.2 3.9 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.GHO AK.H23K AK.HDA AK.I21K 
   AK.I23K AK.J20K AK.J25K AK.K24K AK.KNK AK.L22K AK.M20K 
   AK.MCK AK.MLY AK.NEA2 AK.PAX AK.POKR AK.PPLA AK.RND AK.SAW 
   AK.SCM AK.SKN AK.WAT6 AT.PMR AV.SPCL IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 2.19e+22 dyne-cm
  Mw = 4.16 
  Z  = 120 km
  Plane   Strike  Dip  Rake
   NP1       60    55    70
   NP2      272    40   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.19e+22     72     279
    N   0.00e+00     16      72
    P  -2.19e+22      8     164

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.98e+22
       Mxy     5.30e+21
       Mxz     3.94e+21
       Myy     4.79e+20
       Myz    -7.23e+21
       Mzz     1.93e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           -----------##########-------------        
          -------#####################--------       
         -----###########################-----#      
        ---#################################-###     
        --##################################--##     
       -##############   ##################----##    
       ############### T #################------#    
       ###############   ################--------    
       ################################----------    
        #############################-----------     
        ##########################--------------     
         ######################----------------      
          #################-------------------       
           ----------------------------------        
             ------------------------------          
              ----------------------------           
                 ---------------   ----              
                     ----------- P                   
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.93e+22   3.94e+21   7.23e+21 
  3.94e+21  -1.98e+22  -5.30e+21 
  7.23e+21  -5.30e+21   4.79e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250707102412/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 60
      DIP = 55
     RAKE = 70
       MW = 4.16
       HS = 120.0

The NDK file is 20250707102412.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   100    45   -90   3.32 0.1947
WVFGRD96    4.0   270    75   -75   3.35 0.1592
WVFGRD96    6.0   275    80   -75   3.35 0.2050
WVFGRD96    8.0   150    20   -35   3.45 0.2318
WVFGRD96   10.0   135    65    60   3.51 0.2584
WVFGRD96   12.0   165    55    55   3.55 0.2806
WVFGRD96   14.0   165    50    45   3.57 0.2874
WVFGRD96   16.0   165    50    45   3.60 0.2879
WVFGRD96   18.0   165    50    45   3.62 0.2833
WVFGRD96   20.0   165    50    45   3.64 0.2741
WVFGRD96   22.0   205    35    45   3.66 0.2638
WVFGRD96   24.0   230    40    50   3.68 0.2557
WVFGRD96   26.0   230    40    50   3.70 0.2458
WVFGRD96   28.0   235    45    60   3.71 0.2354
WVFGRD96   30.0   240    45    70   3.72 0.2266
WVFGRD96   32.0   205    45   -70   3.75 0.2420
WVFGRD96   34.0   205    45   -70   3.79 0.2751
WVFGRD96   36.0   205    45   -75   3.81 0.2991
WVFGRD96   38.0   205    45   -75   3.83 0.3092
WVFGRD96   40.0   260    50   -85   3.93 0.3084
WVFGRD96   42.0   200    45   -75   3.97 0.3081
WVFGRD96   44.0   265    50   -75   3.98 0.2989
WVFGRD96   46.0   265    50   -75   4.00 0.2921
WVFGRD96   48.0   265    50   -75   4.00 0.2839
WVFGRD96   50.0   240    55    65   3.99 0.2792
WVFGRD96   52.0   245    55    70   4.01 0.2893
WVFGRD96   54.0   250    35    75   4.01 0.3111
WVFGRD96   56.0   250    35    80   4.03 0.3422
WVFGRD96   58.0   250    35    85   4.05 0.3684
WVFGRD96   60.0    70    50    85   4.06 0.3948
WVFGRD96   62.0    65    50    80   4.07 0.4183
WVFGRD96   64.0    65    45    80   4.07 0.4366
WVFGRD96   66.0    65    45    80   4.08 0.4574
WVFGRD96   68.0    65    45    80   4.08 0.4777
WVFGRD96   70.0    60    50    75   4.09 0.4982
WVFGRD96   72.0    60    50    75   4.09 0.5184
WVFGRD96   74.0    60    50    75   4.09 0.5376
WVFGRD96   76.0    60    50    70   4.10 0.5551
WVFGRD96   78.0    60    50    70   4.10 0.5723
WVFGRD96   80.0    60    55    70   4.11 0.5894
WVFGRD96   82.0    60    55    70   4.12 0.6060
WVFGRD96   84.0    60    55    70   4.12 0.6205
WVFGRD96   86.0    60    55    70   4.12 0.6327
WVFGRD96   88.0    60    55    70   4.13 0.6447
WVFGRD96   90.0    60    55    70   4.13 0.6562
WVFGRD96   92.0    60    55    70   4.13 0.6655
WVFGRD96   94.0    60    55    70   4.13 0.6736
WVFGRD96   96.0    60    55    70   4.14 0.6806
WVFGRD96   98.0    60    55    70   4.14 0.6869
WVFGRD96  100.0    60    55    70   4.14 0.6925
WVFGRD96  102.0    60    55    70   4.14 0.6971
WVFGRD96  104.0    60    55    70   4.15 0.7010
WVFGRD96  106.0    60    55    70   4.15 0.7048
WVFGRD96  108.0    60    55    70   4.15 0.7069
WVFGRD96  110.0    60    55    70   4.15 0.7095
WVFGRD96  112.0    60    55    70   4.15 0.7110
WVFGRD96  114.0    60    55    70   4.16 0.7123
WVFGRD96  116.0    60    55    70   4.16 0.7147
WVFGRD96  118.0    60    55    70   4.16 0.7144
WVFGRD96  120.0    60    55    70   4.16 0.7151
WVFGRD96  122.0    60    55    70   4.17 0.7143
WVFGRD96  124.0    60    50    70   4.16 0.7138
WVFGRD96  126.0    60    50    70   4.16 0.7137
WVFGRD96  128.0    60    50    70   4.17 0.7126
WVFGRD96  130.0    60    50    70   4.17 0.7112
WVFGRD96  132.0    60    50    70   4.17 0.7089
WVFGRD96  134.0    60    50    70   4.17 0.7079
WVFGRD96  136.0    60    50    70   4.18 0.7057
WVFGRD96  138.0    60    50    70   4.18 0.7035
WVFGRD96  140.0    60    50    70   4.18 0.7006
WVFGRD96  142.0    60    50    70   4.18 0.6987
WVFGRD96  144.0    60    50    70   4.18 0.6960
WVFGRD96  146.0    60    50    70   4.19 0.6931
WVFGRD96  148.0    60    50    70   4.19 0.6913

The best solution is

WVFGRD96  120.0    60    55    70   4.16 0.7151

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Jul 7 08:21:35 CDT 2025