Location

Location ANSS

The ANSS event ID is ak0258go7zsl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0258go7zsl/executive.

2025/07/03 22:40:12 61.851 -151.765 99.1 4.1 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/07/03 22:40:12.0  61.85 -151.76  99.1 4.1 Alaska
 
 Stations used:
   AK.BAE AK.BPAW AK.BRLK AK.CAST AK.DHY AK.DIV AK.FID AK.FIRE 
   AK.GHO AK.HIN AK.J20K AK.KLU AK.KNK AK.L19K AK.L22K AK.M20K 
   AK.MCK AK.N18K AK.N19K AK.O19K AK.P23K AK.PPLA AK.PWL 
   AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 
   AT.PMR AV.RED AV.SPCL AV.STLK 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 2.51e+22 dyne-cm
  Mw = 4.20 
  Z  = 106 km
  Plane   Strike  Dip  Rake
   NP1       90    55    65
   NP2      309    42   121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.51e+22     69     305
    N   0.00e+00     20     105
    P  -2.51e+22      7     198

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.14e+22
       Mxy    -8.70e+21
       Mxz     7.79e+21
       Myy    -7.60e+14
       Myz    -6.09e+21
       Mzz     2.14e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             -#############----------------          
           ####################--------------        
          ########################------------       
         ############################----------      
        ##############################----------     
        ##############   ###############--------     
       ############### T ################--------    
       ###############   #################-------    
       -###################################-----#    
       ---##################################--###    
        ----####################################     
        --------########################-----###     
         -------------############-----------##      
          -----------------------------------#       
           ---------------------------------#        
             ------------------------------          
              ----------------------------           
                 ----   ---------------              
                      P -----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.14e+22   7.79e+21   6.09e+21 
  7.79e+21  -2.14e+22   8.70e+21 
  6.09e+21   8.70e+21  -7.60e+14 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250703224012/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 90
      DIP = 55
     RAKE = 65
       MW = 4.20
       HS = 106.0

The NDK file is 20250703224012.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    55    45    90   3.31 0.1568
WVFGRD96    4.0   160    30    -5   3.37 0.1647
WVFGRD96    6.0   160    30     0   3.41 0.2126
WVFGRD96    8.0   155    30    -5   3.50 0.2415
WVFGRD96   10.0   170    35    25   3.55 0.2625
WVFGRD96   12.0   210    40    55   3.58 0.2806
WVFGRD96   14.0   210    40    55   3.61 0.2850
WVFGRD96   16.0   210    45    55   3.64 0.2859
WVFGRD96   18.0   215    45    55   3.66 0.2824
WVFGRD96   20.0   225    45    60   3.68 0.2731
WVFGRD96   22.0   225    50    55   3.70 0.2580
WVFGRD96   24.0   225    50    55   3.71 0.2394
WVFGRD96   26.0   230    50    55   3.71 0.2169
WVFGRD96   28.0    60    90   -35   3.76 0.2088
WVFGRD96   30.0   245    80    30   3.78 0.2163
WVFGRD96   32.0   245    75    30   3.80 0.2187
WVFGRD96   34.0   245    75    30   3.81 0.2193
WVFGRD96   36.0   245    75    30   3.83 0.2164
WVFGRD96   38.0   245    85    15   3.86 0.2147
WVFGRD96   40.0    65    85   -20   3.92 0.2341
WVFGRD96   42.0    65    85   -20   3.95 0.2432
WVFGRD96   44.0   245    75   -10   3.98 0.2532
WVFGRD96   46.0   245    75   -10   4.01 0.2681
WVFGRD96   48.0   245    75   -10   4.03 0.2803
WVFGRD96   50.0   245    70   -15   4.06 0.2928
WVFGRD96   52.0   245    70   -15   4.08 0.3048
WVFGRD96   54.0   245    75   -25   4.08 0.3117
WVFGRD96   56.0   245    75   -25   4.10 0.3171
WVFGRD96   58.0   245    75   -25   4.11 0.3214
WVFGRD96   60.0    95    50    60   4.06 0.3368
WVFGRD96   62.0    95    50    60   4.07 0.3591
WVFGRD96   64.0    95    50    60   4.09 0.3811
WVFGRD96   66.0    95    50    60   4.10 0.4015
WVFGRD96   68.0    95    50    60   4.11 0.4210
WVFGRD96   70.0    95    50    60   4.12 0.4388
WVFGRD96   72.0    95    50    60   4.12 0.4560
WVFGRD96   74.0    95    50    60   4.13 0.4702
WVFGRD96   76.0    95    50    60   4.14 0.4833
WVFGRD96   78.0    95    50    60   4.14 0.4940
WVFGRD96   80.0    95    50    60   4.15 0.5048
WVFGRD96   82.0    95    50    60   4.15 0.5145
WVFGRD96   84.0    95    50    60   4.16 0.5228
WVFGRD96   86.0    90    55    60   4.17 0.5303
WVFGRD96   88.0    90    55    60   4.17 0.5365
WVFGRD96   90.0    90    55    60   4.17 0.5415
WVFGRD96   92.0    90    55    60   4.18 0.5466
WVFGRD96   94.0    90    55    60   4.18 0.5504
WVFGRD96   96.0    90    55    60   4.18 0.5540
WVFGRD96   98.0    90    55    60   4.19 0.5564
WVFGRD96  100.0    90    55    60   4.19 0.5579
WVFGRD96  102.0    90    55    65   4.19 0.5589
WVFGRD96  104.0    90    55    65   4.19 0.5607
WVFGRD96  106.0    90    55    65   4.20 0.5617
WVFGRD96  108.0    90    55    65   4.20 0.5613
WVFGRD96  110.0    90    55    65   4.20 0.5611
WVFGRD96  112.0    90    55    65   4.20 0.5600
WVFGRD96  114.0    90    55    65   4.21 0.5590
WVFGRD96  116.0    90    55    65   4.21 0.5576
WVFGRD96  118.0    90    55    65   4.21 0.5548
WVFGRD96  120.0    90    55    65   4.21 0.5518
WVFGRD96  122.0    90    55    65   4.22 0.5498
WVFGRD96  124.0    90    55    65   4.22 0.5469
WVFGRD96  126.0    90    55    65   4.22 0.5430
WVFGRD96  128.0    90    55    65   4.22 0.5407
WVFGRD96  130.0    95    50    65   4.22 0.5367
WVFGRD96  132.0    95    50    65   4.22 0.5332
WVFGRD96  134.0    95    50    65   4.22 0.5308
WVFGRD96  136.0    95    50    65   4.22 0.5275
WVFGRD96  138.0    95    50    65   4.22 0.5246
WVFGRD96  140.0    95    50    65   4.23 0.5213
WVFGRD96  142.0    95    50    65   4.23 0.5184
WVFGRD96  144.0    95    50    65   4.23 0.5165
WVFGRD96  146.0    95    50    65   4.23 0.5131
WVFGRD96  148.0    95    50    65   4.24 0.5104

The best solution is

WVFGRD96  106.0    90    55    65   4.20 0.5617

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Jul 3 18:45:52 CDT 2025