Location

Location ANSS

The ANSS event ID is ak025805ddn1 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak025805ddn1/executive.

2025/06/23 23:28:09 63.257 -151.820 11.8 4.0 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/06/23 23:28:09.0  63.26 -151.82  11.8 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.DIV AK.DOT AK.FID AK.GCSA 
   AK.GHO AK.H17K AK.H22K AK.H23K AK.H24K AK.HARP AK.HDA 
   AK.HIN AK.I21K AK.J17K AK.J19K AK.J20K AK.J25K AK.K24K 
   AK.KLU AK.KNK AK.L17K AK.L19K AK.L22K AK.L26K AK.M19K 
   AK.M20K AK.MCK AK.MLY AK.N18K AK.NEA2 AK.O18K AK.O19K 
   AK.P23K AK.PAX AK.PPD AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND 
   AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 AK.WRH AT.PMR 
   AT.TTA AV.RED AV.SPCL AV.STLK AV.WAZA IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.40e+22 dyne-cm
  Mw = 4.03 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      220    60    90
   NP2       40    30    90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+22     75     130
    N   0.00e+00     -0     220
    P  -1.40e+22     15     310

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.00e+21
       Mxy     5.95e+21
       Mxz    -4.49e+21
       Myy    -7.10e+21
       Myz     5.35e+21
       Mzz     1.21e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -------------------------##-           
                -----------------##########          
           -- P --------------#############--        
          ---   ------------################--       
         ----------------###################---      
        ----------------#####################---     
        --------------#######################---     
       --------------#######################-----    
       ------------#########################-----    
       -----------############   ###########-----    
       ----------############# T ##########------    
        --------##############   #########------     
        --------#########################-------     
         ------#########################-------      
          -----########################-------       
           ----######################--------        
             -####################---------          
              -################-----------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.21e+22  -4.49e+21  -5.35e+21 
 -4.49e+21  -5.00e+21  -5.95e+21 
 -5.35e+21  -5.95e+21  -7.10e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250623232809/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 220
      DIP = 60
     RAKE = 90
       MW = 4.03
       HS = 16.0

The NDK file is 20250623232809.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2025/06/23 23:28:09.0  63.26 -151.82  11.8 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.DHY AK.DIV AK.DOT AK.FID AK.GCSA 
   AK.GHO AK.H17K AK.H22K AK.H23K AK.H24K AK.HARP AK.HDA 
   AK.HIN AK.I21K AK.J17K AK.J19K AK.J20K AK.J25K AK.K24K 
   AK.KLU AK.KNK AK.L17K AK.L19K AK.L22K AK.L26K AK.M19K 
   AK.M20K AK.MCK AK.MLY AK.N18K AK.NEA2 AK.O18K AK.O19K 
   AK.P23K AK.PAX AK.PPD AK.PPLA AK.PWL AK.RC01 AK.RIDG AK.RND 
   AK.SAW AK.SCM AK.SKN AK.SLK AK.SWD AK.WAT6 AK.WRH AT.PMR 
   AT.TTA AV.RED AV.SPCL AV.STLK AV.WAZA IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.40e+22 dyne-cm
  Mw = 4.03 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      220    60    90
   NP2       40    30    90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.40e+22     75     130
    N   0.00e+00     -0     220
    P  -1.40e+22     15     310

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.00e+21
       Mxy     5.95e+21
       Mxz    -4.49e+21
       Myy    -7.10e+21
       Myz     5.35e+21
       Mzz     1.21e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              -------------------------##-           
                -----------------##########          
           -- P --------------#############--        
          ---   ------------################--       
         ----------------###################---      
        ----------------#####################---     
        --------------#######################---     
       --------------#######################-----    
       ------------#########################-----    
       -----------############   ###########-----    
       ----------############# T ##########------    
        --------##############   #########------     
        --------#########################-------     
         ------#########################-------      
          -----########################-------       
           ----######################--------        
             -####################---------          
              -################-----------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.21e+22  -4.49e+21  -5.35e+21 
 -4.49e+21  -5.00e+21  -5.95e+21 
 -5.35e+21  -5.95e+21  -7.10e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250623232809/index.html
	
Regional Moment Tensor (Mwr)
Moment
1.605e+15 N-m
Magnitude
4.07 Mwr
Depth
17.0 km
Percent DC
94%
Half Duration
-
Catalog
US
Data Source
US
Contributor
US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	221	54	95
NP2	32	36	83
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.628e+15	80	153
N	-0.048e+15	4	38
P	-1.581e+15	9	307

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    40    45    90   3.58 0.2789
WVFGRD96    2.0    40    45    90   3.73 0.3666
WVFGRD96    3.0   185    60    30   3.67 0.2722
WVFGRD96    4.0   345    20    20   3.72 0.2693
WVFGRD96    5.0   345    15    25   3.74 0.3346
WVFGRD96    6.0   350    20    30   3.76 0.3931
WVFGRD96    7.0     5    20    45   3.77 0.4425
WVFGRD96    8.0     5    20    45   3.87 0.4783
WVFGRD96    9.0    20    20    65   3.89 0.5279
WVFGRD96   10.0    25    25    70   3.92 0.5709
WVFGRD96   11.0    35    25    85   3.95 0.6120
WVFGRD96   12.0    35    25    85   3.96 0.6451
WVFGRD96   13.0    35    30    85   3.99 0.6710
WVFGRD96   14.0   220    60    90   4.00 0.6909
WVFGRD96   15.0    40    30    90   4.02 0.7029
WVFGRD96   16.0   220    60    90   4.03 0.7084
WVFGRD96   17.0   220    60    90   4.04 0.7067
WVFGRD96   18.0    40    30    90   4.05 0.6983
WVFGRD96   19.0    40    30    90   4.05 0.6851
WVFGRD96   20.0    35    35    80   4.07 0.6677
WVFGRD96   21.0    35    35    80   4.08 0.6476
WVFGRD96   22.0   225    60    95   4.08 0.6243
WVFGRD96   23.0    30    35    75   4.09 0.6007
WVFGRD96   24.0    30    35    70   4.09 0.5758
WVFGRD96   25.0    25    35    65   4.09 0.5515
WVFGRD96   26.0    25    35    65   4.09 0.5265
WVFGRD96   27.0    40    80   -80   4.11 0.5053
WVFGRD96   28.0    40    80   -85   4.12 0.4894
WVFGRD96   29.0    40    80   -85   4.13 0.4720

The best solution is

WVFGRD96   16.0   220    60    90   4.03 0.7084

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Jun 23 19:54:39 CDT 2025