The ANSS event ID is ak0257egu4bq and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0257egu4bq/executive.
2025/06/10 12:28:19 61.908 -150.954 15.2 4.1 Alaska
USGS/SLU Moment Tensor Solution
ENS 2025/06/10 12:28:19.0 61.91 -150.95 15.2 4.1 Alaska
Stations used:
AK.BMR AK.BPAW AK.CAST AK.CCB AK.DIV AK.DOT AK.FID AK.FIRE
AK.GCSA AK.GHO AK.GLB AK.H23K AK.HARP AK.HDA AK.HIN AK.I21K
AK.I23K AK.J19K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK
AK.L17K AK.L19K AK.L22K AK.L26K AK.M16K AK.M26K AK.MCAR
AK.MCK AK.MLY AK.N18K AK.NEA2 AK.O18K AK.O19K AK.P17K
AK.P23K AK.POKR AK.PPLA AK.PWL AK.RAG AK.RC01 AK.RIDG
AK.RND AK.SAW AK.SCM AK.SLK AK.SSN AK.VRDI AK.WRH AT.PMR
AT.TTA AV.RED AV.SPCL AV.STLK IM.IL31 IU.COLA
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 9.23e+21 dyne-cm
Mw = 3.91
Z = 20 km
Plane Strike Dip Rake
NP1 174 52 102
NP2 335 40 75
Principal Axes:
Axis Value Plunge Azimuth
T 9.23e+21 79 134
N 0.00e+00 10 347
P -9.23e+21 6 256
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.92e+20
Mxy -2.37e+21
Mxz -1.00e+21
Myy -8.38e+21
Myz 2.18e+21
Mzz 8.78e+21
####----------
------####------------
--------########------------
--------############----------
---------###############----------
---------#################----------
----------###################---------
-----------####################---------
----------######################--------
-----------######################---------
-----------#######################--------
-----------########### #########--------
---------########## T ##########-------
P ---------########## ##########------
---------#######################------
-----------#####################------
-----------####################-----
-----------###################----
----------#################---
----------###############---
---------############-
-------#######
Global CMT Convention Moment Tensor:
R T P
8.78e+21 -1.00e+21 -2.18e+21
-1.00e+21 -3.92e+20 2.37e+21
-2.18e+21 2.37e+21 -8.38e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250610122819/index.html
|
STK = 335
DIP = 40
RAKE = 75
MW = 3.91
HS = 20.0
The NDK file is 20250610122819.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/06/10 12:28:19.0 61.91 -150.95 15.2 4.1 Alaska
Stations used:
AK.BMR AK.BPAW AK.CAST AK.CCB AK.DIV AK.DOT AK.FID AK.FIRE
AK.GCSA AK.GHO AK.GLB AK.H23K AK.HARP AK.HDA AK.HIN AK.I21K
AK.I23K AK.J19K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK
AK.L17K AK.L19K AK.L22K AK.L26K AK.M16K AK.M26K AK.MCAR
AK.MCK AK.MLY AK.N18K AK.NEA2 AK.O18K AK.O19K AK.P17K
AK.P23K AK.POKR AK.PPLA AK.PWL AK.RAG AK.RC01 AK.RIDG
AK.RND AK.SAW AK.SCM AK.SLK AK.SSN AK.VRDI AK.WRH AT.PMR
AT.TTA AV.RED AV.SPCL AV.STLK IM.IL31 IU.COLA
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 9.23e+21 dyne-cm
Mw = 3.91
Z = 20 km
Plane Strike Dip Rake
NP1 174 52 102
NP2 335 40 75
Principal Axes:
Axis Value Plunge Azimuth
T 9.23e+21 79 134
N 0.00e+00 10 347
P -9.23e+21 6 256
Moment Tensor: (dyne-cm)
Component Value
Mxx -3.92e+20
Mxy -2.37e+21
Mxz -1.00e+21
Myy -8.38e+21
Myz 2.18e+21
Mzz 8.78e+21
####----------
------####------------
--------########------------
--------############----------
---------###############----------
---------#################----------
----------###################---------
-----------####################---------
----------######################--------
-----------######################---------
-----------#######################--------
-----------########### #########--------
---------########## T ##########-------
P ---------########## ##########------
---------#######################------
-----------#####################------
-----------####################-----
-----------###################----
----------#################---
----------###############---
---------############-
-------#######
Global CMT Convention Moment Tensor:
R T P
8.78e+21 -1.00e+21 -2.18e+21
-1.00e+21 -3.92e+20 2.37e+21
-2.18e+21 2.37e+21 -8.38e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250610122819/index.html
|
Regional Moment Tensor (Mwr) Moment 9.905e+14 N-m Magnitude 3.93 Mwr Depth 19.0 km Percent DC 82% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 334 48 73 NP2 178 45 107 Principal Axes Axis Value Plunge Azimuth T 10.345e+14 78 172 N -0.947e+14 12 346 P -9.397e+14 1 76 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 215 45 -90 3.52 0.3119
WVFGRD96 2.0 215 45 -90 3.63 0.3891
WVFGRD96 3.0 220 40 -85 3.67 0.3061
WVFGRD96 4.0 70 75 -45 3.64 0.2626
WVFGRD96 5.0 70 85 -55 3.65 0.2772
WVFGRD96 6.0 285 25 0 3.65 0.3164
WVFGRD96 7.0 285 25 0 3.66 0.3544
WVFGRD96 8.0 285 20 0 3.74 0.3834
WVFGRD96 9.0 295 20 10 3.75 0.4224
WVFGRD96 10.0 315 20 35 3.77 0.4598
WVFGRD96 11.0 325 25 50 3.79 0.5002
WVFGRD96 12.0 325 30 60 3.82 0.5422
WVFGRD96 13.0 330 35 65 3.84 0.5833
WVFGRD96 14.0 330 40 70 3.86 0.6198
WVFGRD96 15.0 330 40 70 3.87 0.6506
WVFGRD96 16.0 335 40 75 3.88 0.6748
WVFGRD96 17.0 335 40 75 3.89 0.6929
WVFGRD96 18.0 330 40 70 3.89 0.7060
WVFGRD96 19.0 335 40 75 3.90 0.7147
WVFGRD96 20.0 335 40 75 3.91 0.7194
WVFGRD96 21.0 335 40 75 3.92 0.7186
WVFGRD96 22.0 330 40 70 3.93 0.7173
WVFGRD96 23.0 330 45 70 3.94 0.7133
WVFGRD96 24.0 330 45 70 3.94 0.7066
WVFGRD96 25.0 330 45 70 3.95 0.6976
WVFGRD96 26.0 330 45 70 3.95 0.6868
WVFGRD96 27.0 325 45 65 3.96 0.6740
WVFGRD96 28.0 325 45 65 3.97 0.6595
WVFGRD96 29.0 325 45 65 3.97 0.6431
The best solution is
WVFGRD96 20.0 335 40 75 3.91 0.7194
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00