Location

Location ANSS

The ANSS event ID is ak0257egu4bq and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0257egu4bq/executive.

2025/06/10 12:28:19 61.908 -150.954 15.2 4.1 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/06/10 12:28:19.0  61.91 -150.95  15.2 4.1 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.CAST AK.CCB AK.DIV AK.DOT AK.FID AK.FIRE 
   AK.GCSA AK.GHO AK.GLB AK.H23K AK.HARP AK.HDA AK.HIN AK.I21K 
   AK.I23K AK.J19K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK 
   AK.L17K AK.L19K AK.L22K AK.L26K AK.M16K AK.M26K AK.MCAR 
   AK.MCK AK.MLY AK.N18K AK.NEA2 AK.O18K AK.O19K AK.P17K 
   AK.P23K AK.POKR AK.PPLA AK.PWL AK.RAG AK.RC01 AK.RIDG 
   AK.RND AK.SAW AK.SCM AK.SLK AK.SSN AK.VRDI AK.WRH AT.PMR 
   AT.TTA AV.RED AV.SPCL AV.STLK IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 9.23e+21 dyne-cm
  Mw = 3.91 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      174    52   102
   NP2      335    40    75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.23e+21     79     134
    N   0.00e+00     10     347
    P  -9.23e+21      6     256

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.92e+20
       Mxy    -2.37e+21
       Mxz    -1.00e+21
       Myy    -8.38e+21
       Myz     2.18e+21
       Mzz     8.78e+21
                                                     
                                                     
                                                     
                                                     
                     ####----------                  
                 ------####------------              
              --------########------------           
             --------############----------          
           ---------###############----------        
          ---------#################----------       
         ----------###################---------      
        -----------####################---------     
        ----------######################--------     
       -----------######################---------    
       -----------#######################--------    
       -----------###########   #########--------    
          ---------########## T ##########-------    
        P ---------##########   ##########------     
          ---------#######################------     
         -----------#####################------      
          -----------####################-----       
           -----------###################----        
             ----------#################---          
              ----------###############---           
                 ---------############-              
                     -------#######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.78e+21  -1.00e+21  -2.18e+21 
 -1.00e+21  -3.92e+20   2.37e+21 
 -2.18e+21   2.37e+21  -8.38e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250610122819/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 335
      DIP = 40
     RAKE = 75
       MW = 3.91
       HS = 20.0

The NDK file is 20250610122819.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2025/06/10 12:28:19.0  61.91 -150.95  15.2 4.1 Alaska
 
 Stations used:
   AK.BMR AK.BPAW AK.CAST AK.CCB AK.DIV AK.DOT AK.FID AK.FIRE 
   AK.GCSA AK.GHO AK.GLB AK.H23K AK.HARP AK.HDA AK.HIN AK.I21K 
   AK.I23K AK.J19K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK 
   AK.L17K AK.L19K AK.L22K AK.L26K AK.M16K AK.M26K AK.MCAR 
   AK.MCK AK.MLY AK.N18K AK.NEA2 AK.O18K AK.O19K AK.P17K 
   AK.P23K AK.POKR AK.PPLA AK.PWL AK.RAG AK.RC01 AK.RIDG 
   AK.RND AK.SAW AK.SCM AK.SLK AK.SSN AK.VRDI AK.WRH AT.PMR 
   AT.TTA AV.RED AV.SPCL AV.STLK IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 9.23e+21 dyne-cm
  Mw = 3.91 
  Z  = 20 km
  Plane   Strike  Dip  Rake
   NP1      174    52   102
   NP2      335    40    75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.23e+21     79     134
    N   0.00e+00     10     347
    P  -9.23e+21      6     256

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.92e+20
       Mxy    -2.37e+21
       Mxz    -1.00e+21
       Myy    -8.38e+21
       Myz     2.18e+21
       Mzz     8.78e+21
                                                     
                                                     
                                                     
                                                     
                     ####----------                  
                 ------####------------              
              --------########------------           
             --------############----------          
           ---------###############----------        
          ---------#################----------       
         ----------###################---------      
        -----------####################---------     
        ----------######################--------     
       -----------######################---------    
       -----------#######################--------    
       -----------###########   #########--------    
          ---------########## T ##########-------    
        P ---------##########   ##########------     
          ---------#######################------     
         -----------#####################------      
          -----------####################-----       
           -----------###################----        
             ----------#################---          
              ----------###############---           
                 ---------############-              
                     -------#######                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  8.78e+21  -1.00e+21  -2.18e+21 
 -1.00e+21  -3.92e+20   2.37e+21 
 -2.18e+21   2.37e+21  -8.38e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250610122819/index.html
	
Regional Moment Tensor (Mwr)
Moment 9.905e+14 N-m
Magnitude 3.93 Mwr
Depth 19.0 km
Percent DC 82%
Half Duration -
Catalog US
Data Source US
Contributor US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	334	48	73
NP2	178	45	107
Principal Axes
Axis	Value	Plunge	Azimuth
T	10.345e+14	78	172
N	-0.947e+14	12	346
P	-9.397e+14	1	76

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   215    45   -90   3.52 0.3119
WVFGRD96    2.0   215    45   -90   3.63 0.3891
WVFGRD96    3.0   220    40   -85   3.67 0.3061
WVFGRD96    4.0    70    75   -45   3.64 0.2626
WVFGRD96    5.0    70    85   -55   3.65 0.2772
WVFGRD96    6.0   285    25     0   3.65 0.3164
WVFGRD96    7.0   285    25     0   3.66 0.3544
WVFGRD96    8.0   285    20     0   3.74 0.3834
WVFGRD96    9.0   295    20    10   3.75 0.4224
WVFGRD96   10.0   315    20    35   3.77 0.4598
WVFGRD96   11.0   325    25    50   3.79 0.5002
WVFGRD96   12.0   325    30    60   3.82 0.5422
WVFGRD96   13.0   330    35    65   3.84 0.5833
WVFGRD96   14.0   330    40    70   3.86 0.6198
WVFGRD96   15.0   330    40    70   3.87 0.6506
WVFGRD96   16.0   335    40    75   3.88 0.6748
WVFGRD96   17.0   335    40    75   3.89 0.6929
WVFGRD96   18.0   330    40    70   3.89 0.7060
WVFGRD96   19.0   335    40    75   3.90 0.7147
WVFGRD96   20.0   335    40    75   3.91 0.7194
WVFGRD96   21.0   335    40    75   3.92 0.7186
WVFGRD96   22.0   330    40    70   3.93 0.7173
WVFGRD96   23.0   330    45    70   3.94 0.7133
WVFGRD96   24.0   330    45    70   3.94 0.7066
WVFGRD96   25.0   330    45    70   3.95 0.6976
WVFGRD96   26.0   330    45    70   3.95 0.6868
WVFGRD96   27.0   325    45    65   3.96 0.6740
WVFGRD96   28.0   325    45    65   3.97 0.6595
WVFGRD96   29.0   325    45    65   3.97 0.6431

The best solution is

WVFGRD96   20.0   335    40    75   3.91 0.7194

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Jun 10 08:47:26 CDT 2025