The ANSS event ID is us6000qi0n and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000qi0n/executive.
2025/06/04 22:58:21 44.344 -115.019 13.8 4.0 Idaho
USGS/SLU Moment Tensor Solution
ENS 2025/06/04 22:58:21.0 44.34 -115.02 13.8 4.0 Idaho
Stations used:
IE.BCYI IE.NPRI IW.DLMT IW.LOHW IW.MFID IW.MOOW IW.PLID
IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT MB.CPMT MB.ECMT
MB.FCMT MB.GBMT MB.HRY MB.JTMT MB.LIMT MB.LRM MB.ODMT
MB.SMMT MB.SRMT MB.SXMT MB.WCMT UO.WAGON US.AHID US.BMO
US.BOZ US.ELK US.HLID US.MSO US.WVOR UW.AGNW UW.BRAN
UW.BURN UW.IZEE UW.LMONT UW.LNO UW.TUCA UW.UMAT WW.CNCL
WW.CTNW WW.IRMR WW.TYLR WY.YDD WY.YFT WY.YHB WY.YMR WY.YNE
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 6.76e+21 dyne-cm
Mw = 3.82
Z = 12 km
Plane Strike Dip Rake
NP1 140 80 -60
NP2 247 31 -161
Principal Axes:
Axis Value Plunge Azimuth
T 6.76e+21 29 206
N 0.00e+00 29 314
P -6.76e+21 47 81
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.11e+21
Mxy 1.56e+21
Mxz -3.09e+21
Myy -2.10e+21
Myz -4.59e+21
Mzz -2.00e+21
##############
######################
-###########################
---########---------------####
-----####-----------------------##
-----------------------------------#
------####----------------------------
-----#######----------------------------
----#########---------------------------
----############-------------- ---------
---##############------------- P ---------
---###############------------ ---------
--##################----------------------
-####################-------------------
-#####################------------------
#######################---------------
########################------------
######### #############---------
####### T ###############-----
###### ##################-
######################
##############
Global CMT Convention Moment Tensor:
R T P
-2.00e+21 -3.09e+21 4.59e+21
-3.09e+21 4.11e+21 -1.56e+21
4.59e+21 -1.56e+21 -2.10e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250604225821/index.html
|
STK = 140
DIP = 80
RAKE = -60
MW = 3.82
HS = 12.0
The NDK file is 20250604225821.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/06/04 22:58:21.0 44.34 -115.02 13.8 4.0 Idaho
Stations used:
IE.BCYI IE.NPRI IW.DLMT IW.LOHW IW.MFID IW.MOOW IW.PLID
IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT MB.CPMT MB.ECMT
MB.FCMT MB.GBMT MB.HRY MB.JTMT MB.LIMT MB.LRM MB.ODMT
MB.SMMT MB.SRMT MB.SXMT MB.WCMT UO.WAGON US.AHID US.BMO
US.BOZ US.ELK US.HLID US.MSO US.WVOR UW.AGNW UW.BRAN
UW.BURN UW.IZEE UW.LMONT UW.LNO UW.TUCA UW.UMAT WW.CNCL
WW.CTNW WW.IRMR WW.TYLR WY.YDD WY.YFT WY.YHB WY.YMR WY.YNE
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.08 n 3
Best Fitting Double Couple
Mo = 6.76e+21 dyne-cm
Mw = 3.82
Z = 12 km
Plane Strike Dip Rake
NP1 140 80 -60
NP2 247 31 -161
Principal Axes:
Axis Value Plunge Azimuth
T 6.76e+21 29 206
N 0.00e+00 29 314
P -6.76e+21 47 81
Moment Tensor: (dyne-cm)
Component Value
Mxx 4.11e+21
Mxy 1.56e+21
Mxz -3.09e+21
Myy -2.10e+21
Myz -4.59e+21
Mzz -2.00e+21
##############
######################
-###########################
---########---------------####
-----####-----------------------##
-----------------------------------#
------####----------------------------
-----#######----------------------------
----#########---------------------------
----############-------------- ---------
---##############------------- P ---------
---###############------------ ---------
--##################----------------------
-####################-------------------
-#####################------------------
#######################---------------
########################------------
######### #############---------
####### T ###############-----
###### ##################-
######################
##############
Global CMT Convention Moment Tensor:
R T P
-2.00e+21 -3.09e+21 4.59e+21
-3.09e+21 4.11e+21 -1.56e+21
4.59e+21 -1.56e+21 -2.10e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250604225821/index.html
|
Regional Moment Tensor (Mwr) Moment 7.888e+14 N-m Magnitude 3.86 Mwr Depth 9.0 km Percent DC 85% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 255 24 -150 NP2 137 78 -69 Principal Axes Axis Value Plunge Azimuth T 8.179e+14 30 210 N -0.617e+14 20 312 P -7.562e+14 52 71 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 310 45 -85 3.51 0.3158
WVFGRD96 2.0 125 45 -95 3.64 0.3927
WVFGRD96 3.0 135 55 -80 3.68 0.3395
WVFGRD96 4.0 145 90 70 3.71 0.4042
WVFGRD96 5.0 320 85 -70 3.71 0.4559
WVFGRD96 6.0 325 80 -65 3.72 0.4883
WVFGRD96 7.0 320 75 -65 3.72 0.5082
WVFGRD96 8.0 320 75 -70 3.80 0.5198
WVFGRD96 9.0 135 75 -65 3.80 0.5324
WVFGRD96 10.0 135 75 -65 3.81 0.5419
WVFGRD96 11.0 140 80 -60 3.81 0.5458
WVFGRD96 12.0 140 80 -60 3.82 0.5473
WVFGRD96 13.0 140 80 -60 3.83 0.5454
WVFGRD96 14.0 140 80 -55 3.84 0.5409
WVFGRD96 15.0 140 80 -55 3.85 0.5349
WVFGRD96 16.0 140 80 -55 3.86 0.5263
WVFGRD96 17.0 140 80 -55 3.87 0.5161
WVFGRD96 18.0 140 80 -55 3.87 0.5045
WVFGRD96 19.0 140 80 -55 3.88 0.4915
WVFGRD96 20.0 140 85 -55 3.89 0.4782
WVFGRD96 21.0 140 85 -55 3.90 0.4651
WVFGRD96 22.0 140 85 -55 3.91 0.4507
WVFGRD96 23.0 140 85 -55 3.92 0.4358
WVFGRD96 24.0 320 90 70 3.92 0.4219
WVFGRD96 25.0 140 90 -70 3.93 0.4112
WVFGRD96 26.0 140 90 -70 3.93 0.4001
WVFGRD96 27.0 320 90 70 3.94 0.3883
WVFGRD96 28.0 320 90 70 3.95 0.3761
WVFGRD96 29.0 140 85 -70 3.95 0.3634
The best solution is
WVFGRD96 12.0 140 80 -60 3.82 0.5473
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00