The ANSS event ID is us6000qhnl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000qhnl/executive.
2025/06/03 13:06:11 44.338 -115.013 12.8 3.9 Idaho
USGS/SLU Moment Tensor Solution ENS 2025/06/03 13:06:11.0 44.34 -115.01 12.8 3.9 Idaho Stations used: IE.BCYI IE.NPRI IW.DLMT IW.IMW IW.LOHW IW.MFID IW.MOOW IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT MB.CPMT MB.ECMT MB.FCMT MB.GBMT MB.JTMT MB.LIMT MB.LRM MB.SMMT MB.SXMT MB.WCMT UO.JAZZ UO.JOBT UO.WAGON US.AHID US.BMO US.BOZ US.ELK US.HLID US.HWUT US.MSO US.WVOR UU.BEID UU.BGU UU.HDUT UU.HVU UU.MCU UU.MOUT UU.SPU UW.AGNW UW.BRAN UW.BURN UW.DDRF UW.IRON UW.IZEE UW.LBRT UW.LMONT UW.LNO UW.TUCA UW.UMAT UW.WOLL UW.YPT WW.BILL WW.CNCL WW.CTNW WW.IRMR WW.TYLR WY.YDD WY.YFT WY.YHB WY.YMP WY.YMR WY.YNE Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 8.04e+21 dyne-cm Mw = 3.87 Z = 9 km Plane Strike Dip Rake NP1 102 50 -113 NP2 315 45 -65 Principal Axes: Axis Value Plunge Azimuth T 8.04e+21 3 208 N 0.00e+00 17 117 P -8.04e+21 72 306 Moment Tensor: (dyne-cm) Component Value Mxx 6.04e+21 Mxy 3.64e+21 Mxz -1.70e+21 Myy 1.24e+21 Myz 1.70e+21 Mzz -7.28e+21 ############## ###################### ############################ --------------################ --------------------############## -----------------------############# ---------------------------########### -----------------------------########### --------------- -------------######### #--------------- P --------------######### ##-------------- ---------------######## ####-------------------------------####### #####-------------------------------###### ######-----------------------------##### #########--------------------------###-- ############----------------------#--- ##################--------########-- ################################-- ############################## ### ###################### T ################### ############## Global CMT Convention Moment Tensor: R T P -7.28e+21 -1.70e+21 -1.70e+21 -1.70e+21 6.04e+21 -3.64e+21 -1.70e+21 -3.64e+21 1.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250603130611/index.html |
STK = 315 DIP = 45 RAKE = -65 MW = 3.87 HS = 9.0
The NDK file is 20250603130611.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/06/03 13:06:11.0 44.34 -115.01 12.8 3.9 Idaho Stations used: IE.BCYI IE.NPRI IW.DLMT IW.IMW IW.LOHW IW.MFID IW.MOOW IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT MB.CPMT MB.ECMT MB.FCMT MB.GBMT MB.JTMT MB.LIMT MB.LRM MB.SMMT MB.SXMT MB.WCMT UO.JAZZ UO.JOBT UO.WAGON US.AHID US.BMO US.BOZ US.ELK US.HLID US.HWUT US.MSO US.WVOR UU.BEID UU.BGU UU.HDUT UU.HVU UU.MCU UU.MOUT UU.SPU UW.AGNW UW.BRAN UW.BURN UW.DDRF UW.IRON UW.IZEE UW.LBRT UW.LMONT UW.LNO UW.TUCA UW.UMAT UW.WOLL UW.YPT WW.BILL WW.CNCL WW.CTNW WW.IRMR WW.TYLR WY.YDD WY.YFT WY.YHB WY.YMP WY.YMR WY.YNE Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 8.04e+21 dyne-cm Mw = 3.87 Z = 9 km Plane Strike Dip Rake NP1 102 50 -113 NP2 315 45 -65 Principal Axes: Axis Value Plunge Azimuth T 8.04e+21 3 208 N 0.00e+00 17 117 P -8.04e+21 72 306 Moment Tensor: (dyne-cm) Component Value Mxx 6.04e+21 Mxy 3.64e+21 Mxz -1.70e+21 Myy 1.24e+21 Myz 1.70e+21 Mzz -7.28e+21 ############## ###################### ############################ --------------################ --------------------############## -----------------------############# ---------------------------########### -----------------------------########### --------------- -------------######### #--------------- P --------------######### ##-------------- ---------------######## ####-------------------------------####### #####-------------------------------###### ######-----------------------------##### #########--------------------------###-- ############----------------------#--- ##################--------########-- ################################-- ############################## ### ###################### T ################### ############## Global CMT Convention Moment Tensor: R T P -7.28e+21 -1.70e+21 -1.70e+21 -1.70e+21 6.04e+21 -3.64e+21 -1.70e+21 -3.64e+21 1.24e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250603130611/index.html |
Regional Moment Tensor (Mwr) Moment 7.940e+14 N-m Magnitude 3.87 Mwr Depth 10.0 km Percent DC 72% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 112 48 -101 NP2 308 43 -78 Principal Axes Axis Value Plunge Azimuth T 8.469e+14 2 210 N -1.193e+14 8 119 P -7.276e+14 81 315" |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 350 85 -5 3.38 0.3349 WVFGRD96 2.0 345 75 10 3.56 0.5241 WVFGRD96 3.0 345 80 15 3.61 0.5709 WVFGRD96 4.0 340 60 -20 3.67 0.6021 WVFGRD96 5.0 335 55 -25 3.71 0.6544 WVFGRD96 6.0 330 50 -40 3.76 0.6952 WVFGRD96 7.0 325 50 -50 3.79 0.7269 WVFGRD96 8.0 315 40 -65 3.87 0.7524 WVFGRD96 9.0 315 45 -65 3.87 0.7660 WVFGRD96 10.0 325 50 -50 3.84 0.7623 WVFGRD96 11.0 330 55 -40 3.82 0.7545 WVFGRD96 12.0 335 60 -30 3.82 0.7460 WVFGRD96 13.0 335 60 -30 3.82 0.7379 WVFGRD96 14.0 335 60 -30 3.83 0.7277 WVFGRD96 15.0 335 65 -30 3.84 0.7167 WVFGRD96 16.0 335 65 -25 3.85 0.7048 WVFGRD96 17.0 340 70 -25 3.85 0.6927 WVFGRD96 18.0 340 70 -20 3.86 0.6805 WVFGRD96 19.0 340 70 -20 3.87 0.6675 WVFGRD96 20.0 340 70 -20 3.88 0.6544 WVFGRD96 21.0 340 70 -20 3.89 0.6406 WVFGRD96 22.0 340 70 -20 3.90 0.6264 WVFGRD96 23.0 340 65 -20 3.90 0.6116 WVFGRD96 24.0 340 65 -20 3.91 0.5973 WVFGRD96 25.0 340 65 -20 3.91 0.5825 WVFGRD96 26.0 340 65 -20 3.92 0.5675 WVFGRD96 27.0 340 65 -20 3.92 0.5526 WVFGRD96 28.0 340 65 -20 3.93 0.5371 WVFGRD96 29.0 340 65 -20 3.93 0.5222
The best solution is
WVFGRD96 9.0 315 45 -65 3.87 0.7660
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00