Location

Location ANSS

The ANSS event ID is us6000qhnl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000qhnl/executive.

2025/06/03 13:06:11 44.338 -115.013 12.8 3.9 Idaho

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/06/03 13:06:11.0  44.34 -115.01  12.8 3.9 Idaho
 
 Stations used:
   IE.BCYI IE.NPRI IW.DLMT IW.IMW IW.LOHW IW.MFID IW.MOOW 
   IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT MB.CPMT 
   MB.ECMT MB.FCMT MB.GBMT MB.JTMT MB.LIMT MB.LRM MB.SMMT 
   MB.SXMT MB.WCMT UO.JAZZ UO.JOBT UO.WAGON US.AHID US.BMO 
   US.BOZ US.ELK US.HLID US.HWUT US.MSO US.WVOR UU.BEID UU.BGU 
   UU.HDUT UU.HVU UU.MCU UU.MOUT UU.SPU UW.AGNW UW.BRAN 
   UW.BURN UW.DDRF UW.IRON UW.IZEE UW.LBRT UW.LMONT UW.LNO 
   UW.TUCA UW.UMAT UW.WOLL UW.YPT WW.BILL WW.CNCL WW.CTNW 
   WW.IRMR WW.TYLR WY.YDD WY.YFT WY.YHB WY.YMP WY.YMR WY.YNE 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      102    50   -113
   NP2      315    45   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21      3     208
    N   0.00e+00     17     117
    P  -8.04e+21     72     306

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.04e+21
       Mxy     3.64e+21
       Mxz    -1.70e+21
       Myy     1.24e+21
       Myz     1.70e+21
       Mzz    -7.28e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             --------------################          
           --------------------##############        
          -----------------------#############       
         ---------------------------###########      
        -----------------------------###########     
        ---------------   -------------#########     
       #--------------- P --------------#########    
       ##--------------   ---------------########    
       ####-------------------------------#######    
       #####-------------------------------######    
        ######-----------------------------#####     
        #########--------------------------###--     
         ############----------------------#---      
          ##################--------########--       
           ################################--        
             ##############################          
              ###   ######################           
                  T ###################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.28e+21  -1.70e+21  -1.70e+21 
 -1.70e+21   6.04e+21  -3.64e+21 
 -1.70e+21  -3.64e+21   1.24e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250603130611/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 315
      DIP = 45
     RAKE = -65
       MW = 3.87
       HS = 9.0

The NDK file is 20250603130611.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2025/06/03 13:06:11.0  44.34 -115.01  12.8 3.9 Idaho
 
 Stations used:
   IE.BCYI IE.NPRI IW.DLMT IW.IMW IW.LOHW IW.MFID IW.MOOW 
   IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT MB.CPMT 
   MB.ECMT MB.FCMT MB.GBMT MB.JTMT MB.LIMT MB.LRM MB.SMMT 
   MB.SXMT MB.WCMT UO.JAZZ UO.JOBT UO.WAGON US.AHID US.BMO 
   US.BOZ US.ELK US.HLID US.HWUT US.MSO US.WVOR UU.BEID UU.BGU 
   UU.HDUT UU.HVU UU.MCU UU.MOUT UU.SPU UW.AGNW UW.BRAN 
   UW.BURN UW.DDRF UW.IRON UW.IZEE UW.LBRT UW.LMONT UW.LNO 
   UW.TUCA UW.UMAT UW.WOLL UW.YPT WW.BILL WW.CNCL WW.CTNW 
   WW.IRMR WW.TYLR WY.YDD WY.YFT WY.YHB WY.YMP WY.YMR WY.YNE 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      102    50   -113
   NP2      315    45   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21      3     208
    N   0.00e+00     17     117
    P  -8.04e+21     72     306

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.04e+21
       Mxy     3.64e+21
       Mxz    -1.70e+21
       Myy     1.24e+21
       Myz     1.70e+21
       Mzz    -7.28e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             --------------################          
           --------------------##############        
          -----------------------#############       
         ---------------------------###########      
        -----------------------------###########     
        ---------------   -------------#########     
       #--------------- P --------------#########    
       ##--------------   ---------------########    
       ####-------------------------------#######    
       #####-------------------------------######    
        ######-----------------------------#####     
        #########--------------------------###--     
         ############----------------------#---      
          ##################--------########--       
           ################################--        
             ##############################          
              ###   ######################           
                  T ###################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.28e+21  -1.70e+21  -1.70e+21 
 -1.70e+21   6.04e+21  -3.64e+21 
 -1.70e+21  -3.64e+21   1.24e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250603130611/index.html
	
Regional Moment Tensor (Mwr)
Moment 7.940e+14 N-m
Magnitude 3.87 Mwr
Depth 10.0 km
Percent DC 72%
Half Duration -
Catalog US
Data Source US
Contributor US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	112	48	-101
NP2	308	43	-78
Principal Axes
Axis	Value	Plunge	Azimuth
T	8.469e+14	2	210
N	-1.193e+14	8	119
P	-7.276e+14	81	315"

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   350    85    -5   3.38 0.3349
WVFGRD96    2.0   345    75    10   3.56 0.5241
WVFGRD96    3.0   345    80    15   3.61 0.5709
WVFGRD96    4.0   340    60   -20   3.67 0.6021
WVFGRD96    5.0   335    55   -25   3.71 0.6544
WVFGRD96    6.0   330    50   -40   3.76 0.6952
WVFGRD96    7.0   325    50   -50   3.79 0.7269
WVFGRD96    8.0   315    40   -65   3.87 0.7524
WVFGRD96    9.0   315    45   -65   3.87 0.7660
WVFGRD96   10.0   325    50   -50   3.84 0.7623
WVFGRD96   11.0   330    55   -40   3.82 0.7545
WVFGRD96   12.0   335    60   -30   3.82 0.7460
WVFGRD96   13.0   335    60   -30   3.82 0.7379
WVFGRD96   14.0   335    60   -30   3.83 0.7277
WVFGRD96   15.0   335    65   -30   3.84 0.7167
WVFGRD96   16.0   335    65   -25   3.85 0.7048
WVFGRD96   17.0   340    70   -25   3.85 0.6927
WVFGRD96   18.0   340    70   -20   3.86 0.6805
WVFGRD96   19.0   340    70   -20   3.87 0.6675
WVFGRD96   20.0   340    70   -20   3.88 0.6544
WVFGRD96   21.0   340    70   -20   3.89 0.6406
WVFGRD96   22.0   340    70   -20   3.90 0.6264
WVFGRD96   23.0   340    65   -20   3.90 0.6116
WVFGRD96   24.0   340    65   -20   3.91 0.5973
WVFGRD96   25.0   340    65   -20   3.91 0.5825
WVFGRD96   26.0   340    65   -20   3.92 0.5675
WVFGRD96   27.0   340    65   -20   3.92 0.5526
WVFGRD96   28.0   340    65   -20   3.93 0.5371
WVFGRD96   29.0   340    65   -20   3.93 0.5222

The best solution is

WVFGRD96    9.0   315    45   -65   3.87 0.7660

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Tue Jun 3 08:51:23 CDT 2025