The ANSS event ID is nn00897585 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nn00897585/executive.
2025/05/14 12:35:19 41.112 -116.738 8.7 4.1 Nevada
USGS/SLU Moment Tensor Solution ENS 2025/05/14 12:35:19.0 41.11 -116.74 8.7 4.1 Nevada Stations used: BK.BIGV BK.EAGL BK.MNLT BK.MZTA BK.RAVE BK.SWNM IM.NV31 IW.MFID LB.TPH NC.AFD NC.LDH NN.BEK NN.BFC NN.DIX NN.KVN NN.LHV NN.MPK NN.PKB2 NN.PKB4 NN.PNT NN.PYM2 NN.R11B NN.YER UO.ADEL UO.PRONG UO.RANT UO.SLPT US.BMO US.DUG US.ELK US.HLID US.HWUT US.WVOR UU.BEID UU.BGU UU.CTU UU.FOR1 UU.FSU UU.HDUT UU.HVU UU.MCU UU.MOUT UU.NLU UU.NOQ UU.PSUT UU.SPU UW.TREE WW.CNCL WW.IRMR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.24e+21 dyne-cm Mw = 3.84 Z = 8 km Plane Strike Dip Rake NP1 30 55 -120 NP2 255 45 -55 Principal Axes: Axis Value Plunge Azimuth T 7.24e+21 5 141 N 0.00e+00 24 49 P -7.24e+21 65 242 Moment Tensor: (dyne-cm) Component Value Mxx 4.07e+21 Mxy -4.03e+21 Mxz 7.60e+20 Myy 1.87e+21 Myz 2.84e+21 Mzz -5.93e+21 ############## ###################### #########################--- ###########################--- #############################----- #############-----------------#----- ##########---------------------#####-- ########------------------------#######- ######-------------------------######### #####---------------------------########## ####---------------------------########### ###----------- --------------########### ##------------ P -------------############ ------------- ------------############ --------------------------############## ------------------------############## ----------------------############## -------------------############### --------------############ # -----------############## T ---################### ############## Global CMT Convention Moment Tensor: R T P -5.93e+21 7.60e+20 -2.84e+21 7.60e+20 4.07e+21 4.03e+21 -2.84e+21 4.03e+21 1.87e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250514123519/index.html |
STK = 255 DIP = 45 RAKE = -55 MW = 3.84 HS = 8.0
The NDK file is 20250514123519.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/05/14 12:35:19.0 41.11 -116.74 8.7 4.1 Nevada Stations used: BK.BIGV BK.EAGL BK.MNLT BK.MZTA BK.RAVE BK.SWNM IM.NV31 IW.MFID LB.TPH NC.AFD NC.LDH NN.BEK NN.BFC NN.DIX NN.KVN NN.LHV NN.MPK NN.PKB2 NN.PKB4 NN.PNT NN.PYM2 NN.R11B NN.YER UO.ADEL UO.PRONG UO.RANT UO.SLPT US.BMO US.DUG US.ELK US.HLID US.HWUT US.WVOR UU.BEID UU.BGU UU.CTU UU.FOR1 UU.FSU UU.HDUT UU.HVU UU.MCU UU.MOUT UU.NLU UU.NOQ UU.PSUT UU.SPU UW.TREE WW.CNCL WW.IRMR Filtering commands used: cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3 Best Fitting Double Couple Mo = 7.24e+21 dyne-cm Mw = 3.84 Z = 8 km Plane Strike Dip Rake NP1 30 55 -120 NP2 255 45 -55 Principal Axes: Axis Value Plunge Azimuth T 7.24e+21 5 141 N 0.00e+00 24 49 P -7.24e+21 65 242 Moment Tensor: (dyne-cm) Component Value Mxx 4.07e+21 Mxy -4.03e+21 Mxz 7.60e+20 Myy 1.87e+21 Myz 2.84e+21 Mzz -5.93e+21 ############## ###################### #########################--- ###########################--- #############################----- #############-----------------#----- ##########---------------------#####-- ########------------------------#######- ######-------------------------######### #####---------------------------########## ####---------------------------########### ###----------- --------------########### ##------------ P -------------############ ------------- ------------############ --------------------------############## ------------------------############## ----------------------############## -------------------############### --------------############ # -----------############## T ---################### ############## Global CMT Convention Moment Tensor: R T P -5.93e+21 7.60e+20 -2.84e+21 7.60e+20 4.07e+21 4.03e+21 -2.84e+21 4.03e+21 1.87e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250514123519/index.html |
Regional Moment Tensor (Mwr) Moment 8.340e+14 N-m Magnitude 3.88 Mwr Depth 7.0 km Percent DC 98% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 241 38 -76 NP2 44 53 -100 Principal Axes Axis Value Plunge Azimuth T 8.385e+14 7 141 N -0.092e+14 8 50 P -8.294e+14 79 272 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 270 65 -20 3.54 0.4246 WVFGRD96 2.0 270 55 -20 3.63 0.4771 WVFGRD96 3.0 270 40 -20 3.72 0.5181 WVFGRD96 4.0 265 40 -30 3.74 0.5555 WVFGRD96 5.0 265 45 -40 3.75 0.5837 WVFGRD96 6.0 265 50 -40 3.76 0.5977 WVFGRD96 7.0 265 50 -40 3.76 0.5992 WVFGRD96 8.0 255 45 -55 3.84 0.6173 WVFGRD96 9.0 260 50 -50 3.83 0.6044 WVFGRD96 10.0 265 55 -35 3.80 0.5888 WVFGRD96 11.0 270 60 -20 3.79 0.5760 WVFGRD96 12.0 110 60 35 3.81 0.5655 WVFGRD96 13.0 110 65 35 3.82 0.5613 WVFGRD96 14.0 110 65 30 3.82 0.5556 WVFGRD96 15.0 110 65 30 3.83 0.5469 WVFGRD96 16.0 110 65 25 3.83 0.5373 WVFGRD96 17.0 110 65 25 3.83 0.5262 WVFGRD96 18.0 110 65 25 3.84 0.5136 WVFGRD96 19.0 110 65 20 3.84 0.5007 WVFGRD96 20.0 105 65 15 3.84 0.4876 WVFGRD96 21.0 105 65 15 3.85 0.4750 WVFGRD96 22.0 105 65 10 3.85 0.4620 WVFGRD96 23.0 105 65 10 3.85 0.4492 WVFGRD96 24.0 105 65 10 3.86 0.4365 WVFGRD96 25.0 105 65 10 3.86 0.4237 WVFGRD96 26.0 105 65 10 3.87 0.4112 WVFGRD96 27.0 105 65 10 3.87 0.3987 WVFGRD96 28.0 105 65 5 3.88 0.3865 WVFGRD96 29.0 105 65 5 3.88 0.3745
The best solution is
WVFGRD96 8.0 255 45 -55 3.84 0.6173
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.06 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00