The ANSS event ID is uu80106731 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uu80106731/executive.
2025/05/01 06:11:18 40.317 -111.297 11.3 3.9 Utah
USGS/SLU Moment Tensor Solution
ENS 2025/05/01 06:11:18:0 40.32 -111.30 11.3 3.9 Utah
Stations used:
IM.PD31 US.AHID US.DUG US.ELK US.HWUT UU.BGU UU.BRPU
UU.CCUT UU.CTU UU.CVRU UU.ECUT UU.FOR1 UU.FSU UU.GAWY
UU.HDUT UU.HMU UU.HVU UU.LIUT UU.MCU UU.MMU UU.MOUT UU.MTPU
UU.NLU UU.NOQ UU.PNSU UU.PSUT UU.SGU UU.SPU UU.SRU UU.SVWY
UU.SWUT UU.SZCU UU.TCRU UU.TCU UU.TMU UU.WPUT UU.ZNPU
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 1.55e+22 dyne-cm
Mw = 4.06
Z = 13 km
Plane Strike Dip Rake
NP1 195 55 -75
NP2 350 38 -110
Principal Axes:
Axis Value Plunge Azimuth
T 1.55e+22 9 274
N 0.00e+00 12 6
P -1.55e+22 75 149
Moment Tensor: (dyne-cm)
Component Value
Mxx -7.00e+20
Mxy -6.71e+20
Mxz 3.55e+21
Myy 1.48e+22
Myz -4.35e+21
Mzz -1.41e+22
#######----###
############--########
#############-------########
############----------########
#############-------------########
#############---------------########
#############-----------------########
#############-------------------########
############--------------------########
##########---------------------########
T #########----------------------########
#########--------- ----------########
############--------- P ----------########
##########---------- ----------#######
##########-----------------------#######
#########----------------------#######
#########---------------------######
########--------------------######
######-------------------#####
######-----------------#####
####--------------####
#-----------##
Global CMT Convention Moment Tensor:
R T P
-1.41e+22 3.55e+21 4.35e+21
3.55e+21 -7.00e+20 6.71e+20
4.35e+21 6.71e+20 1.48e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250501061118/index.html
|
STK = 195
DIP = 55
RAKE = -75
MW = 4.06
HS = 13.0
The NDK file is 20250501061118.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/05/01 06:11:18:0 40.32 -111.30 11.3 3.9 Utah
Stations used:
IM.PD31 US.AHID US.DUG US.ELK US.HWUT UU.BGU UU.BRPU
UU.CCUT UU.CTU UU.CVRU UU.ECUT UU.FOR1 UU.FSU UU.GAWY
UU.HDUT UU.HMU UU.HVU UU.LIUT UU.MCU UU.MMU UU.MOUT UU.MTPU
UU.NLU UU.NOQ UU.PNSU UU.PSUT UU.SGU UU.SPU UU.SRU UU.SVWY
UU.SWUT UU.SZCU UU.TCRU UU.TCU UU.TMU UU.WPUT UU.ZNPU
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 1.55e+22 dyne-cm
Mw = 4.06
Z = 13 km
Plane Strike Dip Rake
NP1 195 55 -75
NP2 350 38 -110
Principal Axes:
Axis Value Plunge Azimuth
T 1.55e+22 9 274
N 0.00e+00 12 6
P -1.55e+22 75 149
Moment Tensor: (dyne-cm)
Component Value
Mxx -7.00e+20
Mxy -6.71e+20
Mxz 3.55e+21
Myy 1.48e+22
Myz -4.35e+21
Mzz -1.41e+22
#######----###
############--########
#############-------########
############----------########
#############-------------########
#############---------------########
#############-----------------########
#############-------------------########
############--------------------########
##########---------------------########
T #########----------------------########
#########--------- ----------########
############--------- P ----------########
##########---------- ----------#######
##########-----------------------#######
#########----------------------#######
#########---------------------######
########--------------------######
######-------------------#####
######-----------------#####
####--------------####
#-----------##
Global CMT Convention Moment Tensor:
R T P
-1.41e+22 3.55e+21 4.35e+21
3.55e+21 -7.00e+20 6.71e+20
4.35e+21 6.71e+20 1.48e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250501061118/index.html
|
Regional Moment Tensor (Mwr) Moment 1.825e+15 N-m Magnitude 4.11 Mwr Depth 11.0 km Percent DC 81% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 351 32 -107 NP2 191 60 -80 Principal Axes Axis Value Plunge Azimuth T 1.729e+15 14 274 N 0.180e+15 9 6 P -1.909e+15 73 127 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 70 45 95 3.61 0.2919
WVFGRD96 2.0 250 45 90 3.74 0.3517
WVFGRD96 3.0 220 75 65 3.78 0.2921
WVFGRD96 4.0 35 90 65 3.79 0.3559
WVFGRD96 5.0 205 80 -65 3.82 0.4253
WVFGRD96 6.0 200 75 -60 3.85 0.4855
WVFGRD96 7.0 190 65 -65 3.89 0.5389
WVFGRD96 8.0 200 70 -70 3.96 0.5703
WVFGRD96 9.0 195 65 -70 3.99 0.6172
WVFGRD96 10.0 190 60 -70 4.02 0.6527
WVFGRD96 11.0 195 60 -70 4.03 0.6762
WVFGRD96 12.0 195 60 -70 4.04 0.6891
WVFGRD96 13.0 195 55 -75 4.06 0.6929
WVFGRD96 14.0 195 55 -75 4.07 0.6893
WVFGRD96 15.0 195 60 -70 4.08 0.6788
WVFGRD96 16.0 200 60 -70 4.08 0.6635
WVFGRD96 17.0 200 60 -65 4.09 0.6442
WVFGRD96 18.0 200 60 -65 4.10 0.6217
WVFGRD96 19.0 200 65 -65 4.11 0.5970
WVFGRD96 20.0 205 65 -60 4.11 0.5723
WVFGRD96 21.0 205 70 -65 4.12 0.5497
WVFGRD96 22.0 205 70 -65 4.13 0.5258
WVFGRD96 23.0 210 75 -60 4.13 0.5025
WVFGRD96 24.0 210 75 -60 4.13 0.4795
WVFGRD96 25.0 210 75 -60 4.14 0.4561
WVFGRD96 26.0 210 75 -60 4.14 0.4326
WVFGRD96 27.0 215 80 -60 4.14 0.4104
WVFGRD96 28.0 215 80 -60 4.14 0.3881
WVFGRD96 29.0 215 85 -65 4.15 0.3665
The best solution is
WVFGRD96 13.0 195 55 -75 4.06 0.6929
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00