The ANSS event ID is ak0255iimhly and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0255iimhly/executive.
2025/04/30 03:58:52 59.715 -152.729 87.2 4.0 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/04/30 03:58:52:0 59.72 -152.73 87.2 4.0 Alaska Stations used: AK.CAPN AK.GHO AK.N18K AK.O18K AK.O19K AK.P17K AK.PWL AK.RC01 AK.SLK AK.SSN AK.SWD AT.PMR AV.ACH AV.RED AV.SPCL AV.STLK II.KDAK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.60e+22 dyne-cm Mw = 4.21 Z = 120 km Plane Strike Dip Rake NP1 310 73 148 NP2 50 60 20 Principal Axes: Axis Value Plunge Azimuth T 2.60e+22 34 266 N 0.00e+00 54 104 P -2.60e+22 8 2 Moment Tensor: (dyne-cm) Component Value Mxx -2.54e+22 Mxy 1.18e+20 Mxz -4.45e+21 Myy 1.77e+22 Myz -1.22e+22 Mzz 7.70e+21 ------ P ----- ---------- --------- ---------------------------- ------------------------------ ######---------------------------# ###########-----------------------## ###############-------------------#### ###################---------------###### #####################------------####### #########################--------######### ###### ##################-----########## ###### T ####################--########### ###### ####################-############ ##########################-----######### ########################--------######## #####################------------##### #################----------------### ###########----------------------# ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 7.70e+21 -4.45e+21 1.22e+22 -4.45e+21 -2.54e+22 -1.18e+20 1.22e+22 -1.18e+20 1.77e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250430035852/index.html |
STK = 50 DIP = 60 RAKE = 20 MW = 4.21 HS = 120.0
The NDK file is 20250430035852.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 305 65 -25 3.22 0.0796 WVFGRD96 4.0 310 75 10 3.26 0.0875 WVFGRD96 6.0 310 65 15 3.34 0.0934 WVFGRD96 8.0 315 60 20 3.41 0.0967 WVFGRD96 10.0 35 80 -50 3.49 0.0992 WVFGRD96 12.0 40 85 -50 3.52 0.1021 WVFGRD96 14.0 225 90 50 3.55 0.1042 WVFGRD96 16.0 225 90 45 3.57 0.1072 WVFGRD96 18.0 45 90 -45 3.60 0.1115 WVFGRD96 20.0 45 90 -45 3.63 0.1164 WVFGRD96 22.0 40 90 -45 3.66 0.1219 WVFGRD96 24.0 40 90 -45 3.69 0.1272 WVFGRD96 26.0 225 85 40 3.71 0.1326 WVFGRD96 28.0 40 85 -45 3.74 0.1381 WVFGRD96 30.0 40 85 -45 3.76 0.1427 WVFGRD96 32.0 225 90 40 3.77 0.1456 WVFGRD96 34.0 45 90 -40 3.79 0.1480 WVFGRD96 36.0 225 90 40 3.81 0.1497 WVFGRD96 38.0 45 90 -35 3.84 0.1521 WVFGRD96 40.0 45 85 -50 3.95 0.1567 WVFGRD96 42.0 45 85 -45 3.96 0.1584 WVFGRD96 44.0 45 85 -45 3.98 0.1595 WVFGRD96 46.0 45 80 -40 3.99 0.1602 WVFGRD96 48.0 45 80 -40 4.01 0.1606 WVFGRD96 50.0 45 75 -35 4.03 0.1615 WVFGRD96 52.0 45 75 -35 4.04 0.1637 WVFGRD96 54.0 50 75 -30 4.06 0.1663 WVFGRD96 56.0 50 75 -25 4.07 0.1695 WVFGRD96 58.0 50 70 -25 4.09 0.1733 WVFGRD96 60.0 50 60 -10 4.09 0.1795 WVFGRD96 62.0 50 60 -5 4.10 0.1861 WVFGRD96 64.0 50 60 -5 4.11 0.1925 WVFGRD96 66.0 50 60 -5 4.12 0.1981 WVFGRD96 68.0 50 60 -5 4.13 0.2037 WVFGRD96 70.0 50 55 -5 4.15 0.2098 WVFGRD96 72.0 50 55 -5 4.16 0.2146 WVFGRD96 74.0 50 55 -5 4.16 0.2195 WVFGRD96 76.0 50 55 0 4.16 0.2240 WVFGRD96 78.0 50 55 0 4.17 0.2284 WVFGRD96 80.0 50 55 0 4.18 0.2320 WVFGRD96 82.0 50 55 0 4.18 0.2359 WVFGRD96 84.0 50 55 5 4.18 0.2385 WVFGRD96 86.0 50 55 5 4.18 0.2421 WVFGRD96 88.0 50 55 5 4.19 0.2450 WVFGRD96 90.0 50 55 5 4.19 0.2467 WVFGRD96 92.0 50 55 10 4.19 0.2494 WVFGRD96 94.0 50 55 10 4.20 0.2517 WVFGRD96 96.0 50 55 10 4.20 0.2534 WVFGRD96 98.0 50 55 10 4.20 0.2547 WVFGRD96 100.0 50 55 10 4.21 0.2561 WVFGRD96 102.0 50 55 15 4.21 0.2575 WVFGRD96 104.0 50 55 15 4.21 0.2589 WVFGRD96 106.0 50 55 15 4.21 0.2599 WVFGRD96 108.0 50 55 15 4.22 0.2604 WVFGRD96 110.0 50 60 20 4.20 0.2608 WVFGRD96 112.0 50 60 20 4.20 0.2613 WVFGRD96 114.0 50 60 20 4.20 0.2616 WVFGRD96 116.0 50 60 20 4.21 0.2617 WVFGRD96 118.0 50 60 20 4.21 0.2617 WVFGRD96 120.0 50 60 20 4.21 0.2618 WVFGRD96 122.0 50 60 25 4.21 0.2616 WVFGRD96 124.0 50 60 25 4.21 0.2613 WVFGRD96 126.0 50 60 25 4.21 0.2611 WVFGRD96 128.0 50 60 25 4.22 0.2608 WVFGRD96 130.0 210 90 -75 4.27 0.2612 WVFGRD96 132.0 30 90 75 4.27 0.2612 WVFGRD96 134.0 210 90 -75 4.27 0.2611 WVFGRD96 136.0 30 90 75 4.27 0.2606 WVFGRD96 138.0 30 90 75 4.27 0.2601 WVFGRD96 140.0 210 90 -75 4.26 0.2594 WVFGRD96 142.0 30 90 75 4.26 0.2584 WVFGRD96 144.0 210 90 -75 4.26 0.2569 WVFGRD96 146.0 35 85 75 4.26 0.2557 WVFGRD96 148.0 210 90 -70 4.24 0.2541
The best solution is
WVFGRD96 120.0 50 60 20 4.21 0.2618
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00