The ANSS event ID is ak0255ihrlkl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0255ihrlkl/executive.
2025/04/30 02:14:40 60.244 -152.665 104.6 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/04/30 02:14:40:0 60.24 -152.66 104.6 3.9 Alaska Stations used: AK.BRLK AK.GHO AK.HOM AK.L19K AK.O18K AK.O19K AK.RC01 AK.SKN AK.SSN AK.SWD AT.PMR AV.SPCL AV.STLK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 1.97e+22 dyne-cm Mw = 4.13 Z = 120 km Plane Strike Dip Rake NP1 288 54 127 NP2 55 50 50 Principal Axes: Axis Value Plunge Azimuth T 1.97e+22 60 258 N 0.00e+00 29 83 P -1.97e+22 2 352 Moment Tensor: (dyne-cm) Component Value Mxx -1.91e+22 Mxy 3.67e+21 Mxz -2.53e+21 Myy 4.23e+21 Myz -8.18e+21 Mzz 1.49e+22 --- P -------- ------- ------------ ---------------------------- ------------------------------ ---------------------------------- -----------------------------------# ---####################-------------## ############################---------### ###############################-----#### ###################################-###### ############ ####################-###### ############ T ###################----#### ############ ##################------### ##############################---------# ############################------------ #########################------------- #####################--------------- ###############------------------- ------------------------------ ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.49e+22 -2.53e+21 8.18e+21 -2.53e+21 -1.91e+22 -3.67e+21 8.18e+21 -3.67e+21 4.23e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250430021440/index.html |
STK = 55 DIP = 50 RAKE = 50 MW = 4.13 HS = 120.0
The NDK file is 20250430021440.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 90 45 -80 3.41 0.3092 WVFGRD96 4.0 135 65 20 3.40 0.2896 WVFGRD96 6.0 135 65 30 3.46 0.3147 WVFGRD96 8.0 135 60 35 3.53 0.3213 WVFGRD96 10.0 310 70 40 3.55 0.3348 WVFGRD96 12.0 310 65 40 3.58 0.3437 WVFGRD96 14.0 310 65 40 3.61 0.3435 WVFGRD96 16.0 310 65 40 3.63 0.3368 WVFGRD96 18.0 230 60 35 3.65 0.3335 WVFGRD96 20.0 225 60 30 3.66 0.3390 WVFGRD96 22.0 225 60 30 3.69 0.3459 WVFGRD96 24.0 225 60 30 3.71 0.3520 WVFGRD96 26.0 225 60 30 3.73 0.3584 WVFGRD96 28.0 225 60 30 3.75 0.3628 WVFGRD96 30.0 225 65 30 3.77 0.3647 WVFGRD96 32.0 225 70 25 3.79 0.3730 WVFGRD96 34.0 220 70 25 3.81 0.3809 WVFGRD96 36.0 220 70 25 3.83 0.3840 WVFGRD96 38.0 220 70 20 3.86 0.3852 WVFGRD96 40.0 225 65 35 3.93 0.3829 WVFGRD96 42.0 225 55 35 3.96 0.3790 WVFGRD96 44.0 225 55 35 3.98 0.3736 WVFGRD96 46.0 220 60 25 3.98 0.3677 WVFGRD96 48.0 220 60 25 3.99 0.3628 WVFGRD96 50.0 220 60 25 4.01 0.3575 WVFGRD96 52.0 20 60 -25 4.00 0.3590 WVFGRD96 54.0 20 60 -25 4.01 0.3609 WVFGRD96 56.0 35 50 35 4.02 0.3702 WVFGRD96 58.0 35 50 35 4.03 0.3849 WVFGRD96 60.0 35 50 35 4.03 0.3980 WVFGRD96 62.0 40 45 35 4.04 0.4099 WVFGRD96 64.0 40 45 35 4.04 0.4216 WVFGRD96 66.0 45 45 35 4.04 0.4316 WVFGRD96 68.0 45 45 35 4.04 0.4430 WVFGRD96 70.0 45 45 35 4.05 0.4524 WVFGRD96 72.0 45 45 35 4.05 0.4602 WVFGRD96 74.0 45 45 35 4.05 0.4675 WVFGRD96 76.0 45 45 35 4.06 0.4735 WVFGRD96 78.0 50 40 40 4.06 0.4782 WVFGRD96 80.0 50 45 40 4.06 0.4836 WVFGRD96 82.0 50 45 40 4.07 0.4891 WVFGRD96 84.0 50 45 40 4.07 0.4939 WVFGRD96 86.0 55 45 45 4.08 0.4984 WVFGRD96 88.0 55 45 50 4.09 0.5032 WVFGRD96 90.0 55 40 50 4.09 0.5081 WVFGRD96 92.0 55 40 50 4.09 0.5128 WVFGRD96 94.0 55 45 50 4.09 0.5161 WVFGRD96 96.0 55 45 50 4.10 0.5193 WVFGRD96 98.0 55 45 50 4.10 0.5227 WVFGRD96 100.0 55 45 50 4.10 0.5253 WVFGRD96 102.0 55 45 50 4.10 0.5273 WVFGRD96 104.0 55 45 50 4.11 0.5292 WVFGRD96 106.0 55 45 50 4.11 0.5319 WVFGRD96 108.0 55 45 50 4.11 0.5353 WVFGRD96 110.0 55 50 50 4.12 0.5377 WVFGRD96 112.0 55 50 50 4.12 0.5396 WVFGRD96 114.0 55 50 50 4.13 0.5431 WVFGRD96 116.0 55 50 50 4.13 0.5453 WVFGRD96 118.0 55 50 50 4.13 0.5455 WVFGRD96 120.0 55 50 50 4.13 0.5460 WVFGRD96 122.0 60 50 50 4.14 0.5459 WVFGRD96 124.0 55 50 50 4.14 0.5445 WVFGRD96 126.0 55 50 50 4.14 0.5457 WVFGRD96 128.0 60 45 50 4.14 0.5450 WVFGRD96 130.0 60 45 50 4.15 0.5442 WVFGRD96 132.0 60 45 50 4.15 0.5435 WVFGRD96 134.0 60 45 50 4.15 0.5428 WVFGRD96 136.0 60 45 50 4.15 0.5428 WVFGRD96 138.0 60 45 50 4.16 0.5420 WVFGRD96 140.0 60 45 50 4.16 0.5408 WVFGRD96 142.0 60 45 50 4.16 0.5403 WVFGRD96 144.0 60 50 50 4.17 0.5385 WVFGRD96 146.0 60 45 50 4.17 0.5379 WVFGRD96 148.0 60 45 50 4.17 0.5365
The best solution is
WVFGRD96 120.0 55 50 50 4.13 0.5460
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00