The ANSS event ID is ak02556vvgv8 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02556vvgv8/executive.
2025/04/23 00:24:51 61.807 -150.061 26.1 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2025/04/23 00:24:51:0 61.81 -150.06 26.1 4.5 Alaska
Stations used:
AK.BAE AK.BMR AK.BPAW AK.CAPN AK.CAST AK.FID AK.FIRE AK.GHO
AK.HIN AK.KNK AK.L22K AK.MCK AK.O19K AK.PAX AK.PWL AK.RAG
AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN
AK.SWD AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK
Filtering commands used:
cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.75e+22 dyne-cm
Mw = 4.44
Z = 46 km
Plane Strike Dip Rake
NP1 30 65 -50
NP2 147 46 -144
Principal Axes:
Axis Value Plunge Azimuth
T 5.75e+22 11 92
N 0.00e+00 36 190
P -5.75e+22 52 348
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.06e+22
Mxy 2.14e+21
Mxz -2.77e+22
Myy 5.44e+22
Myz 1.67e+22
Mzz -3.38e+22
--------------
---------------------#
##-----------------------###
##------------------------####
####--------- ------------######
####---------- P -----------########
#####---------- -----------#########
######------------------------##########
#######----------------------###########
########---------------------#############
########---------------------######### #
#########-------------------########## T #
##########-----------------########### #
##########---------------###############
###########------------#################
###########----------#################
############-------#################
#############---##################
############--################
########--------############
##--------------------
--------------
Global CMT Convention Moment Tensor:
R T P
-3.38e+22 -2.77e+22 -1.67e+22
-2.77e+22 -2.06e+22 -2.14e+21
-1.67e+22 -2.14e+21 5.44e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250423002451/index.html
|
STK = 30
DIP = 65
RAKE = -50
MW = 4.44
HS = 46.0
The NDK file is 20250423002451.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/04/23 00:24:51:0 61.81 -150.06 26.1 4.5 Alaska
Stations used:
AK.BAE AK.BMR AK.BPAW AK.CAPN AK.CAST AK.FID AK.FIRE AK.GHO
AK.HIN AK.KNK AK.L22K AK.MCK AK.O19K AK.PAX AK.PWL AK.RAG
AK.RC01 AK.RIDG AK.RND AK.SAW AK.SCM AK.SKN AK.SLK AK.SSN
AK.SWD AT.PMR AT.TTA AV.RED AV.SPCL AV.STLK
Filtering commands used:
cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 5.75e+22 dyne-cm
Mw = 4.44
Z = 46 km
Plane Strike Dip Rake
NP1 30 65 -50
NP2 147 46 -144
Principal Axes:
Axis Value Plunge Azimuth
T 5.75e+22 11 92
N 0.00e+00 36 190
P -5.75e+22 52 348
Moment Tensor: (dyne-cm)
Component Value
Mxx -2.06e+22
Mxy 2.14e+21
Mxz -2.77e+22
Myy 5.44e+22
Myz 1.67e+22
Mzz -3.38e+22
--------------
---------------------#
##-----------------------###
##------------------------####
####--------- ------------######
####---------- P -----------########
#####---------- -----------#########
######------------------------##########
#######----------------------###########
########---------------------#############
########---------------------######### #
#########-------------------########## T #
##########-----------------########### #
##########---------------###############
###########------------#################
###########----------#################
############-------#################
#############---##################
############--################
########--------############
##--------------------
--------------
Global CMT Convention Moment Tensor:
R T P
-3.38e+22 -2.77e+22 -1.67e+22
-2.77e+22 -2.06e+22 -2.14e+21
-1.67e+22 -2.14e+21 5.44e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250423002451/index.html
|
Regional Moment Tensor (Mwr) Moment 6.556e+15 N-m Magnitude 4.48 Mwr Depth 51.0 km Percent DC 90% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 21 51 -63 NP2 162 47 -119 Principal Axes Axis Value Plunge Azimuth T 6.714e+15 2 92 N -0.328e+15 21 183 P -6.386e+15 69 356 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 145 50 40 3.58 0.1482
WVFGRD96 2.0 340 45 70 3.76 0.1951
WVFGRD96 3.0 320 55 30 3.76 0.1908
WVFGRD96 4.0 125 50 -10 3.78 0.2032
WVFGRD96 5.0 125 55 -15 3.81 0.2190
WVFGRD96 6.0 125 55 -15 3.84 0.2310
WVFGRD96 7.0 125 60 -20 3.87 0.2397
WVFGRD96 8.0 125 55 -15 3.92 0.2431
WVFGRD96 9.0 50 65 35 3.95 0.2481
WVFGRD96 10.0 50 65 30 3.98 0.2563
WVFGRD96 11.0 50 65 30 4.00 0.2630
WVFGRD96 12.0 50 65 30 4.01 0.2682
WVFGRD96 13.0 50 65 30 4.03 0.2717
WVFGRD96 14.0 215 70 -30 4.04 0.2771
WVFGRD96 15.0 215 70 -25 4.06 0.2813
WVFGRD96 16.0 215 70 -25 4.08 0.2844
WVFGRD96 17.0 215 70 -25 4.09 0.2872
WVFGRD96 18.0 215 70 -25 4.10 0.2895
WVFGRD96 19.0 215 70 -25 4.11 0.2911
WVFGRD96 20.0 215 70 -25 4.13 0.2916
WVFGRD96 21.0 215 70 -25 4.14 0.2913
WVFGRD96 22.0 215 70 -25 4.15 0.2902
WVFGRD96 23.0 220 75 -20 4.16 0.2888
WVFGRD96 24.0 225 80 25 4.18 0.2922
WVFGRD96 25.0 225 75 25 4.19 0.2977
WVFGRD96 26.0 225 80 30 4.20 0.3043
WVFGRD96 27.0 40 80 -30 4.20 0.3095
WVFGRD96 28.0 40 80 -30 4.21 0.3187
WVFGRD96 29.0 40 80 -30 4.22 0.3300
WVFGRD96 30.0 40 80 -35 4.23 0.3407
WVFGRD96 31.0 40 75 -35 4.24 0.3515
WVFGRD96 32.0 40 75 -35 4.25 0.3639
WVFGRD96 33.0 40 75 -35 4.26 0.3745
WVFGRD96 34.0 35 70 -40 4.27 0.3857
WVFGRD96 35.0 35 70 -40 4.28 0.3936
WVFGRD96 36.0 35 70 -40 4.29 0.4016
WVFGRD96 37.0 35 70 -40 4.29 0.4068
WVFGRD96 38.0 35 70 -40 4.30 0.4119
WVFGRD96 39.0 35 70 -35 4.32 0.4168
WVFGRD96 40.0 35 70 -45 4.39 0.4225
WVFGRD96 41.0 35 70 -45 4.40 0.4274
WVFGRD96 42.0 35 70 -45 4.41 0.4289
WVFGRD96 43.0 30 65 -50 4.42 0.4326
WVFGRD96 44.0 30 65 -50 4.43 0.4347
WVFGRD96 45.0 30 65 -50 4.43 0.4350
WVFGRD96 46.0 30 65 -50 4.44 0.4364
WVFGRD96 47.0 30 65 -50 4.45 0.4359
WVFGRD96 48.0 30 65 -50 4.45 0.4348
WVFGRD96 49.0 30 65 -50 4.45 0.4344
WVFGRD96 50.0 30 60 -45 4.46 0.4316
WVFGRD96 51.0 30 60 -45 4.46 0.4319
WVFGRD96 52.0 30 60 -45 4.47 0.4292
WVFGRD96 53.0 30 60 -45 4.47 0.4292
WVFGRD96 54.0 30 65 -45 4.47 0.4266
WVFGRD96 55.0 30 65 -45 4.47 0.4260
WVFGRD96 56.0 30 65 -45 4.47 0.4233
WVFGRD96 57.0 30 65 -45 4.47 0.4224
WVFGRD96 58.0 30 65 -45 4.47 0.4195
WVFGRD96 59.0 35 70 -45 4.48 0.4190
The best solution is
WVFGRD96 46.0 30 65 -50 4.44 0.4364
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00