The ANSS event ID is ak02546r3kto and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02546r3kto/executive.
2025/04/01 15:44:30 63.060 -150.361 106.2 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/04/01 15:44:30:0 63.06 -150.36 106.2 3.7 Alaska Stations used: AK.CUT AK.GHO AK.K24K AK.KNK AK.L19K AK.L22K AK.MCK AK.PAX AK.RC01 AK.SSN AK.WRH AT.PMR IU.COLA Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 7.00e+21 dyne-cm Mw = 3.83 Z = 112 km Plane Strike Dip Rake NP1 333 85 155 NP2 65 65 5 Principal Axes: Axis Value Plunge Azimuth T 7.00e+21 21 286 N 0.00e+00 65 143 P -7.00e+21 14 22 Moment Tensor: (dyne-cm) Component Value Mxx -5.22e+21 Mxy -3.88e+21 Mxz -8.90e+20 Myy 4.76e+21 Myz -2.84e+21 Mzz 4.67e+20 ------------ ##-------------- P --- ######------------- ------ #########--------------------- ############---------------------- ##############---------------------- ################---------------------- ## #############--------------------## ## T ##############-----------------#### ### ###############---------------###### ######################------------######## #######################---------########## ########################-----############# ########################-############### #####################---################ ###############---------############## ------------------------############ ------------------------########## -----------------------####### ----------------------###### --------------------## -------------- Global CMT Convention Moment Tensor: R T P 4.67e+20 -8.90e+20 2.84e+21 -8.90e+20 -5.22e+21 3.88e+21 2.84e+21 3.88e+21 4.76e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250401154430/index.html |
STK = 65 DIP = 65 RAKE = 5 MW = 3.83 HS = 112.0
The NDK file is 20250401154430.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 150 65 -35 3.01 0.2750 WVFGRD96 4.0 345 70 30 3.10 0.2976 WVFGRD96 6.0 165 55 20 3.14 0.3305 WVFGRD96 8.0 165 55 20 3.21 0.3532 WVFGRD96 10.0 160 60 10 3.23 0.3600 WVFGRD96 12.0 340 80 30 3.28 0.3583 WVFGRD96 14.0 335 90 30 3.30 0.3568 WVFGRD96 16.0 155 85 -30 3.32 0.3529 WVFGRD96 18.0 335 90 30 3.34 0.3392 WVFGRD96 20.0 240 55 -25 3.39 0.3416 WVFGRD96 22.0 240 50 -20 3.42 0.3517 WVFGRD96 24.0 240 50 -15 3.44 0.3638 WVFGRD96 26.0 245 55 -15 3.46 0.3786 WVFGRD96 28.0 245 60 -15 3.48 0.3956 WVFGRD96 30.0 245 65 -15 3.50 0.4120 WVFGRD96 32.0 245 65 -5 3.51 0.4271 WVFGRD96 34.0 245 65 -5 3.54 0.4443 WVFGRD96 36.0 245 70 -5 3.56 0.4557 WVFGRD96 38.0 245 80 -10 3.58 0.4634 WVFGRD96 40.0 240 70 -15 3.65 0.4907 WVFGRD96 42.0 245 65 -5 3.67 0.4914 WVFGRD96 44.0 240 70 -10 3.69 0.4933 WVFGRD96 46.0 245 65 -5 3.71 0.4959 WVFGRD96 48.0 245 65 -5 3.73 0.4980 WVFGRD96 50.0 245 65 -5 3.75 0.5027 WVFGRD96 52.0 245 70 -5 3.75 0.5082 WVFGRD96 54.0 245 70 -5 3.76 0.5144 WVFGRD96 56.0 245 70 -5 3.78 0.5229 WVFGRD96 58.0 245 70 0 3.79 0.5297 WVFGRD96 60.0 245 85 -15 3.77 0.5361 WVFGRD96 62.0 245 85 -15 3.78 0.5433 WVFGRD96 64.0 245 75 0 3.81 0.5501 WVFGRD96 66.0 245 90 -15 3.78 0.5596 WVFGRD96 68.0 65 75 15 3.77 0.5689 WVFGRD96 70.0 65 75 15 3.77 0.5775 WVFGRD96 72.0 65 75 15 3.77 0.5861 WVFGRD96 74.0 65 70 15 3.78 0.5944 WVFGRD96 76.0 65 70 15 3.78 0.6012 WVFGRD96 78.0 65 70 15 3.78 0.6074 WVFGRD96 80.0 65 75 10 3.79 0.6127 WVFGRD96 82.0 65 70 10 3.79 0.6194 WVFGRD96 84.0 65 70 10 3.79 0.6248 WVFGRD96 86.0 65 70 10 3.80 0.6299 WVFGRD96 88.0 65 70 10 3.80 0.6322 WVFGRD96 90.0 65 70 10 3.80 0.6362 WVFGRD96 92.0 65 70 10 3.81 0.6393 WVFGRD96 94.0 65 70 10 3.81 0.6420 WVFGRD96 96.0 65 70 5 3.82 0.6446 WVFGRD96 98.0 65 70 5 3.82 0.6461 WVFGRD96 100.0 65 70 5 3.82 0.6483 WVFGRD96 102.0 65 70 5 3.82 0.6494 WVFGRD96 104.0 65 70 5 3.83 0.6488 WVFGRD96 106.0 65 70 5 3.83 0.6510 WVFGRD96 108.0 65 65 5 3.82 0.6507 WVFGRD96 110.0 65 65 5 3.83 0.6506 WVFGRD96 112.0 65 65 5 3.83 0.6510 WVFGRD96 114.0 65 65 5 3.83 0.6507 WVFGRD96 116.0 65 65 5 3.83 0.6507 WVFGRD96 118.0 65 60 10 3.82 0.6499 WVFGRD96 120.0 65 65 5 3.84 0.6482 WVFGRD96 122.0 65 60 10 3.83 0.6486 WVFGRD96 124.0 65 60 10 3.83 0.6468 WVFGRD96 126.0 65 60 10 3.83 0.6465 WVFGRD96 128.0 65 60 10 3.83 0.6448 WVFGRD96 130.0 65 60 10 3.84 0.6442 WVFGRD96 132.0 65 60 10 3.84 0.6430 WVFGRD96 134.0 65 60 10 3.84 0.6408 WVFGRD96 136.0 65 60 10 3.84 0.6402 WVFGRD96 138.0 65 60 10 3.84 0.6386 WVFGRD96 140.0 65 60 10 3.85 0.6375 WVFGRD96 142.0 65 55 15 3.84 0.6358 WVFGRD96 144.0 65 55 15 3.84 0.6353 WVFGRD96 146.0 65 55 15 3.85 0.6332 WVFGRD96 148.0 65 55 15 3.85 0.6322
The best solution is
WVFGRD96 112.0 65 65 5 3.83 0.6510
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00