Location

Location ANSS

The ANSS event ID is ak02543813cl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02543813cl/executive.

2025/03/30 02:01:58 63.429 -150.297 9.8 4.3 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/03/30 02:01:58:0  63.43 -150.30   9.8 4.3 Alaska
 
 Stations used:
   AK.BAE AK.BMR AK.BPAW AK.CAST AK.COLD AK.CUT AK.DHY AK.DIV 
   AK.DOT AK.FID AK.G23K AK.GCSA AK.GHO AK.GLB AK.H22K AK.H24K 
   AK.HARP AK.HDA AK.HIN AK.I21K AK.I23K AK.J17K AK.J20K 
   AK.J25K AK.K24K AK.KLU AK.KNK AK.L19K AK.L22K AK.L26K 
   AK.M20K AK.M26K AK.MCAR AK.MCK AK.MLY AK.N18K AK.N19K 
   AK.O19K AK.PAX AK.POKR AK.PPD AK.PWL AK.RC01 AK.RIDG AK.SSN 
   AK.SWD AK.VRDI AK.WRH AT.PMR AT.TTA AV.RED AV.STLK AV.WAZA 
   IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.91e+22 dyne-cm
  Mw = 4.12 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1       37    50    94
   NP2      210    40    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.91e+22     84     336
    N   0.00e+00      3     214
    P  -1.91e+22      5     124

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.60e+21
       Mxy     8.63e+21
       Mxz     2.75e+21
       Myy    -1.31e+22
       Myz    -2.22e+21
       Mzz     1.87e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ---------------#######              
              -------------##############-           
             -----------#################--          
           -----------####################---        
          ----------######################----       
         ----------#######################-----      
        ---------########################-------     
        --------#########################-------     
       ---------##########   ############--------    
       --------########### T ###########---------    
       -------############   ##########----------    
       -------########################-----------    
        ------#######################-----------     
        ------######################------------     
         -----####################---------   -      
          ----##################----------- P        
           ----###############-------------          
             --############----------------          
              --#######-------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.87e+22   2.75e+21   2.22e+21 
  2.75e+21  -5.60e+21  -8.63e+21 
  2.22e+21  -8.63e+21  -1.31e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250330020158/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 210
      DIP = 40
     RAKE = 85
       MW = 4.12
       HS = 17.0

The NDK file is 20250330020158.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2025/03/30 02:01:58:0  63.43 -150.30   9.8 4.3 Alaska
 
 Stations used:
   AK.BAE AK.BMR AK.BPAW AK.CAST AK.COLD AK.CUT AK.DHY AK.DIV 
   AK.DOT AK.FID AK.G23K AK.GCSA AK.GHO AK.GLB AK.H22K AK.H24K 
   AK.HARP AK.HDA AK.HIN AK.I21K AK.I23K AK.J17K AK.J20K 
   AK.J25K AK.K24K AK.KLU AK.KNK AK.L19K AK.L22K AK.L26K 
   AK.M20K AK.M26K AK.MCAR AK.MCK AK.MLY AK.N18K AK.N19K 
   AK.O19K AK.PAX AK.POKR AK.PPD AK.PWL AK.RC01 AK.RIDG AK.SSN 
   AK.SWD AK.VRDI AK.WRH AT.PMR AT.TTA AV.RED AV.STLK AV.WAZA 
   IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.91e+22 dyne-cm
  Mw = 4.12 
  Z  = 17 km
  Plane   Strike  Dip  Rake
   NP1       37    50    94
   NP2      210    40    85
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.91e+22     84     336
    N   0.00e+00      3     214
    P  -1.91e+22      5     124

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.60e+21
       Mxy     8.63e+21
       Mxz     2.75e+21
       Myy    -1.31e+22
       Myz    -2.22e+21
       Mzz     1.87e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ---------------#######              
              -------------##############-           
             -----------#################--          
           -----------####################---        
          ----------######################----       
         ----------#######################-----      
        ---------########################-------     
        --------#########################-------     
       ---------##########   ############--------    
       --------########### T ###########---------    
       -------############   ##########----------    
       -------########################-----------    
        ------#######################-----------     
        ------######################------------     
         -----####################---------   -      
          ----##################----------- P        
           ----###############-------------          
             --############----------------          
              --#######-------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.87e+22   2.75e+21   2.22e+21 
  2.75e+21  -5.60e+21  -8.63e+21 
  2.22e+21  -8.63e+21  -1.31e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250330020158/index.html
	
Regional Moment Tensor (Mwr)
Moment 2.100e+15 N-m
Magnitude 4.15 Mwr
Depth 16.0 km
Percent DC 85%
Half Duration -
Catalog US
Data Source US
Contributor US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	224	38	100
NP2	32	52	82
Principal Axes
Axis	Value	Plunge	Azimuth
T	2.015e+15	81	266
N	0.162e+15	6	37
P	-2.177e+15	7	127

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   230    45   -90   3.66 0.2542
WVFGRD96    2.0    45    45   -90   3.79 0.3295
WVFGRD96    3.0   300    65   -40   3.78 0.2555
WVFGRD96    4.0   165    35     0   3.78 0.2738
WVFGRD96    5.0   155    30   -20   3.81 0.3219
WVFGRD96    6.0   345    20    35   3.85 0.3664
WVFGRD96    7.0   155    40   -30   3.86 0.4071
WVFGRD96    8.0   355    20    45   3.95 0.4318
WVFGRD96    9.0     5    35    45   3.97 0.4704
WVFGRD96   10.0    10    40    55   4.00 0.5131
WVFGRD96   11.0    20    40    65   4.02 0.5525
WVFGRD96   12.0    25    45    75   4.05 0.5875
WVFGRD96   13.0    35    50    90   4.07 0.6144
WVFGRD96   14.0   215    40    90   4.08 0.6339
WVFGRD96   15.0   215    40    90   4.09 0.6462
WVFGRD96   16.0   210    40    85   4.11 0.6521
WVFGRD96   17.0   210    40    85   4.12 0.6527
WVFGRD96   18.0   210    40    80   4.13 0.6482
WVFGRD96   19.0   210    40    80   4.14 0.6395
WVFGRD96   20.0   210    40    80   4.15 0.6267
WVFGRD96   21.0   210    40    80   4.16 0.6101
WVFGRD96   22.0   205    40    75   4.17 0.5910
WVFGRD96   23.0   205    40    75   4.17 0.5699
WVFGRD96   24.0   205    40    75   4.18 0.5473
WVFGRD96   25.0   205    40    75   4.18 0.5249
WVFGRD96   26.0   210    50    80   4.19 0.5079
WVFGRD96   27.0   205    50    75   4.19 0.4931
WVFGRD96   28.0   210    50    80   4.20 0.4787
WVFGRD96   29.0   210    45    80   4.20 0.4641

The best solution is

WVFGRD96   17.0   210    40    85   4.12 0.6527

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Sun Mar 30 07:30:37 CDT 2025