The ANSS event ID is ak02543813cl and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak02543813cl/executive.
2025/03/30 02:01:58 63.429 -150.297 9.8 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/03/30 02:01:58:0 63.43 -150.30 9.8 4.3 Alaska Stations used: AK.BAE AK.BMR AK.BPAW AK.CAST AK.COLD AK.CUT AK.DHY AK.DIV AK.DOT AK.FID AK.G23K AK.GCSA AK.GHO AK.GLB AK.H22K AK.H24K AK.HARP AK.HDA AK.HIN AK.I21K AK.I23K AK.J17K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK AK.L19K AK.L22K AK.L26K AK.M20K AK.M26K AK.MCAR AK.MCK AK.MLY AK.N18K AK.N19K AK.O19K AK.PAX AK.POKR AK.PPD AK.PWL AK.RC01 AK.RIDG AK.SSN AK.SWD AK.VRDI AK.WRH AT.PMR AT.TTA AV.RED AV.STLK AV.WAZA IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.91e+22 dyne-cm Mw = 4.12 Z = 17 km Plane Strike Dip Rake NP1 37 50 94 NP2 210 40 85 Principal Axes: Axis Value Plunge Azimuth T 1.91e+22 84 336 N 0.00e+00 3 214 P -1.91e+22 5 124 Moment Tensor: (dyne-cm) Component Value Mxx -5.60e+21 Mxy 8.63e+21 Mxz 2.75e+21 Myy -1.31e+22 Myz -2.22e+21 Mzz 1.87e+22 -------------- ---------------####### -------------##############- -----------#################-- -----------####################--- ----------######################---- ----------#######################----- ---------########################------- --------#########################------- ---------########## ############-------- --------########### T ###########--------- -------############ ##########---------- -------########################----------- ------#######################----------- ------######################------------ -----####################--------- - ----##################----------- P ----###############------------- --############---------------- --#######------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.87e+22 2.75e+21 2.22e+21 2.75e+21 -5.60e+21 -8.63e+21 2.22e+21 -8.63e+21 -1.31e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250330020158/index.html |
STK = 210 DIP = 40 RAKE = 85 MW = 4.12 HS = 17.0
The NDK file is 20250330020158.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/03/30 02:01:58:0 63.43 -150.30 9.8 4.3 Alaska Stations used: AK.BAE AK.BMR AK.BPAW AK.CAST AK.COLD AK.CUT AK.DHY AK.DIV AK.DOT AK.FID AK.G23K AK.GCSA AK.GHO AK.GLB AK.H22K AK.H24K AK.HARP AK.HDA AK.HIN AK.I21K AK.I23K AK.J17K AK.J20K AK.J25K AK.K24K AK.KLU AK.KNK AK.L19K AK.L22K AK.L26K AK.M20K AK.M26K AK.MCAR AK.MCK AK.MLY AK.N18K AK.N19K AK.O19K AK.PAX AK.POKR AK.PPD AK.PWL AK.RC01 AK.RIDG AK.SSN AK.SWD AK.VRDI AK.WRH AT.PMR AT.TTA AV.RED AV.STLK AV.WAZA IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.91e+22 dyne-cm Mw = 4.12 Z = 17 km Plane Strike Dip Rake NP1 37 50 94 NP2 210 40 85 Principal Axes: Axis Value Plunge Azimuth T 1.91e+22 84 336 N 0.00e+00 3 214 P -1.91e+22 5 124 Moment Tensor: (dyne-cm) Component Value Mxx -5.60e+21 Mxy 8.63e+21 Mxz 2.75e+21 Myy -1.31e+22 Myz -2.22e+21 Mzz 1.87e+22 -------------- ---------------####### -------------##############- -----------#################-- -----------####################--- ----------######################---- ----------#######################----- ---------########################------- --------#########################------- ---------########## ############-------- --------########### T ###########--------- -------############ ##########---------- -------########################----------- ------#######################----------- ------######################------------ -----####################--------- - ----##################----------- P ----###############------------- --############---------------- --#######------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 1.87e+22 2.75e+21 2.22e+21 2.75e+21 -5.60e+21 -8.63e+21 2.22e+21 -8.63e+21 -1.31e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250330020158/index.html |
Regional Moment Tensor (Mwr) Moment 2.100e+15 N-m Magnitude 4.15 Mwr Depth 16.0 km Percent DC 85% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 224 38 100 NP2 32 52 82 Principal Axes Axis Value Plunge Azimuth T 2.015e+15 81 266 N 0.162e+15 6 37 P -2.177e+15 7 127 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 230 45 -90 3.66 0.2542 WVFGRD96 2.0 45 45 -90 3.79 0.3295 WVFGRD96 3.0 300 65 -40 3.78 0.2555 WVFGRD96 4.0 165 35 0 3.78 0.2738 WVFGRD96 5.0 155 30 -20 3.81 0.3219 WVFGRD96 6.0 345 20 35 3.85 0.3664 WVFGRD96 7.0 155 40 -30 3.86 0.4071 WVFGRD96 8.0 355 20 45 3.95 0.4318 WVFGRD96 9.0 5 35 45 3.97 0.4704 WVFGRD96 10.0 10 40 55 4.00 0.5131 WVFGRD96 11.0 20 40 65 4.02 0.5525 WVFGRD96 12.0 25 45 75 4.05 0.5875 WVFGRD96 13.0 35 50 90 4.07 0.6144 WVFGRD96 14.0 215 40 90 4.08 0.6339 WVFGRD96 15.0 215 40 90 4.09 0.6462 WVFGRD96 16.0 210 40 85 4.11 0.6521 WVFGRD96 17.0 210 40 85 4.12 0.6527 WVFGRD96 18.0 210 40 80 4.13 0.6482 WVFGRD96 19.0 210 40 80 4.14 0.6395 WVFGRD96 20.0 210 40 80 4.15 0.6267 WVFGRD96 21.0 210 40 80 4.16 0.6101 WVFGRD96 22.0 205 40 75 4.17 0.5910 WVFGRD96 23.0 205 40 75 4.17 0.5699 WVFGRD96 24.0 205 40 75 4.18 0.5473 WVFGRD96 25.0 205 40 75 4.18 0.5249 WVFGRD96 26.0 210 50 80 4.19 0.5079 WVFGRD96 27.0 205 50 75 4.19 0.4931 WVFGRD96 28.0 210 50 80 4.20 0.4787 WVFGRD96 29.0 210 45 80 4.20 0.4641
The best solution is
WVFGRD96 17.0 210 40 85 4.12 0.6527
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00