The ANSS event ID is ak0252zva6il and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0252zva6il/executive.
2025/03/06 22:42:40 59.814 -152.944 104.3 4.3 Alaska
USGS/SLU Moment Tensor Solution ENS 2025/03/06 22:42:40:0 59.81 -152.94 104.3 4.3 Alaska Stations used: AK.BRLK AK.CAPN AK.CUT AK.GHO AK.HOM AK.KNK AK.L19K AK.L22K AK.M20K AK.N18K AK.O18K AK.O19K AK.RC01 AK.SAW AK.SLK AK.SWD AT.PMR AT.TTA AV.ACH AV.RED AV.STLK II.KDAK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.84e+22 dyne-cm Mw = 4.49 Z = 116 km Plane Strike Dip Rake NP1 80 88 -85 NP2 190 5 -160 Principal Axes: Axis Value Plunge Azimuth T 6.84e+22 43 166 N 0.00e+00 5 260 P -6.84e+22 47 355 Moment Tensor: (dyne-cm) Component Value Mxx 2.04e+21 Mxy -5.96e+21 Mxz -6.70e+22 Myy 2.02e+21 Myz 1.16e+22 Mzz -4.06e+21 #------------- #--------------------- ##-------------------------- #----------------------------- #-------------- ---------------- #--------------- P ----------------- #---------------- ------------------ #--------------------------------------- #--------------------------------------- #-------------------------------------#### #----------------------------############# #-----------------######################## #------################################### -####################################### -####################################### -##################################### -################## ############## -################# T ############# ################ ########### -########################### -##################### ############## Global CMT Convention Moment Tensor: R T P -4.06e+21 -6.70e+22 -1.16e+22 -6.70e+22 2.04e+21 5.96e+21 -1.16e+22 5.96e+21 2.02e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250306224240/index.html |
STK = 10 DIP = -5 RAKE = 20 MW = 4.49 HS = 116.0
The NDK file is 20250306224240.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2025/03/06 22:42:40:0 59.81 -152.94 104.3 4.3 Alaska Stations used: AK.BRLK AK.CAPN AK.CUT AK.GHO AK.HOM AK.KNK AK.L19K AK.L22K AK.M20K AK.N18K AK.O18K AK.O19K AK.RC01 AK.SAW AK.SLK AK.SWD AT.PMR AT.TTA AV.ACH AV.RED AV.STLK II.KDAK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 6.84e+22 dyne-cm Mw = 4.49 Z = 116 km Plane Strike Dip Rake NP1 80 88 -85 NP2 190 5 -160 Principal Axes: Axis Value Plunge Azimuth T 6.84e+22 43 166 N 0.00e+00 5 260 P -6.84e+22 47 355 Moment Tensor: (dyne-cm) Component Value Mxx 2.04e+21 Mxy -5.96e+21 Mxz -6.70e+22 Myy 2.02e+21 Myz 1.16e+22 Mzz -4.06e+21 #------------- #--------------------- ##-------------------------- #----------------------------- #-------------- ---------------- #--------------- P ----------------- #---------------- ------------------ #--------------------------------------- #--------------------------------------- #-------------------------------------#### #----------------------------############# #-----------------######################## #------################################### -####################################### -####################################### -##################################### -################## ############## -################# T ############# ################ ########### -########################### -##################### ############## Global CMT Convention Moment Tensor: R T P -4.06e+21 -6.70e+22 -1.16e+22 -6.70e+22 2.04e+21 5.96e+21 -1.16e+22 5.96e+21 2.02e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250306224240/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 25 85 -5 3.57 0.2399 WVFGRD96 4.0 30 65 15 3.68 0.2751 WVFGRD96 6.0 25 60 -10 3.74 0.3015 WVFGRD96 8.0 30 60 10 3.80 0.3202 WVFGRD96 10.0 30 60 15 3.84 0.3283 WVFGRD96 12.0 30 65 15 3.86 0.3290 WVFGRD96 14.0 30 65 15 3.88 0.3242 WVFGRD96 16.0 25 70 -10 3.90 0.3179 WVFGRD96 18.0 25 70 -10 3.92 0.3136 WVFGRD96 20.0 25 70 -10 3.94 0.3115 WVFGRD96 22.0 25 70 -15 3.96 0.3079 WVFGRD96 24.0 25 70 -15 3.97 0.3032 WVFGRD96 26.0 25 70 -15 3.99 0.2978 WVFGRD96 28.0 25 70 -15 4.00 0.2918 WVFGRD96 30.0 20 65 -20 4.01 0.2859 WVFGRD96 32.0 20 60 -20 4.03 0.2811 WVFGRD96 34.0 20 60 -20 4.04 0.2764 WVFGRD96 36.0 20 60 -20 4.06 0.2713 WVFGRD96 38.0 15 60 -20 4.06 0.2661 WVFGRD96 40.0 10 45 -30 4.16 0.2657 WVFGRD96 42.0 10 45 -30 4.18 0.2641 WVFGRD96 44.0 10 45 -35 4.20 0.2637 WVFGRD96 46.0 10 45 -35 4.22 0.2648 WVFGRD96 48.0 10 45 -30 4.22 0.2669 WVFGRD96 50.0 10 45 -30 4.24 0.2685 WVFGRD96 52.0 10 45 -30 4.25 0.2712 WVFGRD96 54.0 130 85 15 4.27 0.2741 WVFGRD96 56.0 130 85 15 4.29 0.2924 WVFGRD96 58.0 120 75 -15 4.28 0.3113 WVFGRD96 60.0 120 75 -15 4.30 0.3295 WVFGRD96 62.0 120 75 -10 4.30 0.3463 WVFGRD96 64.0 120 75 -10 4.32 0.3602 WVFGRD96 66.0 120 75 -10 4.33 0.3716 WVFGRD96 68.0 120 75 -10 4.34 0.3801 WVFGRD96 70.0 295 15 -60 4.44 0.4001 WVFGRD96 72.0 295 15 -60 4.45 0.4190 WVFGRD96 74.0 295 15 -60 4.45 0.4356 WVFGRD96 76.0 295 15 -60 4.46 0.4507 WVFGRD96 78.0 290 10 -65 4.46 0.4636 WVFGRD96 80.0 285 10 -70 4.46 0.4763 WVFGRD96 82.0 290 10 -65 4.47 0.4866 WVFGRD96 84.0 295 10 -55 4.47 0.4964 WVFGRD96 86.0 295 10 -55 4.47 0.5058 WVFGRD96 88.0 300 10 -50 4.47 0.5136 WVFGRD96 90.0 300 10 -50 4.48 0.5201 WVFGRD96 92.0 300 10 -50 4.48 0.5251 WVFGRD96 94.0 305 10 -45 4.48 0.5285 WVFGRD96 96.0 290 5 -60 4.48 0.5332 WVFGRD96 98.0 290 5 -60 4.48 0.5375 WVFGRD96 100.0 290 5 -60 4.48 0.5403 WVFGRD96 102.0 290 5 -60 4.48 0.5426 WVFGRD96 104.0 290 5 -60 4.48 0.5452 WVFGRD96 106.0 290 5 -60 4.48 0.5462 WVFGRD96 108.0 100 -5 110 4.48 0.5464 WVFGRD96 110.0 30 -5 40 4.48 0.5469 WVFGRD96 112.0 100 -5 110 4.48 0.5468 WVFGRD96 114.0 315 5 -30 4.48 0.5478 WVFGRD96 116.0 10 -5 20 4.49 0.5485 WVFGRD96 118.0 5 -5 15 4.49 0.5472 WVFGRD96 120.0 80 90 -90 4.48 0.5484 WVFGRD96 122.0 320 0 -30 4.48 0.5475 WVFGRD96 124.0 340 0 -10 4.48 0.5465 WVFGRD96 126.0 330 0 -20 4.48 0.5463 WVFGRD96 128.0 60 0 70 4.48 0.5443 WVFGRD96 130.0 340 -5 -10 4.49 0.5431 WVFGRD96 132.0 280 0 -70 4.48 0.5402 WVFGRD96 134.0 335 -5 -15 4.49 0.5407 WVFGRD96 136.0 -20 -5 -10 4.49 0.5379 WVFGRD96 138.0 280 0 -70 4.48 0.5360 WVFGRD96 140.0 -20 -5 -10 4.49 0.5335 WVFGRD96 142.0 -20 -5 -10 4.49 0.5321 WVFGRD96 144.0 85 5 100 4.50 0.5288 WVFGRD96 146.0 300 -5 -50 4.50 0.5278 WVFGRD96 148.0 300 -5 -50 4.50 0.5248
The best solution is
WVFGRD96 116.0 10 -5 20 4.49 0.5485
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00