Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is ak0252zva6il and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak0252zva6il/executive.

2025/03/06 22:42:40 59.814 -152.944 104.3 4.3 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/03/06 22:42:40:0  59.81 -152.94 104.3 4.3 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CUT AK.GHO AK.HOM AK.KNK AK.L19K AK.L22K 
   AK.M20K AK.N18K AK.O18K AK.O19K AK.RC01 AK.SAW AK.SLK 
   AK.SWD AT.PMR AT.TTA AV.ACH AV.RED AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 6.84e+22 dyne-cm
  Mw = 4.49 
  Z  = 116 km
  Plane   Strike  Dip  Rake
   NP1       80    88   -85
   NP2      190     5   -160
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.84e+22     43     166
    N   0.00e+00      5     260
    P  -6.84e+22     47     355

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.04e+21
       Mxy    -5.96e+21
       Mxz    -6.70e+22
       Myy     2.02e+21
       Myz     1.16e+22
       Mzz    -4.06e+21
                                                     
                                                     
                                                     
                                                     
                     #-------------                  
                 #---------------------              
              ##--------------------------           
             #-----------------------------          
           #--------------   ----------------        
          #--------------- P -----------------       
         #----------------   ------------------      
        #---------------------------------------     
        #---------------------------------------     
       #-------------------------------------####    
       #----------------------------#############    
       #-----------------########################    
       #------###################################    
        -#######################################     
        -#######################################     
         -#####################################      
          -##################   ##############       
           -################# T #############        
             ################   ###########          
              -###########################           
                 -#####################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.06e+21  -6.70e+22  -1.16e+22 
 -6.70e+22   2.04e+21   5.96e+21 
 -1.16e+22   5.96e+21   2.02e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250306224240/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 10
      DIP = -5
     RAKE = 20
       MW = 4.49
       HS = 116.0

The NDK file is 20250306224240.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2025/03/06 22:42:40:0  59.81 -152.94 104.3 4.3 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CUT AK.GHO AK.HOM AK.KNK AK.L19K AK.L22K 
   AK.M20K AK.N18K AK.O18K AK.O19K AK.RC01 AK.SAW AK.SLK 
   AK.SWD AT.PMR AT.TTA AV.ACH AV.RED AV.STLK II.KDAK 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 6.84e+22 dyne-cm
  Mw = 4.49 
  Z  = 116 km
  Plane   Strike  Dip  Rake
   NP1       80    88   -85
   NP2      190     5   -160
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.84e+22     43     166
    N   0.00e+00      5     260
    P  -6.84e+22     47     355

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.04e+21
       Mxy    -5.96e+21
       Mxz    -6.70e+22
       Myy     2.02e+21
       Myz     1.16e+22
       Mzz    -4.06e+21
                                                     
                                                     
                                                     
                                                     
                     #-------------                  
                 #---------------------              
              ##--------------------------           
             #-----------------------------          
           #--------------   ----------------        
          #--------------- P -----------------       
         #----------------   ------------------      
        #---------------------------------------     
        #---------------------------------------     
       #-------------------------------------####    
       #----------------------------#############    
       #-----------------########################    
       #------###################################    
        -#######################################     
        -#######################################     
         -#####################################      
          -##################   ##############       
           -################# T #############        
             ################   ###########          
              -###########################           
                 -#####################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.06e+21  -6.70e+22  -1.16e+22 
 -6.70e+22   2.04e+21   5.96e+21 
 -1.16e+22   5.96e+21   2.02e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250306224240/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    25    85    -5   3.57 0.2399
WVFGRD96    4.0    30    65    15   3.68 0.2751
WVFGRD96    6.0    25    60   -10   3.74 0.3015
WVFGRD96    8.0    30    60    10   3.80 0.3202
WVFGRD96   10.0    30    60    15   3.84 0.3283
WVFGRD96   12.0    30    65    15   3.86 0.3290
WVFGRD96   14.0    30    65    15   3.88 0.3242
WVFGRD96   16.0    25    70   -10   3.90 0.3179
WVFGRD96   18.0    25    70   -10   3.92 0.3136
WVFGRD96   20.0    25    70   -10   3.94 0.3115
WVFGRD96   22.0    25    70   -15   3.96 0.3079
WVFGRD96   24.0    25    70   -15   3.97 0.3032
WVFGRD96   26.0    25    70   -15   3.99 0.2978
WVFGRD96   28.0    25    70   -15   4.00 0.2918
WVFGRD96   30.0    20    65   -20   4.01 0.2859
WVFGRD96   32.0    20    60   -20   4.03 0.2811
WVFGRD96   34.0    20    60   -20   4.04 0.2764
WVFGRD96   36.0    20    60   -20   4.06 0.2713
WVFGRD96   38.0    15    60   -20   4.06 0.2661
WVFGRD96   40.0    10    45   -30   4.16 0.2657
WVFGRD96   42.0    10    45   -30   4.18 0.2641
WVFGRD96   44.0    10    45   -35   4.20 0.2637
WVFGRD96   46.0    10    45   -35   4.22 0.2648
WVFGRD96   48.0    10    45   -30   4.22 0.2669
WVFGRD96   50.0    10    45   -30   4.24 0.2685
WVFGRD96   52.0    10    45   -30   4.25 0.2712
WVFGRD96   54.0   130    85    15   4.27 0.2741
WVFGRD96   56.0   130    85    15   4.29 0.2924
WVFGRD96   58.0   120    75   -15   4.28 0.3113
WVFGRD96   60.0   120    75   -15   4.30 0.3295
WVFGRD96   62.0   120    75   -10   4.30 0.3463
WVFGRD96   64.0   120    75   -10   4.32 0.3602
WVFGRD96   66.0   120    75   -10   4.33 0.3716
WVFGRD96   68.0   120    75   -10   4.34 0.3801
WVFGRD96   70.0   295    15   -60   4.44 0.4001
WVFGRD96   72.0   295    15   -60   4.45 0.4190
WVFGRD96   74.0   295    15   -60   4.45 0.4356
WVFGRD96   76.0   295    15   -60   4.46 0.4507
WVFGRD96   78.0   290    10   -65   4.46 0.4636
WVFGRD96   80.0   285    10   -70   4.46 0.4763
WVFGRD96   82.0   290    10   -65   4.47 0.4866
WVFGRD96   84.0   295    10   -55   4.47 0.4964
WVFGRD96   86.0   295    10   -55   4.47 0.5058
WVFGRD96   88.0   300    10   -50   4.47 0.5136
WVFGRD96   90.0   300    10   -50   4.48 0.5201
WVFGRD96   92.0   300    10   -50   4.48 0.5251
WVFGRD96   94.0   305    10   -45   4.48 0.5285
WVFGRD96   96.0   290     5   -60   4.48 0.5332
WVFGRD96   98.0   290     5   -60   4.48 0.5375
WVFGRD96  100.0   290     5   -60   4.48 0.5403
WVFGRD96  102.0   290     5   -60   4.48 0.5426
WVFGRD96  104.0   290     5   -60   4.48 0.5452
WVFGRD96  106.0   290     5   -60   4.48 0.5462
WVFGRD96  108.0   100    -5   110   4.48 0.5464
WVFGRD96  110.0    30    -5    40   4.48 0.5469
WVFGRD96  112.0   100    -5   110   4.48 0.5468
WVFGRD96  114.0   315     5   -30   4.48 0.5478
WVFGRD96  116.0    10    -5    20   4.49 0.5485
WVFGRD96  118.0     5    -5    15   4.49 0.5472
WVFGRD96  120.0    80    90   -90   4.48 0.5484
WVFGRD96  122.0   320     0   -30   4.48 0.5475
WVFGRD96  124.0   340     0   -10   4.48 0.5465
WVFGRD96  126.0   330     0   -20   4.48 0.5463
WVFGRD96  128.0    60     0    70   4.48 0.5443
WVFGRD96  130.0   340    -5   -10   4.49 0.5431
WVFGRD96  132.0   280     0   -70   4.48 0.5402
WVFGRD96  134.0   335    -5   -15   4.49 0.5407
WVFGRD96  136.0   -20    -5   -10   4.49 0.5379
WVFGRD96  138.0   280     0   -70   4.48 0.5360
WVFGRD96  140.0   -20    -5   -10   4.49 0.5335
WVFGRD96  142.0   -20    -5   -10   4.49 0.5321
WVFGRD96  144.0    85     5   100   4.50 0.5288
WVFGRD96  146.0   300    -5   -50   4.50 0.5278
WVFGRD96  148.0   300    -5   -50   4.50 0.5248

The best solution is

WVFGRD96  116.0    10    -5    20   4.49 0.5485

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Mar 6 19:54:24 CST 2025