The ANSS event ID is uw62079456 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw62079456/executive.
2025/03/06 00:18:24 47.924 -123.141 42.4 3.9 Washington
USGS/SLU Moment Tensor Solution ENS 2025/03/06 00:18:24:0 47.92 -123.14 42.4 3.9 Washington Stations used: CN.CLRS CN.PGC US.NLWA UW.BHW UW.EQUIL UW.GNW UW.HILL UW.KALA UW.LON UW.LRIV UW.WATCH Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 9.23e+21 dyne-cm Mw = 3.91 Z = 51 km Plane Strike Dip Rake NP1 170 80 55 NP2 66 36 163 Principal Axes: Axis Value Plunge Azimuth T 9.23e+21 44 46 N 0.00e+00 34 177 P -9.23e+21 27 287 Moment Tensor: (dyne-cm) Component Value Mxx 1.70e+21 Mxy 4.45e+21 Mxz 2.14e+21 Myy -4.29e+21 Myz 6.83e+21 Mzz 2.58e+21 ---########### -------############### ----------################## -----------################### -------------##################### --------------########### ######## ---------------########### T ######### ---- ---------########### #########- ---- P ----------######################- ----- ----------#####################--- ------------------#####################--- -------------------###################---- -------------------##################----- ------------------#################----- -------------------##############------- ------------------############-------- #-----------------#########--------- ###--------------######----------- ######---------#-------------- ###############------------- #############--------- ##########---- Global CMT Convention Moment Tensor: R T P 2.58e+21 2.14e+21 -6.83e+21 2.14e+21 1.70e+21 -4.45e+21 -6.83e+21 -4.45e+21 -4.29e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250306001824/index.html |
STK = 170 DIP = 80 RAKE = 55 MW = 3.91 HS = 51.0
The NDK file is 20250306001824.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 160 55 50 3.02 0.1838 WVFGRD96 2.0 25 50 -65 3.25 0.3213 WVFGRD96 3.0 160 65 40 3.26 0.3363 WVFGRD96 4.0 160 70 45 3.31 0.3543 WVFGRD96 5.0 330 85 -50 3.35 0.3739 WVFGRD96 6.0 320 75 -65 3.43 0.4152 WVFGRD96 7.0 315 70 -65 3.44 0.4436 WVFGRD96 8.0 315 70 -70 3.52 0.4586 WVFGRD96 9.0 315 70 -70 3.52 0.4756 WVFGRD96 10.0 315 65 -70 3.53 0.4865 WVFGRD96 11.0 305 55 -70 3.55 0.4985 WVFGRD96 12.0 305 55 -70 3.55 0.5079 WVFGRD96 13.0 300 55 -70 3.56 0.5143 WVFGRD96 14.0 295 50 -75 3.58 0.5203 WVFGRD96 15.0 295 50 -75 3.59 0.5253 WVFGRD96 16.0 295 50 -75 3.60 0.5279 WVFGRD96 17.0 300 55 -75 3.60 0.5294 WVFGRD96 18.0 295 55 -75 3.62 0.5307 WVFGRD96 19.0 300 55 -75 3.62 0.5306 WVFGRD96 20.0 300 55 -75 3.63 0.5285 WVFGRD96 21.0 160 80 60 3.58 0.5291 WVFGRD96 22.0 160 80 60 3.59 0.5337 WVFGRD96 23.0 160 80 60 3.60 0.5366 WVFGRD96 24.0 165 75 60 3.61 0.5394 WVFGRD96 25.0 165 75 60 3.62 0.5409 WVFGRD96 26.0 165 80 55 3.63 0.5419 WVFGRD96 27.0 165 80 55 3.64 0.5422 WVFGRD96 28.0 165 80 55 3.65 0.5410 WVFGRD96 29.0 170 70 60 3.66 0.5396 WVFGRD96 30.0 170 70 60 3.67 0.5409 WVFGRD96 31.0 170 70 55 3.67 0.5410 WVFGRD96 32.0 170 70 55 3.68 0.5390 WVFGRD96 33.0 170 80 50 3.69 0.5415 WVFGRD96 34.0 170 80 50 3.70 0.5441 WVFGRD96 35.0 170 80 50 3.70 0.5468 WVFGRD96 36.0 170 80 50 3.71 0.5483 WVFGRD96 37.0 170 80 50 3.72 0.5515 WVFGRD96 38.0 170 80 45 3.73 0.5545 WVFGRD96 39.0 170 80 45 3.74 0.5583 WVFGRD96 40.0 170 80 60 3.83 0.5662 WVFGRD96 41.0 170 80 55 3.84 0.5726 WVFGRD96 42.0 170 80 55 3.85 0.5786 WVFGRD96 43.0 170 80 55 3.86 0.5839 WVFGRD96 44.0 170 80 55 3.86 0.5895 WVFGRD96 45.0 170 80 55 3.87 0.5919 WVFGRD96 46.0 170 80 55 3.88 0.5963 WVFGRD96 47.0 170 80 55 3.89 0.5992 WVFGRD96 48.0 170 80 55 3.89 0.6006 WVFGRD96 49.0 170 80 55 3.90 0.6018 WVFGRD96 50.0 170 80 55 3.91 0.6019 WVFGRD96 51.0 170 80 55 3.91 0.6026 WVFGRD96 52.0 170 80 55 3.92 0.6013 WVFGRD96 53.0 170 80 55 3.92 0.6005 WVFGRD96 54.0 170 80 55 3.93 0.5967 WVFGRD96 55.0 170 80 55 3.93 0.5958 WVFGRD96 56.0 170 80 55 3.94 0.5928 WVFGRD96 57.0 170 80 50 3.94 0.5902 WVFGRD96 58.0 170 80 50 3.95 0.5871 WVFGRD96 59.0 170 80 50 3.95 0.5830
The best solution is
WVFGRD96 51.0 170 80 55 3.91 0.6026
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00