The ANSS event ID is us7000pfbs and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000pfbs/executive.
2025/02/21 21:26:33 49.631 -123.534 10.0 4.8 B.C., Canada
USGS/SLU Moment Tensor Solution
ENS 2025/02/21 21:26:33:0 49.63 -123.53 10.0 4.8 B.C., Canada
Stations used:
C8.BCOV CN.BBB CN.CBB CN.CLRS CN.EDB CN.FHBB CN.GDR CN.GHNB
CN.GOBB CN.HOLB CN.HOPB CN.LLLB CN.NLLB CN.OZB CN.PABB
CN.PGC CN.PHC CN.PTRF CN.QEPB CN.SYMB CN.TOFB CN.TXDB
CN.VDEB CN.VGZ CN.WOSB CN.WSLR PQ.ALBHB PQ.DAOB PQ.HAKB
RE.GRCO2 UO.GROV UO.GRSDL UO.MINN UO.MONKS UO.NBFR UO.NECAN
UO.SADL UO.SKAN UO.STONY UO.TRASK UO.TRIPT UO.VERN UO.WIKI
US.NEW US.NLWA UW.ABER UW.BDGR UW.BHAM UW.BHCR UW.BLOB
UW.BOIS UW.BUCKS UW.CBS UW.CCRK UW.CDF UW.CHIMA UW.CORE
UW.COYL UW.CROWN UW.CVILL UW.DART UW.DAVN UW.DDRF UW.DEAL
UW.DONK UW.DOORS UW.DOSE UW.DOTY UW.DY2 UW.EPH2 UW.EQUIL
UW.ETW UW.FISH2 UW.FORK UW.GBB UW.GOBBL UW.GPW UW.H2O
UW.HDW UW.HERD UW.HOPR UW.HOQUI UW.HTW UW.INGAL UW.KALA
UW.KTSAP UW.LEID UW.LMONT UW.LOPEZ UW.LRIV UW.MBW2 UW.MDW
UW.METAL UW.MONTE UW.MOODY UW.MULN UW.NIKE UW.OD2 UW.ODUC
UW.OHOH UW.OLGA UW.OLQN UW.OMAK UW.OQNOB UW.OSQM UW.OSR
UW.OT3 UW.OTR UW.PAN4H UW.PASS UW.RNWY UW.RPW2 UW.RVSD
UW.SALO UW.SAW UW.SAXON UW.SHUK UW.SKAMO UW.SKOKO UW.SLDQ
UW.SLF UW.SNAG UW.TNSKT UW.TOUT UW.TURTL UW.TWISP UW.WA2
UW.WAT2 UW.WINDI UW.WOLL UW.WYNO
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 1.27e+23 dyne-cm
Mw = 4.67
Z = 15 km
Plane Strike Dip Rake
NP1 279 76 154
NP2 15 65 15
Principal Axes:
Axis Value Plunge Azimuth
T 1.27e+23 28 235
N 0.00e+00 61 73
P -1.27e+23 8 329
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.74e+22
Mxy 1.03e+23
Mxz -4.47e+22
Myy 3.22e+22
Myz -3.39e+22
Mzz 2.52e+22
-------------#
---------------#####
-- P ----------------#######
--- ----------------########
-------------------------#########
--------------------------##########
---------------------------###########
----------------------------############
---------------------------#############
#########################---##############
############################-----#########
###########################-----------####
###########################--------------#
#########################---------------
###### ################---------------
##### T ###############---------------
#### ##############---------------
###################---------------
################--------------
#############---------------
#########-------------
###-----------
Global CMT Convention Moment Tensor:
R T P
2.52e+22 -4.47e+22 3.39e+22
-4.47e+22 -5.74e+22 -1.03e+23
3.39e+22 -1.03e+23 3.22e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250221212633/index.html
|
STK = 15
DIP = 65
RAKE = 15
MW = 4.67
HS = 15.0
The NDK file is 20250221212633.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/02/21 21:26:33:0 49.63 -123.53 10.0 4.8 B.C., Canada
Stations used:
C8.BCOV CN.BBB CN.CBB CN.CLRS CN.EDB CN.FHBB CN.GDR CN.GHNB
CN.GOBB CN.HOLB CN.HOPB CN.LLLB CN.NLLB CN.OZB CN.PABB
CN.PGC CN.PHC CN.PTRF CN.QEPB CN.SYMB CN.TOFB CN.TXDB
CN.VDEB CN.VGZ CN.WOSB CN.WSLR PQ.ALBHB PQ.DAOB PQ.HAKB
RE.GRCO2 UO.GROV UO.GRSDL UO.MINN UO.MONKS UO.NBFR UO.NECAN
UO.SADL UO.SKAN UO.STONY UO.TRASK UO.TRIPT UO.VERN UO.WIKI
US.NEW US.NLWA UW.ABER UW.BDGR UW.BHAM UW.BHCR UW.BLOB
UW.BOIS UW.BUCKS UW.CBS UW.CCRK UW.CDF UW.CHIMA UW.CORE
UW.COYL UW.CROWN UW.CVILL UW.DART UW.DAVN UW.DDRF UW.DEAL
UW.DONK UW.DOORS UW.DOSE UW.DOTY UW.DY2 UW.EPH2 UW.EQUIL
UW.ETW UW.FISH2 UW.FORK UW.GBB UW.GOBBL UW.GPW UW.H2O
UW.HDW UW.HERD UW.HOPR UW.HOQUI UW.HTW UW.INGAL UW.KALA
UW.KTSAP UW.LEID UW.LMONT UW.LOPEZ UW.LRIV UW.MBW2 UW.MDW
UW.METAL UW.MONTE UW.MOODY UW.MULN UW.NIKE UW.OD2 UW.ODUC
UW.OHOH UW.OLGA UW.OLQN UW.OMAK UW.OQNOB UW.OSQM UW.OSR
UW.OT3 UW.OTR UW.PAN4H UW.PASS UW.RNWY UW.RPW2 UW.RVSD
UW.SALO UW.SAW UW.SAXON UW.SHUK UW.SKAMO UW.SKOKO UW.SLDQ
UW.SLF UW.SNAG UW.TNSKT UW.TOUT UW.TURTL UW.TWISP UW.WA2
UW.WAT2 UW.WINDI UW.WOLL UW.WYNO
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 1.27e+23 dyne-cm
Mw = 4.67
Z = 15 km
Plane Strike Dip Rake
NP1 279 76 154
NP2 15 65 15
Principal Axes:
Axis Value Plunge Azimuth
T 1.27e+23 28 235
N 0.00e+00 61 73
P -1.27e+23 8 329
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.74e+22
Mxy 1.03e+23
Mxz -4.47e+22
Myy 3.22e+22
Myz -3.39e+22
Mzz 2.52e+22
-------------#
---------------#####
-- P ----------------#######
--- ----------------########
-------------------------#########
--------------------------##########
---------------------------###########
----------------------------############
---------------------------#############
#########################---##############
############################-----#########
###########################-----------####
###########################--------------#
#########################---------------
###### ################---------------
##### T ###############---------------
#### ##############---------------
###################---------------
################--------------
#############---------------
#########-------------
###-----------
Global CMT Convention Moment Tensor:
R T P
2.52e+22 -4.47e+22 3.39e+22
-4.47e+22 -5.74e+22 -1.03e+23
3.39e+22 -1.03e+23 3.22e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250221212633/index.html
|
W-phase Moment Tensor (Mww) Moment 2.050e+16 N-m Magnitude 4.81 Mww Depth 19.5 km Percent DC 88% Half Duration 0.50 s Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 275 65 153 NP2 17 66 27 Principal Axes Axis Value Plunge Azimuth T 2.110e+16 36 237 N -0.126e+16 54 56 P -1.984e+16 0 146 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 195 85 5 4.21 0.2889
WVFGRD96 2.0 15 90 0 4.32 0.3725
WVFGRD96 3.0 10 70 -10 4.38 0.3997
WVFGRD96 4.0 10 65 -15 4.43 0.4255
WVFGRD96 5.0 10 55 -5 4.47 0.4579
WVFGRD96 6.0 10 55 -5 4.49 0.4946
WVFGRD96 7.0 10 60 -5 4.51 0.5295
WVFGRD96 8.0 15 55 15 4.57 0.5624
WVFGRD96 9.0 15 55 15 4.59 0.5957
WVFGRD96 10.0 15 60 20 4.61 0.6227
WVFGRD96 11.0 15 60 20 4.62 0.6456
WVFGRD96 12.0 15 60 20 4.64 0.6618
WVFGRD96 13.0 15 60 20 4.65 0.6719
WVFGRD96 14.0 15 65 20 4.66 0.6785
WVFGRD96 15.0 15 65 15 4.67 0.6815
WVFGRD96 16.0 15 65 15 4.68 0.6811
WVFGRD96 17.0 15 65 15 4.69 0.6778
WVFGRD96 18.0 15 65 15 4.70 0.6719
WVFGRD96 19.0 15 65 15 4.71 0.6640
WVFGRD96 20.0 15 65 15 4.71 0.6544
WVFGRD96 21.0 15 65 15 4.72 0.6433
WVFGRD96 22.0 15 65 15 4.73 0.6314
WVFGRD96 23.0 15 65 15 4.73 0.6185
WVFGRD96 24.0 15 65 15 4.74 0.6052
WVFGRD96 25.0 15 65 15 4.75 0.5915
WVFGRD96 26.0 15 65 15 4.75 0.5776
WVFGRD96 27.0 15 65 15 4.76 0.5635
WVFGRD96 28.0 15 65 15 4.76 0.5496
WVFGRD96 29.0 15 65 15 4.77 0.5357
The best solution is
WVFGRD96 15.0 15 65 15 4.67 0.6815
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00