The ANSS event ID is tx2025deqh and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2025deqh/executive.
2025/02/15 05:23:21 31.661 -104.180 6.6 5.0 Texas
USGS/SLU Moment Tensor Solution
ENS 2025/02/15 05:23:21:0 31.66 -104.18 6.6 5.0 Texas
Stations used:
4O.AT01 4O.BB01 4O.BP01 4O.CT01 4O.CT02 4O.CV01 4O.CW01
4O.DB02 4O.DB03 4O.DB04 4O.EE02 4O.EE03 4O.EE04 4O.GV02
4O.GV03 4O.GV04 4O.LWM1 4O.LWM2 4O.LWM3 4O.MBBB2 4O.MBBB5
4O.MG01 4O.MID01 4O.MID02 4O.MID03 4O.NGL01 4O.NGL02
4O.OE01 4O.OE02 4O.PL01 4O.PR01 4O.SA07 4O.SA09 4O.SD01
4O.SE01 4O.SM01 4O.SM02 4O.SM03 4O.SM04 4O.SM05 4O.VW01
4O.WB02 4O.WB03 4O.WB05 4O.WB06
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 2.92e+23 dyne-cm
Mw = 4.91
Z = 10 km
Plane Strike Dip Rake
NP1 246 55 -87
NP2 60 35 -95
Principal Axes:
Axis Value Plunge Azimuth
T 2.92e+23 10 334
N 0.00e+00 3 64
P -2.92e+23 80 170
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.17e+23
Mxy -1.11e+23
Mxz 9.65e+22
Myy 5.56e+22
Myz -3.17e+22
Mzz -2.73e+23
##############
# T ##################
#### #####################
##############################
##################################
#####################------------###
################---------------------#
#############-------------------------##
##########----------------------------##
#########------------------------------###
#######-------------------------------####
######-------------- ---------------####
####---------------- P --------------#####
##----------------- -------------#####
##-------------------------------#######
------------------------------########
---------------------------#########
#----------------------###########
###--------------#############
############################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-2.73e+23 9.65e+22 3.17e+22
9.65e+22 2.17e+23 1.11e+23
3.17e+22 1.11e+23 5.56e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250215052321/index.html
|
STK = 60
DIP = 35
RAKE = -95
MW = 4.91
HS = 10.0
The NDK file is 20250215052321.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2025/02/15 05:23:21:0 31.66 -104.18 6.6 5.0 Texas
Stations used:
4O.AT01 4O.BB01 4O.BP01 4O.CT01 4O.CT02 4O.CV01 4O.CW01
4O.DB02 4O.DB03 4O.DB04 4O.EE02 4O.EE03 4O.EE04 4O.GV02
4O.GV03 4O.GV04 4O.LWM1 4O.LWM2 4O.LWM3 4O.MBBB2 4O.MBBB5
4O.MG01 4O.MID01 4O.MID02 4O.MID03 4O.NGL01 4O.NGL02
4O.OE01 4O.OE02 4O.PL01 4O.PR01 4O.SA07 4O.SA09 4O.SD01
4O.SE01 4O.SM01 4O.SM02 4O.SM03 4O.SM04 4O.SM05 4O.VW01
4O.WB02 4O.WB03 4O.WB05 4O.WB06
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.07 n 3
Best Fitting Double Couple
Mo = 2.92e+23 dyne-cm
Mw = 4.91
Z = 10 km
Plane Strike Dip Rake
NP1 246 55 -87
NP2 60 35 -95
Principal Axes:
Axis Value Plunge Azimuth
T 2.92e+23 10 334
N 0.00e+00 3 64
P -2.92e+23 80 170
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.17e+23
Mxy -1.11e+23
Mxz 9.65e+22
Myy 5.56e+22
Myz -3.17e+22
Mzz -2.73e+23
##############
# T ##################
#### #####################
##############################
##################################
#####################------------###
################---------------------#
#############-------------------------##
##########----------------------------##
#########------------------------------###
#######-------------------------------####
######-------------- ---------------####
####---------------- P --------------#####
##----------------- -------------#####
##-------------------------------#######
------------------------------########
---------------------------#########
#----------------------###########
###--------------#############
############################
######################
##############
Global CMT Convention Moment Tensor:
R T P
-2.73e+23 9.65e+22 3.17e+22
9.65e+22 2.17e+23 1.11e+23
3.17e+22 1.11e+23 5.56e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250215052321/index.html
|
Regional Moment Tensor (Mwr) Moment 2.599e+16 N-m Magnitude 4.88 Mwr Depth 9.0 km Percent DC 96% Half Duration - Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 52 34 -105 NP2 249 58 -80 Principal Axes Axis Value Plunge Azimuth T 2.625e+16 12 332 N -0.053e+16 8 64 P -2.573e+16 75 187 |
W-phase Moment Tensor (Mww) Moment 2.833e+16 N-m Magnitude 4.90 Mww Depth 11.5 km Percent DC 63% Half Duration 0.50 s Catalog US Data Source US Contributor US Nodal Planes Plane Strike Dip Rake NP1 78 59 -59 NP2 209 43 -130 Principal Axes Axis Value Plunge Azimuth T 2.505e+16 9 146 N 0.569e+16 26 240 P -3.074e+16 62 39 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 240 45 -85 4.51 0.1941
WVFGRD96 2.0 240 45 -90 4.64 0.2536
WVFGRD96 3.0 75 50 -70 4.68 0.2443
WVFGRD96 4.0 80 20 -65 4.76 0.2940
WVFGRD96 5.0 75 20 -75 4.78 0.3458
WVFGRD96 6.0 70 25 -80 4.79 0.3870
WVFGRD96 7.0 65 30 -90 4.82 0.4224
WVFGRD96 8.0 60 30 -95 4.89 0.4553
WVFGRD96 9.0 65 30 -90 4.90 0.4781
WVFGRD96 10.0 60 35 -95 4.91 0.4893
WVFGRD96 11.0 245 55 -90 4.92 0.4853
WVFGRD96 12.0 245 55 -90 4.92 0.4727
WVFGRD96 13.0 240 55 -95 4.92 0.4527
WVFGRD96 14.0 65 40 -85 4.91 0.4291
WVFGRD96 15.0 70 40 -80 4.91 0.4058
WVFGRD96 16.0 70 40 -80 4.91 0.3817
WVFGRD96 17.0 80 35 -70 4.90 0.3576
WVFGRD96 18.0 80 35 -70 4.90 0.3387
WVFGRD96 19.0 80 35 -70 4.90 0.3213
WVFGRD96 20.0 85 35 -65 4.89 0.3060
WVFGRD96 21.0 85 35 -65 4.90 0.2959
WVFGRD96 22.0 95 60 -35 4.91 0.2834
WVFGRD96 23.0 95 60 -35 4.92 0.2743
WVFGRD96 24.0 100 65 -25 4.92 0.2658
WVFGRD96 25.0 100 65 -25 4.92 0.2585
WVFGRD96 26.0 100 65 -20 4.92 0.2513
WVFGRD96 27.0 100 65 -20 4.93 0.2445
WVFGRD96 28.0 215 70 50 4.93 0.2409
WVFGRD96 29.0 215 70 50 4.93 0.2378
The best solution is
WVFGRD96 10.0 60 35 -95 4.91 0.4893
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00