Location

Location ANSS

The ANSS event ID is us6000pmkg and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us6000pmkg/executive.

2025/01/27 16:32:14 44.381 -114.679 11.4 4.2 Idaho

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2025/01/27 16:32:14:0  44.38 -114.68  11.4 4.2 Idaho
 
 Stations used:
   IE.ARNI IE.BCYI IW.DLMT IW.FLWY IW.IMW IW.LOHW IW.MFID 
   IW.MOOW IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT 
   MB.ECMT MB.FCMT MB.GBMT MB.HRY MB.JTMT MB.LIMT MB.LRM 
   MB.ODMT MB.SMMT MB.SRMT MB.SXMT MB.WCMT UO.JOBT UO.WAGON 
   US.AHID US.BMO US.BOZ US.ELK US.HLID US.HWUT US.MSO US.RLMT 
   US.WVOR UU.BGU UU.HVU UU.MCU UU.MOUT UU.SPU UW.AGNW UW.BRAN 
   UW.BURN UW.DDRF UW.IRON UW.IZEE UW.LMONT UW.LNO UW.TUCA 
   UW.UMAT UW.WOLL UW.YPT WW.BILL WW.CNCL WW.CTNW WW.IRMR 
   WW.TYLR WY.YFT WY.YHB WY.YHL WY.YMP WY.YMR WY.YNE WY.YPP 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 3.20e+22 dyne-cm
  Mw = 4.27 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      165    90    15
   NP2       75    75   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.20e+22     11      31
    N   0.00e+00     75     165
    P  -3.20e+22     11     299

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.54e+22
       Mxy     2.68e+22
       Mxz     2.14e+21
       Myy    -1.54e+22
       Myz     8.00e+21
       Mzz    -7.24e+14
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 ------#############                 
              ----------############ T ###           
             -----------############   ####          
           --------------####################        
             ------------#####################       
         - P -------------#####################      
        --   -------------######################     
        -------------------####################-     
       --------------------##################----    
       ---------------------#############--------    
       ---------------------#########------------    
       ----------------------###-----------------    
        -----------------####-------------------     
        ######################------------------     
         #####################-----------------      
          #####################---------------       
           ####################--------------        
             ###################-----------          
              ##################----------           
                 ################------              
                     ############--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.24e+14   2.14e+21  -8.00e+21 
  2.14e+21   1.54e+22  -2.68e+22 
 -8.00e+21  -2.68e+22  -1.54e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250127163214/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 165
      DIP = 90
     RAKE = 15
       MW = 4.27
       HS = 12.0

The NDK file is 20250127163214.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2025/01/27 16:32:14:0  44.38 -114.68  11.4 4.2 Idaho
 
 Stations used:
   IE.ARNI IE.BCYI IW.DLMT IW.FLWY IW.IMW IW.LOHW IW.MFID 
   IW.MOOW IW.PLID IW.SNOW IW.TPAW MB.BCMT MB.BDMT MB.BNMT 
   MB.ECMT MB.FCMT MB.GBMT MB.HRY MB.JTMT MB.LIMT MB.LRM 
   MB.ODMT MB.SMMT MB.SRMT MB.SXMT MB.WCMT UO.JOBT UO.WAGON 
   US.AHID US.BMO US.BOZ US.ELK US.HLID US.HWUT US.MSO US.RLMT 
   US.WVOR UU.BGU UU.HVU UU.MCU UU.MOUT UU.SPU UW.AGNW UW.BRAN 
   UW.BURN UW.DDRF UW.IRON UW.IZEE UW.LMONT UW.LNO UW.TUCA 
   UW.UMAT UW.WOLL UW.YPT WW.BILL WW.CNCL WW.CTNW WW.IRMR 
   WW.TYLR WY.YFT WY.YHB WY.YHL WY.YMP WY.YMR WY.YNE WY.YPP 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 3.20e+22 dyne-cm
  Mw = 4.27 
  Z  = 12 km
  Plane   Strike  Dip  Rake
   NP1      165    90    15
   NP2       75    75   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.20e+22     11      31
    N   0.00e+00     75     165
    P  -3.20e+22     11     299

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.54e+22
       Mxy     2.68e+22
       Mxz     2.14e+21
       Myy    -1.54e+22
       Myz     8.00e+21
       Mzz    -7.24e+14
                                                     
                                                     
                                                     
                                                     
                     --############                  
                 ------#############                 
              ----------############ T ###           
             -----------############   ####          
           --------------####################        
             ------------#####################       
         - P -------------#####################      
        --   -------------######################     
        -------------------####################-     
       --------------------##################----    
       ---------------------#############--------    
       ---------------------#########------------    
       ----------------------###-----------------    
        -----------------####-------------------     
        ######################------------------     
         #####################-----------------      
          #####################---------------       
           ####################--------------        
             ###################-----------          
              ##################----------           
                 ################------              
                     ############--                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -7.24e+14   2.14e+21  -8.00e+21 
  2.14e+21   1.54e+22  -2.68e+22 
 -8.00e+21  -2.68e+22  -1.54e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20250127163214/index.html
	
Regional Moment Tensor (Mwr)
Moment
2.840e+15 N-m
Magnitude
4.24 Mwr
Depth
9.0 km
Percent DC
67%
Half Duration
-
Catalog
US
Data Source
US
Contributor
US
Nodal Planes
Plane	Strike	Dip	Rake
NP1	344	87	-22
NP2	76	68	-177
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.057e+15	13	32
N	-0.501e+15	68	158
P	-2.556e+15	17	298

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   345    90   -15   3.88 0.3555
WVFGRD96    2.0   165    90    20   4.00 0.4634
WVFGRD96    3.0   165    90    25   4.06 0.5336
WVFGRD96    4.0   165    90    20   4.09 0.5868
WVFGRD96    5.0   165    90    20   4.12 0.6292
WVFGRD96    6.0   165    90    20   4.15 0.6642
WVFGRD96    7.0   165    90    15   4.17 0.6932
WVFGRD96    8.0   165    90    20   4.21 0.7189
WVFGRD96    9.0   165    90    20   4.23 0.7342
WVFGRD96   10.0   165    90    15   4.24 0.7437
WVFGRD96   11.0   165    90    15   4.25 0.7490
WVFGRD96   12.0   165    90    15   4.27 0.7493
WVFGRD96   13.0   165    90    15   4.28 0.7473
WVFGRD96   14.0   165    90    15   4.29 0.7417
WVFGRD96   15.0   345    85   -15   4.30 0.7331
WVFGRD96   16.0   165    90    10   4.31 0.7224
WVFGRD96   17.0   165    90    10   4.32 0.7099
WVFGRD96   18.0   345    90   -10   4.32 0.6959
WVFGRD96   19.0   165    90    10   4.33 0.6804
WVFGRD96   20.0   165    90    10   4.34 0.6642
WVFGRD96   21.0   165    90    10   4.35 0.6465
WVFGRD96   22.0   165    90    10   4.35 0.6289
WVFGRD96   23.0   170    85    15   4.35 0.6110
WVFGRD96   24.0   170    85    15   4.35 0.5936
WVFGRD96   25.0   170    85    15   4.36 0.5756
WVFGRD96   26.0   170    80    15   4.36 0.5580
WVFGRD96   27.0   170    80    15   4.36 0.5412
WVFGRD96   28.0   170    80    15   4.37 0.5254
WVFGRD96   29.0   170    80    15   4.37 0.5099

The best solution is

WVFGRD96   12.0   165    90    15   4.27 0.7493

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Mon Jan 27 11:21:15 CST 2025