The ANSS event ID is tx2024yxse and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2024yxse/executive.
2024/12/20 12:08:36 31.614 -104.498 6.8 4.0 Texas
USGS/SLU Moment Tensor Solution
ENS 2024/12/20 12:08:36:0 31.61 -104.50 6.8 4.0 Texas
Stations used:
4O.BP01 4O.CT01 4O.CT02 4O.CV01 4O.DB02 4O.DB03 4O.DB04
4O.LWM1 4O.PL01 4O.SA02 4O.SA04 4O.SA07 4O.VW01 4O.WB02
4O.WB03 4O.WB04 4O.WB05 4O.WB09 4O.WB10 4O.WB11 4O.WB12
4O.WW01 4T.NM01 4T.NM02 TX.MB08 TX.ODSA TX.PB01 TX.PB03
TX.PB04 TX.PB06 TX.PB07 TX.PB08 TX.PB09 TX.PB10 TX.PB11
TX.PB12 TX.PB13 TX.PB14 TX.PB16 TX.PB17 TX.PB18 TX.PB22
TX.PB23 TX.PB24 TX.PB25 TX.PB26 TX.PB29 TX.PB30 TX.PB31
TX.PB33 TX.PB34 TX.PB37 TX.PB38 TX.PB39 TX.PB40 TX.PB43
TX.PB44 TX.PB46 TX.PB47 TX.PB51 TX.PB54 TX.PCOS TX.PECS
TX.VHRN
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.39e+21 dyne-cm
Mw = 3.62
Z = 7 km
Plane Strike Dip Rake
NP1 59 66 -116
NP2 290 35 -45
Principal Axes:
Axis Value Plunge Azimuth
T 3.39e+21 17 168
N 0.00e+00 24 71
P -3.39e+21 60 290
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.87e+21
Mxy -3.29e+20
Mxz -1.44e+21
Myy -6.20e+20
Myz 1.56e+21
Mzz -2.25e+21
##############
######################
############################
#######--------###############
####-------------------###########
##--------------------------########
#------------------------------#####--
----------------------------------##----
----------- ---------------------#----
------------ P -------------------####----
------------ -----------------#######---
------------------------------##########--
----------------------------############--
------------------------###############-
---------------------###################
----------------######################
---------###########################
##################################
##############################
################ #########
############# T ######
######### ##
Global CMT Convention Moment Tensor:
R T P
-2.25e+21 -1.44e+21 -1.56e+21
-1.44e+21 2.87e+21 3.29e+20
-1.56e+21 3.29e+20 -6.20e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241220120836/index.html
|
STK = 290
DIP = 35
RAKE = -45
MW = 3.62
HS = 7.0
The NDK file is 20241220120836.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2024/12/20 12:08:36:0 31.61 -104.50 6.8 4.0 Texas
Stations used:
4O.BP01 4O.CT01 4O.CT02 4O.CV01 4O.DB02 4O.DB03 4O.DB04
4O.LWM1 4O.PL01 4O.SA02 4O.SA04 4O.SA07 4O.VW01 4O.WB02
4O.WB03 4O.WB04 4O.WB05 4O.WB09 4O.WB10 4O.WB11 4O.WB12
4O.WW01 4T.NM01 4T.NM02 TX.MB08 TX.ODSA TX.PB01 TX.PB03
TX.PB04 TX.PB06 TX.PB07 TX.PB08 TX.PB09 TX.PB10 TX.PB11
TX.PB12 TX.PB13 TX.PB14 TX.PB16 TX.PB17 TX.PB18 TX.PB22
TX.PB23 TX.PB24 TX.PB25 TX.PB26 TX.PB29 TX.PB30 TX.PB31
TX.PB33 TX.PB34 TX.PB37 TX.PB38 TX.PB39 TX.PB40 TX.PB43
TX.PB44 TX.PB46 TX.PB47 TX.PB51 TX.PB54 TX.PCOS TX.PECS
TX.VHRN
Filtering commands used:
cut o DIST/3.3 -30 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.39e+21 dyne-cm
Mw = 3.62
Z = 7 km
Plane Strike Dip Rake
NP1 59 66 -116
NP2 290 35 -45
Principal Axes:
Axis Value Plunge Azimuth
T 3.39e+21 17 168
N 0.00e+00 24 71
P -3.39e+21 60 290
Moment Tensor: (dyne-cm)
Component Value
Mxx 2.87e+21
Mxy -3.29e+20
Mxz -1.44e+21
Myy -6.20e+20
Myz 1.56e+21
Mzz -2.25e+21
##############
######################
############################
#######--------###############
####-------------------###########
##--------------------------########
#------------------------------#####--
----------------------------------##----
----------- ---------------------#----
------------ P -------------------####----
------------ -----------------#######---
------------------------------##########--
----------------------------############--
------------------------###############-
---------------------###################
----------------######################
---------###########################
##################################
##############################
################ #########
############# T ######
######### ##
Global CMT Convention Moment Tensor:
R T P
-2.25e+21 -1.44e+21 -1.56e+21
-1.44e+21 2.87e+21 3.29e+20
-1.56e+21 3.29e+20 -6.20e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241220120836/index.html
|
Regional Moment Tensor (Mwr) Moment 3.749e+14 N-m Magnitude 3.65 Mwr Depth 9.0 km Percent DC 92% Half Duration - Catalog US Data Source US 2 Contributor US 2 Nodal Planes Plane Strike Dip Rake NP1 289 40 -56 NP2 68 58 -115 Principal Axes Axis Value Plunge Azimuth T 3.665e+14 10 175 N 0.163e+14 21 81 P -3.828e+14 67 289 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated.
Right: residuals as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 320 75 30 3.23 0.2027
WVFGRD96 2.0 325 75 45 3.41 0.2452
WVFGRD96 3.0 285 20 -30 3.56 0.3297
WVFGRD96 4.0 285 20 -35 3.58 0.3963
WVFGRD96 5.0 285 25 -40 3.59 0.4268
WVFGRD96 6.0 285 30 -45 3.60 0.4385
WVFGRD96 7.0 290 35 -45 3.62 0.4395
WVFGRD96 8.0 285 30 -50 3.69 0.4346
WVFGRD96 9.0 285 30 -50 3.70 0.4209
WVFGRD96 10.0 285 30 -55 3.72 0.4020
WVFGRD96 11.0 290 30 -50 3.73 0.3805
WVFGRD96 12.0 325 45 30 3.66 0.3643
WVFGRD96 13.0 325 50 30 3.68 0.3472
WVFGRD96 14.0 325 50 30 3.68 0.3294
WVFGRD96 15.0 325 50 30 3.68 0.3110
WVFGRD96 16.0 325 50 25 3.69 0.2934
WVFGRD96 17.0 325 50 30 3.69 0.2765
WVFGRD96 18.0 325 50 25 3.70 0.2613
WVFGRD96 19.0 330 50 35 3.70 0.2474
WVFGRD96 20.0 330 60 40 3.71 0.2367
WVFGRD96 21.0 330 60 40 3.72 0.2280
WVFGRD96 22.0 330 60 40 3.73 0.2197
WVFGRD96 23.0 325 60 40 3.73 0.2114
WVFGRD96 24.0 330 55 45 3.73 0.2037
WVFGRD96 25.0 325 60 40 3.74 0.1961
WVFGRD96 26.0 70 50 70 3.80 0.1901
WVFGRD96 27.0 65 55 65 3.79 0.1909
WVFGRD96 28.0 70 55 70 3.81 0.1922
WVFGRD96 29.0 70 55 70 3.82 0.1938
The best solution is
WVFGRD96 7.0 290 35 -45 3.62 0.4395
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -30 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00