The ANSS event ID is ak024gb66mji and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024gb66mji/executive.
2024/12/20 04:03:22 60.357 -152.294 84.7 4.5 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/12/20 04:03:22:0 60.36 -152.29 84.7 4.5 Alaska Stations used: AK.BRLK AK.CAPN AK.CUT AK.FIRE AK.GHO AK.HOM AK.L19K AK.L22K AK.M20K AK.N18K AK.N19K AK.O18K AK.O19K AK.P17K AK.RC01 AK.SAW AK.SLK AK.SSN AK.SWD AT.PMR AV.ACH AV.RED AV.STLK II.KDAK Filtering commands used: cut o DIST/3.3 -50 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 1.19e+23 dyne-cm Mw = 4.65 Z = 112 km Plane Strike Dip Rake NP1 50 70 35 NP2 307 57 156 Principal Axes: Axis Value Plunge Azimuth T 1.19e+23 39 272 N 0.00e+00 50 76 P -1.19e+23 8 176 Moment Tensor: (dyne-cm) Component Value Mxx -1.16e+23 Mxy 5.69e+21 Mxz 1.86e+22 Myy 7.20e+22 Myz -5.91e+22 Mzz 4.38e+22 -------------- ---------------------- ---------------------------- ------------------------------ ###########----------------------# #################----------------### #####################------------##### #########################--------####### ###########################----######### ####### ####################-########### ####### T ###################---########## ####### ##################-----######### ##########################---------####### ######################-------------##### ####################---------------##### ################-------------------### ############----------------------## #######--------------------------- ------------------------------ ---------------------------- ----------- -------- ------- P ---- Global CMT Convention Moment Tensor: R T P 4.38e+22 1.86e+22 5.91e+22 1.86e+22 -1.16e+23 -5.69e+21 5.91e+22 -5.69e+21 7.20e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241220040322/index.html |
STK = 50 DIP = 70 RAKE = 35 MW = 4.65 HS = 112.0
The NDK file is 20241220040322.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -50 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 55 65 30 3.94 0.4263 WVFGRD96 4.0 235 65 25 4.00 0.4775 WVFGRD96 6.0 230 75 15 4.02 0.4990 WVFGRD96 8.0 225 65 -20 4.07 0.5176 WVFGRD96 10.0 225 70 -15 4.09 0.5273 WVFGRD96 12.0 225 75 -10 4.11 0.5255 WVFGRD96 14.0 225 80 5 4.12 0.5214 WVFGRD96 16.0 225 80 5 4.14 0.5170 WVFGRD96 18.0 225 80 5 4.16 0.5116 WVFGRD96 20.0 45 80 5 4.18 0.5084 WVFGRD96 22.0 45 80 5 4.20 0.5069 WVFGRD96 24.0 45 80 10 4.22 0.5066 WVFGRD96 26.0 45 80 10 4.23 0.5075 WVFGRD96 28.0 45 80 10 4.25 0.5102 WVFGRD96 30.0 45 80 10 4.27 0.5137 WVFGRD96 32.0 45 80 10 4.29 0.5178 WVFGRD96 34.0 45 85 10 4.31 0.5216 WVFGRD96 36.0 45 85 10 4.34 0.5256 WVFGRD96 38.0 45 85 10 4.37 0.5313 WVFGRD96 40.0 45 80 10 4.41 0.5438 WVFGRD96 42.0 45 80 10 4.43 0.5458 WVFGRD96 44.0 45 80 15 4.45 0.5471 WVFGRD96 46.0 45 80 15 4.46 0.5494 WVFGRD96 48.0 45 80 15 4.48 0.5523 WVFGRD96 50.0 45 80 15 4.49 0.5556 WVFGRD96 52.0 45 80 15 4.50 0.5586 WVFGRD96 54.0 45 80 15 4.51 0.5639 WVFGRD96 56.0 45 80 15 4.52 0.5692 WVFGRD96 58.0 45 80 20 4.53 0.5764 WVFGRD96 60.0 45 80 20 4.54 0.5837 WVFGRD96 62.0 45 80 20 4.54 0.5908 WVFGRD96 64.0 45 75 20 4.55 0.5968 WVFGRD96 66.0 45 75 20 4.56 0.6036 WVFGRD96 68.0 45 75 25 4.56 0.6099 WVFGRD96 70.0 45 75 25 4.57 0.6167 WVFGRD96 72.0 45 75 25 4.57 0.6227 WVFGRD96 74.0 50 70 30 4.58 0.6276 WVFGRD96 76.0 50 70 30 4.58 0.6331 WVFGRD96 78.0 50 70 30 4.59 0.6380 WVFGRD96 80.0 50 70 30 4.59 0.6423 WVFGRD96 82.0 50 70 30 4.59 0.6459 WVFGRD96 84.0 50 70 30 4.60 0.6491 WVFGRD96 86.0 50 70 30 4.60 0.6516 WVFGRD96 88.0 50 70 30 4.61 0.6545 WVFGRD96 90.0 50 70 30 4.61 0.6564 WVFGRD96 92.0 50 70 35 4.62 0.6587 WVFGRD96 94.0 50 75 35 4.62 0.6613 WVFGRD96 96.0 50 75 35 4.62 0.6629 WVFGRD96 98.0 50 75 35 4.62 0.6636 WVFGRD96 100.0 50 75 35 4.63 0.6642 WVFGRD96 102.0 50 75 35 4.63 0.6654 WVFGRD96 104.0 50 75 35 4.63 0.6661 WVFGRD96 106.0 50 75 35 4.64 0.6658 WVFGRD96 108.0 50 70 35 4.64 0.6656 WVFGRD96 110.0 50 70 35 4.64 0.6661 WVFGRD96 112.0 50 70 35 4.65 0.6661 WVFGRD96 114.0 50 70 35 4.65 0.6652 WVFGRD96 116.0 50 70 35 4.65 0.6646 WVFGRD96 118.0 50 70 35 4.65 0.6640 WVFGRD96 120.0 50 70 35 4.66 0.6629 WVFGRD96 122.0 50 70 35 4.66 0.6620 WVFGRD96 124.0 50 70 35 4.66 0.6609 WVFGRD96 126.0 50 70 35 4.67 0.6596 WVFGRD96 128.0 50 70 35 4.67 0.6580 WVFGRD96 130.0 50 70 35 4.67 0.6566 WVFGRD96 132.0 50 70 35 4.67 0.6548 WVFGRD96 134.0 50 70 35 4.68 0.6517 WVFGRD96 136.0 50 70 35 4.68 0.6505 WVFGRD96 138.0 50 70 35 4.68 0.6471 WVFGRD96 140.0 50 70 35 4.68 0.6448 WVFGRD96 142.0 50 70 35 4.69 0.6418 WVFGRD96 144.0 50 70 35 4.69 0.6382 WVFGRD96 146.0 50 70 35 4.69 0.6345 WVFGRD96 148.0 50 70 35 4.69 0.6296
The best solution is
WVFGRD96 112.0 50 70 35 4.65 0.6661
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -50 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00