Location

Location ANSS

The ANSS event ID is tx2024xtxo and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/tx2024xtxo/executive.

2024/12/04 04:45:06 31.679 -104.093 5.4 3.8 Texas

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/12/04 04:45:06:0  31.68 -104.09   5.4 3.8 Texas
 
 Stations used:
   4O.BB01 4O.BP01 4O.CT01 4O.CT02 4O.CV01 4O.DB02 4O.DB03 
   4O.DB04 4O.LWM1 4O.LWM2 4O.LWM3 4O.NGL02 4O.PL01 4O.SA04 
   4O.SA06 4O.SA07 4O.VW01 4O.WB02 4O.WB03 4O.WB04 4O.WB05 
   4O.WB07 4O.WB08 4O.WB09 4O.WB10 4O.WB11 4O.WB12 4O.WW01 
   4T.NM01 4T.NM03 TX.ALPN TX.MNHN TX.PB01 TX.PB03 TX.PB04 
   TX.PB06 TX.PB07 TX.PB09 TX.PB10 TX.PB11 TX.PB12 TX.PB13 
   TX.PB14 TX.PB16 TX.PB18 TX.PB21 TX.PB22 TX.PB25 TX.PB26 
   TX.PB28 TX.PB29 TX.PB30 TX.PB33 TX.PB35 TX.PB38 TX.PB40 
   TX.PB43 TX.PB44 TX.PB46 TX.PB47 TX.PB51 TX.PB54 TX.PECS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +30
   rtr
   taper w 0.1
   hp c 0.05 n 3 
   lp c 0.15 n 3 
 
 Best Fitting Double Couple
  Mo = 3.16e+21 dyne-cm
  Mw = 3.60 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1       63    61   -99
   NP2      260    30   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.16e+21     16     159
    N   0.00e+00      7      67
    P  -3.16e+21     73     312

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.43e+21
       Mxy    -8.37e+20
       Mxz    -1.38e+21
       Myy     2.20e+20
       Myz     9.63e+20
       Mzz    -2.65e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ##########-------------#######          
           #######----------------------#####        
          ######---------------------------###       
         ####--------------------------------#-      
        ####---------------------------------##-     
        ##-------------   ------------------####     
       ##-------------- P -----------------######    
       ##--------------   ---------------########    
       #--------------------------------#########    
       #-----------------------------############    
        ---------------------------#############     
        -----------------------#################     
         ------------------####################      
          ##---------#########################       
           ##################################        
             ####################   #######          
              ################### T ######           
                 ################   ###              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.65e+21  -1.38e+21  -9.63e+20 
 -1.38e+21   2.43e+21   8.37e+20 
 -9.63e+20   8.37e+20   2.20e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241204044506/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 260
      DIP = 30
     RAKE = -75
       MW = 3.60
       HS = 7.0

The NDK file is 20241204044506.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2024/12/04 04:45:06:0  31.68 -104.09   5.4 3.8 Texas
 
 Stations used:
   4O.BB01 4O.BP01 4O.CT01 4O.CT02 4O.CV01 4O.DB02 4O.DB03 
   4O.DB04 4O.LWM1 4O.LWM2 4O.LWM3 4O.NGL02 4O.PL01 4O.SA04 
   4O.SA06 4O.SA07 4O.VW01 4O.WB02 4O.WB03 4O.WB04 4O.WB05 
   4O.WB07 4O.WB08 4O.WB09 4O.WB10 4O.WB11 4O.WB12 4O.WW01 
   4T.NM01 4T.NM03 TX.ALPN TX.MNHN TX.PB01 TX.PB03 TX.PB04 
   TX.PB06 TX.PB07 TX.PB09 TX.PB10 TX.PB11 TX.PB12 TX.PB13 
   TX.PB14 TX.PB16 TX.PB18 TX.PB21 TX.PB22 TX.PB25 TX.PB26 
   TX.PB28 TX.PB29 TX.PB30 TX.PB33 TX.PB35 TX.PB38 TX.PB40 
   TX.PB43 TX.PB44 TX.PB46 TX.PB47 TX.PB51 TX.PB54 TX.PECS 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +30
   rtr
   taper w 0.1
   hp c 0.05 n 3 
   lp c 0.15 n 3 
 
 Best Fitting Double Couple
  Mo = 3.16e+21 dyne-cm
  Mw = 3.60 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1       63    61   -99
   NP2      260    30   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.16e+21     16     159
    N   0.00e+00      7      67
    P  -3.16e+21     73     312

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.43e+21
       Mxy    -8.37e+20
       Mxz    -1.38e+21
       Myy     2.20e+20
       Myz     9.63e+20
       Mzz    -2.65e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ##########-------------#######          
           #######----------------------#####        
          ######---------------------------###       
         ####--------------------------------#-      
        ####---------------------------------##-     
        ##-------------   ------------------####     
       ##-------------- P -----------------######    
       ##--------------   ---------------########    
       #--------------------------------#########    
       #-----------------------------############    
        ---------------------------#############     
        -----------------------#################     
         ------------------####################      
          ##---------#########################       
           ##################################        
             ####################   #######          
              ################### T ######           
                 ################   ###              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.65e+21  -1.38e+21  -9.63e+20 
 -1.38e+21   2.43e+21   8.37e+20 
 -9.63e+20   8.37e+20   2.20e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241204044506/index.html
	
Regional Moment Tensor (Mwr)
Moment
3.443e+14 N-m
Magnitude
3.62 Mwr
Depth
5.0 km
Percent DC
99%
Half Duration
-
Catalog
US
Data Source
US 2
Contributor
US 2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	265	33	-72
NP2	63	59	-102
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.451e+14	13	161
N	-0.015e+14	10	69
P	-3.436e+14	74	303

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +30
rtr
taper w 0.1
hp c 0.05 n 3 
lp c 0.15 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    35    60    60   3.14 0.1546
WVFGRD96    2.0    60    55    90   3.38 0.2145
WVFGRD96    3.0   275    20   -45   3.46 0.3364
WVFGRD96    4.0   270    25   -60   3.51 0.4291
WVFGRD96    5.0   265    30   -70   3.55 0.4925
WVFGRD96    6.0   265    30   -70   3.57 0.5261
WVFGRD96    7.0   260    30   -75   3.60 0.5336
WVFGRD96    8.0   255    30   -80   3.69 0.5285
WVFGRD96    9.0   255    30   -85   3.71 0.5129
WVFGRD96   10.0    70    55   -90   3.74 0.4886
WVFGRD96   11.0    70    55   -90   3.75 0.4589
WVFGRD96   12.0    70    55   -90   3.76 0.4269
WVFGRD96   13.0    70    55   -90   3.77 0.3932
WVFGRD96   14.0    70    55   -90   3.78 0.3606
WVFGRD96   15.0    70    55   -85   3.79 0.3306
WVFGRD96   16.0    80    50   -75   3.80 0.3042
WVFGRD96   17.0    75    40   -85   3.80 0.2871
WVFGRD96   18.0    75    40   -80   3.80 0.2751
WVFGRD96   19.0    70    40   -90   3.80 0.2657
WVFGRD96   20.0   250    50   -90   3.81 0.2589
WVFGRD96   21.0   250    50   -90   3.82 0.2568
WVFGRD96   22.0    70    40   -90   3.82 0.2555
WVFGRD96   23.0    70    40   -90   3.83 0.2558
WVFGRD96   24.0    70    40   -95   3.84 0.2566
WVFGRD96   25.0    70    40   -90   3.84 0.2557
WVFGRD96   26.0    70    45   -95   3.84 0.2533
WVFGRD96   27.0    70    45   -95   3.85 0.2499
WVFGRD96   28.0    70    45   -95   3.85 0.2450
WVFGRD96   29.0    70    45   -95   3.85 0.2386

The best solution is

WVFGRD96    7.0   260    30   -75   3.60 0.5336

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +30
rtr
taper w 0.1
hp c 0.05 n 3 
lp c 0.15 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Wed Dec 4 05:04:31 CST 2024