The ANSS event ID is ak024fhjxlyu and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024fhjxlyu/executive.
2024/12/02 13:14:08 61.469 -146.616 7.5 3.7 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/12/02 13:14:08:0 61.47 -146.62 7.5 3.7 Alaska Stations used: AK.BAE AK.BMR AK.CAST AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.HIN AK.KLU AK.KNK AK.L19K AK.L26K AK.M20K AK.PWL AK.RC01 AK.RIDG AK.SCM AK.WAT6 AT.PMR AV.WAZA CN.BVCY IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 41 km Plane Strike Dip Rake NP1 191 57 -103 NP2 35 35 -70 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 11 291 N 0.00e+00 11 198 P -5.89e+21 74 65 Moment Tensor: (dyne-cm) Component Value Mxx 6.25e+20 Mxy -2.05e+21 Mxz -2.66e+20 Myy 4.57e+21 Myz -2.50e+21 Mzz -5.20e+21 #########----- ###########----------- ############---------------# ############-----------------# #############------------------### #############--------------------### ##########---------------------#### # T #########----------------------##### # #########----------- --------##### #############------------ P --------###### #############------------ --------###### #############----------------------####### ############-----------------------####### ###########----------------------####### ###########---------------------######## ##########--------------------######## ##########-----------------######### #########---------------########## #######-------------########## #######---------############ --###-################ --############ Global CMT Convention Moment Tensor: R T P -5.20e+21 -2.66e+20 2.50e+21 -2.66e+20 6.25e+20 2.05e+21 2.50e+21 2.05e+21 4.57e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241202131408/index.html |
STK = 35 DIP = 35 RAKE = -70 MW = 3.78 HS = 41.0
The NDK file is 20241202131408.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2024/12/02 13:14:08:0 61.47 -146.62 7.5 3.7 Alaska Stations used: AK.BAE AK.BMR AK.CAST AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO AK.HIN AK.KLU AK.KNK AK.L19K AK.L26K AK.M20K AK.PWL AK.RC01 AK.RIDG AK.SCM AK.WAT6 AT.PMR AV.WAZA CN.BVCY IU.COLA Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2 Best Fitting Double Couple Mo = 5.89e+21 dyne-cm Mw = 3.78 Z = 41 km Plane Strike Dip Rake NP1 191 57 -103 NP2 35 35 -70 Principal Axes: Axis Value Plunge Azimuth T 5.89e+21 11 291 N 0.00e+00 11 198 P -5.89e+21 74 65 Moment Tensor: (dyne-cm) Component Value Mxx 6.25e+20 Mxy -2.05e+21 Mxz -2.66e+20 Myy 4.57e+21 Myz -2.50e+21 Mzz -5.20e+21 #########----- ###########----------- ############---------------# ############-----------------# #############------------------### #############--------------------### ##########---------------------#### # T #########----------------------##### # #########----------- --------##### #############------------ P --------###### #############------------ --------###### #############----------------------####### ############-----------------------####### ###########----------------------####### ###########---------------------######## ##########--------------------######## ##########-----------------######### #########---------------########## #######-------------########## #######---------############ --###-################ --############ Global CMT Convention Moment Tensor: R T P -5.20e+21 -2.66e+20 2.50e+21 -2.66e+20 6.25e+20 2.05e+21 2.50e+21 2.05e+21 4.57e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241202131408/index.html |
|
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 20 45 90 3.08 0.2972 WVFGRD96 2.0 295 45 90 3.28 0.4307 WVFGRD96 3.0 35 50 -75 3.27 0.4253 WVFGRD96 4.0 45 60 -60 3.30 0.4419 WVFGRD96 5.0 40 60 -70 3.35 0.4495 WVFGRD96 6.0 245 40 -10 3.30 0.4627 WVFGRD96 7.0 250 70 50 3.34 0.4792 WVFGRD96 8.0 240 35 -20 3.37 0.4845 WVFGRD96 9.0 250 70 50 3.39 0.4951 WVFGRD96 10.0 255 60 45 3.39 0.5085 WVFGRD96 11.0 255 60 45 3.40 0.5196 WVFGRD96 12.0 255 60 40 3.40 0.5283 WVFGRD96 13.0 230 40 -40 3.42 0.5399 WVFGRD96 14.0 230 40 -45 3.43 0.5506 WVFGRD96 15.0 230 45 -40 3.44 0.5612 WVFGRD96 16.0 230 45 -40 3.45 0.5696 WVFGRD96 17.0 230 50 -40 3.46 0.5777 WVFGRD96 18.0 230 50 -40 3.47 0.5851 WVFGRD96 19.0 230 50 -40 3.48 0.5906 WVFGRD96 20.0 230 50 -40 3.49 0.5941 WVFGRD96 21.0 230 50 -40 3.50 0.5957 WVFGRD96 22.0 230 50 -40 3.51 0.5975 WVFGRD96 23.0 230 55 -40 3.51 0.5985 WVFGRD96 24.0 230 55 -40 3.52 0.5995 WVFGRD96 25.0 230 60 -45 3.53 0.6001 WVFGRD96 26.0 230 60 -45 3.53 0.6019 WVFGRD96 27.0 230 60 -45 3.54 0.6029 WVFGRD96 28.0 230 60 -45 3.55 0.6029 WVFGRD96 29.0 225 55 -50 3.56 0.6020 WVFGRD96 30.0 225 60 -50 3.57 0.6004 WVFGRD96 31.0 225 55 -50 3.58 0.5984 WVFGRD96 32.0 45 45 -60 3.60 0.5982 WVFGRD96 33.0 50 45 -55 3.61 0.6044 WVFGRD96 34.0 45 45 -60 3.63 0.6100 WVFGRD96 35.0 40 40 -65 3.64 0.6155 WVFGRD96 36.0 40 40 -65 3.65 0.6204 WVFGRD96 37.0 40 40 -65 3.66 0.6239 WVFGRD96 38.0 40 40 -65 3.68 0.6263 WVFGRD96 39.0 40 40 -65 3.69 0.6274 WVFGRD96 40.0 35 35 -70 3.77 0.6302 WVFGRD96 41.0 35 35 -70 3.78 0.6310 WVFGRD96 42.0 35 35 -70 3.78 0.6290 WVFGRD96 43.0 35 35 -70 3.79 0.6257 WVFGRD96 44.0 35 35 -70 3.80 0.6207 WVFGRD96 45.0 35 35 -70 3.80 0.6144 WVFGRD96 46.0 35 35 -70 3.81 0.6076 WVFGRD96 47.0 35 35 -70 3.81 0.5994 WVFGRD96 48.0 35 35 -70 3.81 0.5911 WVFGRD96 49.0 35 35 -70 3.82 0.5814 WVFGRD96 50.0 35 35 -70 3.82 0.5724 WVFGRD96 51.0 40 35 -65 3.82 0.5618 WVFGRD96 52.0 45 40 -55 3.80 0.5533 WVFGRD96 53.0 50 45 -50 3.80 0.5481 WVFGRD96 54.0 50 45 -50 3.80 0.5437 WVFGRD96 55.0 50 45 -50 3.80 0.5389 WVFGRD96 56.0 50 45 -50 3.80 0.5338 WVFGRD96 57.0 55 50 -45 3.79 0.5292 WVFGRD96 58.0 55 50 -45 3.79 0.5254 WVFGRD96 59.0 55 50 -45 3.79 0.5212
The best solution is
WVFGRD96 41.0 35 35 -70 3.78 0.6310
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 br c 0.12 0.25 n 4 p 2
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00