Location

SLU Location

To check the ANSS location or to compare the observed P-wave first motions to the moment tensor solution, P- and S-wave first arrival times were manually read together with the P-wave first motions. The subsequent output of the program elocate is given in the file elocate.txt. The first motion plot is shown below.

Location ANSS

The ANSS event ID is ak024fhjxlyu and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024fhjxlyu/executive.

2024/12/02 13:14:08 61.469 -146.616 7.5 3.7 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/12/02 13:14:08:0  61.47 -146.62   7.5 3.7 Alaska
 
 Stations used:
   AK.BAE AK.BMR AK.CAST AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO 
   AK.HIN AK.KLU AK.KNK AK.L19K AK.L26K AK.M20K AK.PWL AK.RC01 
   AK.RIDG AK.SCM AK.WAT6 AT.PMR AV.WAZA CN.BVCY IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 5.89e+21 dyne-cm
  Mw = 3.78 
  Z  = 41 km
  Plane   Strike  Dip  Rake
   NP1      191    57   -103
   NP2       35    35   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.89e+21     11     291
    N   0.00e+00     11     198
    P  -5.89e+21     74      65

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.25e+20
       Mxy    -2.05e+21
       Mxz    -2.66e+20
       Myy     4.57e+21
       Myz    -2.50e+21
       Mzz    -5.20e+21
                                                     
                                                     
                                                     
                                                     
                     #########-----                  
                 ###########-----------              
              ############---------------#           
             ############-----------------#          
           #############------------------###        
          #############--------------------###       
            ##########---------------------####      
        # T #########----------------------#####     
        #   #########-----------   --------#####     
       #############------------ P --------######    
       #############------------   --------######    
       #############----------------------#######    
       ############-----------------------#######    
        ###########----------------------#######     
        ###########---------------------########     
         ##########--------------------########      
          ##########-----------------#########       
           #########---------------##########        
             #######-------------##########          
              #######---------############           
                 --###-################              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.20e+21  -2.66e+20   2.50e+21 
 -2.66e+20   6.25e+20   2.05e+21 
  2.50e+21   2.05e+21   4.57e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241202131408/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 35
      DIP = 35
     RAKE = -70
       MW = 3.78
       HS = 41.0

The NDK file is 20241202131408.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2024/12/02 13:14:08:0  61.47 -146.62   7.5 3.7 Alaska
 
 Stations used:
   AK.BAE AK.BMR AK.CAST AK.DHY AK.DIV AK.EYAK AK.FID AK.GHO 
   AK.HIN AK.KLU AK.KNK AK.L19K AK.L26K AK.M20K AK.PWL AK.RC01 
   AK.RIDG AK.SCM AK.WAT6 AT.PMR AV.WAZA CN.BVCY IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 5.89e+21 dyne-cm
  Mw = 3.78 
  Z  = 41 km
  Plane   Strike  Dip  Rake
   NP1      191    57   -103
   NP2       35    35   -70
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.89e+21     11     291
    N   0.00e+00     11     198
    P  -5.89e+21     74      65

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     6.25e+20
       Mxy    -2.05e+21
       Mxz    -2.66e+20
       Myy     4.57e+21
       Myz    -2.50e+21
       Mzz    -5.20e+21
                                                     
                                                     
                                                     
                                                     
                     #########-----                  
                 ###########-----------              
              ############---------------#           
             ############-----------------#          
           #############------------------###        
          #############--------------------###       
            ##########---------------------####      
        # T #########----------------------#####     
        #   #########-----------   --------#####     
       #############------------ P --------######    
       #############------------   --------######    
       #############----------------------#######    
       ############-----------------------#######    
        ###########----------------------#######     
        ###########---------------------########     
         ##########--------------------########      
          ##########-----------------#########       
           #########---------------##########        
             #######-------------##########          
              #######---------############           
                 --###-################              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -5.20e+21  -2.66e+20   2.50e+21 
 -2.66e+20   6.25e+20   2.05e+21 
  2.50e+21   2.05e+21   4.57e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241202131408/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    20    45    90   3.08 0.2972
WVFGRD96    2.0   295    45    90   3.28 0.4307
WVFGRD96    3.0    35    50   -75   3.27 0.4253
WVFGRD96    4.0    45    60   -60   3.30 0.4419
WVFGRD96    5.0    40    60   -70   3.35 0.4495
WVFGRD96    6.0   245    40   -10   3.30 0.4627
WVFGRD96    7.0   250    70    50   3.34 0.4792
WVFGRD96    8.0   240    35   -20   3.37 0.4845
WVFGRD96    9.0   250    70    50   3.39 0.4951
WVFGRD96   10.0   255    60    45   3.39 0.5085
WVFGRD96   11.0   255    60    45   3.40 0.5196
WVFGRD96   12.0   255    60    40   3.40 0.5283
WVFGRD96   13.0   230    40   -40   3.42 0.5399
WVFGRD96   14.0   230    40   -45   3.43 0.5506
WVFGRD96   15.0   230    45   -40   3.44 0.5612
WVFGRD96   16.0   230    45   -40   3.45 0.5696
WVFGRD96   17.0   230    50   -40   3.46 0.5777
WVFGRD96   18.0   230    50   -40   3.47 0.5851
WVFGRD96   19.0   230    50   -40   3.48 0.5906
WVFGRD96   20.0   230    50   -40   3.49 0.5941
WVFGRD96   21.0   230    50   -40   3.50 0.5957
WVFGRD96   22.0   230    50   -40   3.51 0.5975
WVFGRD96   23.0   230    55   -40   3.51 0.5985
WVFGRD96   24.0   230    55   -40   3.52 0.5995
WVFGRD96   25.0   230    60   -45   3.53 0.6001
WVFGRD96   26.0   230    60   -45   3.53 0.6019
WVFGRD96   27.0   230    60   -45   3.54 0.6029
WVFGRD96   28.0   230    60   -45   3.55 0.6029
WVFGRD96   29.0   225    55   -50   3.56 0.6020
WVFGRD96   30.0   225    60   -50   3.57 0.6004
WVFGRD96   31.0   225    55   -50   3.58 0.5984
WVFGRD96   32.0    45    45   -60   3.60 0.5982
WVFGRD96   33.0    50    45   -55   3.61 0.6044
WVFGRD96   34.0    45    45   -60   3.63 0.6100
WVFGRD96   35.0    40    40   -65   3.64 0.6155
WVFGRD96   36.0    40    40   -65   3.65 0.6204
WVFGRD96   37.0    40    40   -65   3.66 0.6239
WVFGRD96   38.0    40    40   -65   3.68 0.6263
WVFGRD96   39.0    40    40   -65   3.69 0.6274
WVFGRD96   40.0    35    35   -70   3.77 0.6302
WVFGRD96   41.0    35    35   -70   3.78 0.6310
WVFGRD96   42.0    35    35   -70   3.78 0.6290
WVFGRD96   43.0    35    35   -70   3.79 0.6257
WVFGRD96   44.0    35    35   -70   3.80 0.6207
WVFGRD96   45.0    35    35   -70   3.80 0.6144
WVFGRD96   46.0    35    35   -70   3.81 0.6076
WVFGRD96   47.0    35    35   -70   3.81 0.5994
WVFGRD96   48.0    35    35   -70   3.81 0.5911
WVFGRD96   49.0    35    35   -70   3.82 0.5814
WVFGRD96   50.0    35    35   -70   3.82 0.5724
WVFGRD96   51.0    40    35   -65   3.82 0.5618
WVFGRD96   52.0    45    40   -55   3.80 0.5533
WVFGRD96   53.0    50    45   -50   3.80 0.5481
WVFGRD96   54.0    50    45   -50   3.80 0.5437
WVFGRD96   55.0    50    45   -50   3.80 0.5389
WVFGRD96   56.0    50    45   -50   3.80 0.5338
WVFGRD96   57.0    55    50   -45   3.79 0.5292
WVFGRD96   58.0    55    50   -45   3.79 0.5254
WVFGRD96   59.0    55    50   -45   3.79 0.5212

The best solution is

WVFGRD96   41.0    35    35   -70   3.78 0.6310

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Wed Dec 4 08:41:05 CST 2024