The ANSS event ID is ak024em2arnr and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024em2arnr/executive.
2024/11/13 09:07:03 60.945 -147.361 16.2 4.5 Alaska
USGS/SLU Moment Tensor Solution
ENS 2024/11/13 09:07:03:0 60.94 -147.36 16.2 4.5 Alaska
Stations used:
AK.BAE AK.BAT AK.BGLC AK.BRSE AK.EYAK AK.FID AK.GHO AK.GRIN
AK.HIN AK.KHIT AK.KIAG AK.KNK AK.L22K AK.M23K AK.M26K
AK.MCAR AK.P23K AK.PAX AK.PS11 AK.PS12 AK.PWL AK.SAW AK.SCM
AK.SLK AK.SWD AK.VMT AK.VRDI AT.DORN AT.NSHR AT.PMR AV.N25K
AV.STLK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.31e+22 dyne-cm
Mw = 4.28
Z = 30 km
Plane Strike Dip Rake
NP1 85 80 50
NP2 343 41 165
Principal Axes:
Axis Value Plunge Azimuth
T 3.31e+22 41 318
N 0.00e+00 39 93
P -3.31e+22 24 205
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.22e+22
Mxy -1.99e+22
Mxz 2.34e+22
Myy 3.57e+21
Myz -5.76e+21
Mzz 8.68e+21
###-----------
############----------
##################----------
#####################---------
########################----------
######### ###############---------
########## T ################---------
########### #################---------
###############################---------
#################################---------
#################################------###
#################################-########
-------###########----------------########
---------------------------------#######
---------------------------------#######
-------------------------------#######
------------------------------######
--------- ----------------######
------- P ----------------####
------ ---------------####
-------------------###
-------------#
Global CMT Convention Moment Tensor:
R T P
8.68e+21 2.34e+22 5.76e+21
2.34e+22 -1.22e+22 1.99e+22
5.76e+21 1.99e+22 3.57e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241113090703/index.html
|
STK = 85
DIP = 80
RAKE = 50
MW = 4.28
HS = 30.0
The NDK file is 20241113090703.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution
ENS 2024/11/13 09:07:03:0 60.94 -147.36 16.2 4.5 Alaska
Stations used:
AK.BAE AK.BAT AK.BGLC AK.BRSE AK.EYAK AK.FID AK.GHO AK.GRIN
AK.HIN AK.KHIT AK.KIAG AK.KNK AK.L22K AK.M23K AK.M26K
AK.MCAR AK.P23K AK.PAX AK.PS11 AK.PS12 AK.PWL AK.SAW AK.SCM
AK.SLK AK.SWD AK.VMT AK.VRDI AT.DORN AT.NSHR AT.PMR AV.N25K
AV.STLK
Filtering commands used:
cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.31e+22 dyne-cm
Mw = 4.28
Z = 30 km
Plane Strike Dip Rake
NP1 85 80 50
NP2 343 41 165
Principal Axes:
Axis Value Plunge Azimuth
T 3.31e+22 41 318
N 0.00e+00 39 93
P -3.31e+22 24 205
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.22e+22
Mxy -1.99e+22
Mxz 2.34e+22
Myy 3.57e+21
Myz -5.76e+21
Mzz 8.68e+21
###-----------
############----------
##################----------
#####################---------
########################----------
######### ###############---------
########## T ################---------
########### #################---------
###############################---------
#################################---------
#################################------###
#################################-########
-------###########----------------########
---------------------------------#######
---------------------------------#######
-------------------------------#######
------------------------------######
--------- ----------------######
------- P ----------------####
------ ---------------####
-------------------###
-------------#
Global CMT Convention Moment Tensor:
R T P
8.68e+21 2.34e+22 5.76e+21
2.34e+22 -1.22e+22 1.99e+22
5.76e+21 1.99e+22 3.57e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241113090703/index.html
|
Regional Moment Tensor (Mwr) Moment 3.943e+15 N-m Magnitude 4.33 Mwr Depth 33.0 km Percent DC 88% Half Duration - Catalog US Data Source US 3 Contributor US 3 Nodal Planes Plane Strike Dip Rake NP1 344 40 168 NP2 83 82 51 Principal Axes Axis Value Plunge Azimuth T 4.054e+15 40 317 N -0.234e+15 39 90 P -3.821e+15 26 203 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 20 50 55 3.52 0.1762
WVFGRD96 2.0 25 50 65 3.69 0.2432
WVFGRD96 3.0 10 55 40 3.72 0.2420
WVFGRD96 4.0 340 50 -25 3.74 0.2524
WVFGRD96 5.0 345 55 -20 3.77 0.2744
WVFGRD96 6.0 345 55 -20 3.80 0.2932
WVFGRD96 7.0 345 55 -15 3.82 0.3101
WVFGRD96 8.0 345 50 -15 3.89 0.3248
WVFGRD96 9.0 90 70 45 3.92 0.3435
WVFGRD96 10.0 90 70 45 3.95 0.3670
WVFGRD96 11.0 85 75 40 3.96 0.3893
WVFGRD96 12.0 85 75 40 3.99 0.4102
WVFGRD96 13.0 85 75 40 4.01 0.4307
WVFGRD96 14.0 85 75 40 4.03 0.4506
WVFGRD96 15.0 85 75 40 4.05 0.4699
WVFGRD96 16.0 85 75 40 4.07 0.4891
WVFGRD96 17.0 85 75 40 4.09 0.5081
WVFGRD96 18.0 85 75 40 4.11 0.5270
WVFGRD96 19.0 85 75 40 4.13 0.5456
WVFGRD96 20.0 85 75 40 4.14 0.5638
WVFGRD96 21.0 85 75 45 4.17 0.5819
WVFGRD96 22.0 85 80 45 4.18 0.5989
WVFGRD96 23.0 85 80 45 4.20 0.6163
WVFGRD96 24.0 85 80 45 4.21 0.6321
WVFGRD96 25.0 85 80 50 4.23 0.6474
WVFGRD96 26.0 85 80 50 4.24 0.6609
WVFGRD96 27.0 85 80 50 4.25 0.6718
WVFGRD96 28.0 85 80 50 4.26 0.6795
WVFGRD96 29.0 85 80 50 4.27 0.6850
WVFGRD96 30.0 85 80 50 4.28 0.6862
WVFGRD96 31.0 85 80 55 4.29 0.6857
WVFGRD96 32.0 85 80 55 4.30 0.6829
WVFGRD96 33.0 85 80 55 4.30 0.6769
WVFGRD96 34.0 85 80 55 4.31 0.6705
WVFGRD96 35.0 85 80 55 4.31 0.6619
WVFGRD96 36.0 85 80 50 4.31 0.6545
WVFGRD96 37.0 85 80 50 4.31 0.6470
WVFGRD96 38.0 85 80 50 4.32 0.6399
WVFGRD96 39.0 85 80 45 4.32 0.6334
WVFGRD96 40.0 85 80 60 4.43 0.6235
WVFGRD96 41.0 85 80 55 4.42 0.6229
WVFGRD96 42.0 85 80 55 4.43 0.6198
WVFGRD96 43.0 85 80 55 4.43 0.6146
WVFGRD96 44.0 85 80 55 4.44 0.6091
WVFGRD96 45.0 85 80 50 4.43 0.6044
WVFGRD96 46.0 85 80 50 4.44 0.5984
WVFGRD96 47.0 85 75 50 4.45 0.5930
WVFGRD96 48.0 85 75 50 4.45 0.5884
WVFGRD96 49.0 85 75 45 4.45 0.5828
WVFGRD96 50.0 85 75 45 4.45 0.5791
WVFGRD96 51.0 85 75 45 4.46 0.5743
WVFGRD96 52.0 85 75 45 4.46 0.5689
WVFGRD96 53.0 85 75 45 4.46 0.5639
WVFGRD96 54.0 85 75 45 4.47 0.5579
WVFGRD96 55.0 85 75 45 4.47 0.5528
WVFGRD96 56.0 85 75 45 4.47 0.5452
WVFGRD96 57.0 85 75 45 4.47 0.5394
WVFGRD96 58.0 85 75 45 4.48 0.5324
WVFGRD96 59.0 85 75 40 4.47 0.5268
The best solution is
WVFGRD96 30.0 85 80 50 4.28 0.6862
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01
Model after 8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00
6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00
13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00
19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00