Location

Location ANSS

The ANSS event ID is us7000nqqx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000nqqx/executive.

2024/11/08 20:06:05 65.382 -134.621 12.8 4.9 Yukon, Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/11/08 20:06:05:0  65.38 -134.62  12.8 4.9 Yukon, Canada
 
 Stations used:
   AK.BAL AK.BARN AK.C27K AK.CCB AK.DHY AK.E25K AK.E27K AK.FYU 
   AK.GRES AK.H24K AK.HARP AK.HDA AK.I23K AK.I27K AK.J25K 
   AK.K24K AK.KIAG AK.L26K AK.LOGN AK.M26K AK.MCAR AK.MDM 
   AK.MESA AK.NEA2 AK.PAX AK.POKR AK.PPD AK.PS07 AK.PS08 
   AK.PS09 AK.PS10 AK.PS11 AK.PTPK AK.RIDG AK.RKAV AK.SCRK 
   AK.TGL AK.VRDI AK.WRH AT.SKAG AV.N25K AV.WACK AV.WAZA 
   CN.ATLI CN.BRWY CN.CROWY CN.DAWY CN.HYT CN.INK CN.PLBC 
   CN.WHY CN.YUK3 CN.YUK6 CN.YUK7 IU.COLA NY.MAYO NY.WTLY 
   PQ.NOWN PQ.OGILY PQ.TSIIG PQ.TUKN 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 2.92e+23 dyne-cm
  Mw = 4.91 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      270    75    70
   NP2      145    25   142
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.92e+23     56     155
    N   0.00e+00     19     275
    P  -2.92e+23     27      16

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.37e+23
       Mxy    -9.64e+22
       Mxz    -2.37e+23
       Myy    -2.30e+15
       Myz     2.58e+22
       Mzz     1.37e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 --------------   -----              
              #---------------- P --------           
             #-----------------   ---------          
           ##--------------------------------        
          ##----------------------------------       
         ###-----------------------------------      
        ###-------------------------------------     
        ###-------------------------------------     
       ####-----########################---------    
       ##--####################################--    
       ----######################################    
       -----#####################################    
        -----###################################     
        -----#################   ###############     
         ------############### T ##############      
          ------##############   #############       
           -------###########################        
             -------#######################          
              --------####################           
                 ----------###########-              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.37e+23  -2.37e+23  -2.58e+22 
 -2.37e+23  -1.37e+23   9.64e+22 
 -2.58e+22   9.64e+22  -2.30e+15 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241108200605/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 270
      DIP = 75
     RAKE = 70
       MW = 4.91
       HS = 10.0

The NDK file is 20241108200605.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2024/11/08 20:06:05:0  65.38 -134.62  12.8 4.9 Yukon, Canada
 
 Stations used:
   AK.BAL AK.BARN AK.C27K AK.CCB AK.DHY AK.E25K AK.E27K AK.FYU 
   AK.GRES AK.H24K AK.HARP AK.HDA AK.I23K AK.I27K AK.J25K 
   AK.K24K AK.KIAG AK.L26K AK.LOGN AK.M26K AK.MCAR AK.MDM 
   AK.MESA AK.NEA2 AK.PAX AK.POKR AK.PPD AK.PS07 AK.PS08 
   AK.PS09 AK.PS10 AK.PS11 AK.PTPK AK.RIDG AK.RKAV AK.SCRK 
   AK.TGL AK.VRDI AK.WRH AT.SKAG AV.N25K AV.WACK AV.WAZA 
   CN.ATLI CN.BRWY CN.CROWY CN.DAWY CN.HYT CN.INK CN.PLBC 
   CN.WHY CN.YUK3 CN.YUK6 CN.YUK7 IU.COLA NY.MAYO NY.WTLY 
   PQ.NOWN PQ.OGILY PQ.TSIIG PQ.TUKN 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +60
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.08 n 3 
 
 Best Fitting Double Couple
  Mo = 2.92e+23 dyne-cm
  Mw = 4.91 
  Z  = 10 km
  Plane   Strike  Dip  Rake
   NP1      270    75    70
   NP2      145    25   142
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.92e+23     56     155
    N   0.00e+00     19     275
    P  -2.92e+23     27      16

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.37e+23
       Mxy    -9.64e+22
       Mxz    -2.37e+23
       Myy    -2.30e+15
       Myz     2.58e+22
       Mzz     1.37e+23
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 --------------   -----              
              #---------------- P --------           
             #-----------------   ---------          
           ##--------------------------------        
          ##----------------------------------       
         ###-----------------------------------      
        ###-------------------------------------     
        ###-------------------------------------     
       ####-----########################---------    
       ##--####################################--    
       ----######################################    
       -----#####################################    
        -----###################################     
        -----#################   ###############     
         ------############### T ##############      
          ------##############   #############       
           -------###########################        
             -------#######################          
              --------####################           
                 ----------###########-              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.37e+23  -2.37e+23  -2.58e+22 
 -2.37e+23  -1.37e+23   9.64e+22 
 -2.58e+22   9.64e+22  -2.30e+15 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241108200605/index.html
	
W-phase Moment Tensor (Mww)
Moment
3.083e+16 N-m
Magnitude
4.93 Mww
Depth
17.5 km
Percent DC
92%
Half Duration
0.50 s
Catalog
US
Data Source
US 1
Contributor
US 1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	252	81	60
NP2	147	31	162
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.019e+16	46	132
N	0.125e+16	30	258
P	-3.144e+16	29	6

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   255    65    45   4.81 0.4734
WVFGRD96    2.0   260    50    50   4.87 0.4511
WVFGRD96    3.0   260    80    70   4.93 0.4379
WVFGRD96    4.0   265    80    70   4.90 0.4583
WVFGRD96    5.0   270    75    75   4.90 0.4769
WVFGRD96    6.0   270    75    70   4.89 0.4934
WVFGRD96    7.0   270    75    70   4.88 0.5040
WVFGRD96    8.0   270    75    70   4.88 0.5115
WVFGRD96    9.0   270    75    70   4.88 0.5159
WVFGRD96   10.0   270    75    70   4.91 0.5194
WVFGRD96   11.0   270    75    70   4.91 0.5184
WVFGRD96   12.0   270    75    70   4.91 0.5164
WVFGRD96   13.0   270    75    70   4.91 0.5126
WVFGRD96   14.0   265    80    65   4.91 0.5079
WVFGRD96   15.0   265    80    65   4.92 0.5027
WVFGRD96   16.0   265    80    65   4.92 0.4961
WVFGRD96   17.0   265    80    70   4.93 0.4884
WVFGRD96   18.0   265    80    70   4.93 0.4802
WVFGRD96   19.0   265    80    70   4.94 0.4709
WVFGRD96   20.0   260    85    70   4.97 0.4625
WVFGRD96   21.0   260    85    70   4.98 0.4515
WVFGRD96   22.0    80    90   -70   4.98 0.4385
WVFGRD96   23.0    80    90   -70   4.99 0.4273
WVFGRD96   24.0    80    90   -75   5.00 0.4159
WVFGRD96   25.0   260    85    75   5.00 0.4047
WVFGRD96   26.0   260    85    75   5.01 0.3927
WVFGRD96   27.0    80    90   -75   5.02 0.3806
WVFGRD96   28.0    80    90   -75   5.02 0.3684
WVFGRD96   29.0    80    90   -75   5.03 0.3561

The best solution is

WVFGRD96   10.0   270    75    70   4.91 0.5194

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +60
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.08 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Fri Nov 8 15:38:51 CST 2024