The ANSS event ID is us7000nqqx and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us7000nqqx/executive.
2024/11/08 20:06:05 65.382 -134.621 12.8 4.9 Yukon, Canada
USGS/SLU Moment Tensor Solution ENS 2024/11/08 20:06:05:0 65.38 -134.62 12.8 4.9 Yukon, Canada Stations used: AK.BAL AK.BARN AK.C27K AK.CCB AK.DHY AK.E25K AK.E27K AK.FYU AK.GRES AK.H24K AK.HARP AK.HDA AK.I23K AK.I27K AK.J25K AK.K24K AK.KIAG AK.L26K AK.LOGN AK.M26K AK.MCAR AK.MDM AK.MESA AK.NEA2 AK.PAX AK.POKR AK.PPD AK.PS07 AK.PS08 AK.PS09 AK.PS10 AK.PS11 AK.PTPK AK.RIDG AK.RKAV AK.SCRK AK.TGL AK.VRDI AK.WRH AT.SKAG AV.N25K AV.WACK AV.WAZA CN.ATLI CN.BRWY CN.CROWY CN.DAWY CN.HYT CN.INK CN.PLBC CN.WHY CN.YUK3 CN.YUK6 CN.YUK7 IU.COLA NY.MAYO NY.WTLY PQ.NOWN PQ.OGILY PQ.TSIIG PQ.TUKN Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.92e+23 dyne-cm Mw = 4.91 Z = 10 km Plane Strike Dip Rake NP1 270 75 70 NP2 145 25 142 Principal Axes: Axis Value Plunge Azimuth T 2.92e+23 56 155 N 0.00e+00 19 275 P -2.92e+23 27 16 Moment Tensor: (dyne-cm) Component Value Mxx -1.37e+23 Mxy -9.64e+22 Mxz -2.37e+23 Myy -2.30e+15 Myz 2.58e+22 Mzz 1.37e+23 -------------- -------------- ----- #---------------- P -------- #----------------- --------- ##-------------------------------- ##---------------------------------- ###----------------------------------- ###------------------------------------- ###------------------------------------- ####-----########################--------- ##--####################################-- ----###################################### -----##################################### -----################################### -----################# ############### ------############### T ############## ------############## ############# -------########################### -------####################### --------#################### ----------###########- -------------- Global CMT Convention Moment Tensor: R T P 1.37e+23 -2.37e+23 -2.58e+22 -2.37e+23 -1.37e+23 9.64e+22 -2.58e+22 9.64e+22 -2.30e+15 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241108200605/index.html |
STK = 270 DIP = 75 RAKE = 70 MW = 4.91 HS = 10.0
The NDK file is 20241108200605.ndk The waveform inversion is preferred.
The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
USGS/SLU Moment Tensor Solution ENS 2024/11/08 20:06:05:0 65.38 -134.62 12.8 4.9 Yukon, Canada Stations used: AK.BAL AK.BARN AK.C27K AK.CCB AK.DHY AK.E25K AK.E27K AK.FYU AK.GRES AK.H24K AK.HARP AK.HDA AK.I23K AK.I27K AK.J25K AK.K24K AK.KIAG AK.L26K AK.LOGN AK.M26K AK.MCAR AK.MDM AK.MESA AK.NEA2 AK.PAX AK.POKR AK.PPD AK.PS07 AK.PS08 AK.PS09 AK.PS10 AK.PS11 AK.PTPK AK.RIDG AK.RKAV AK.SCRK AK.TGL AK.VRDI AK.WRH AT.SKAG AV.N25K AV.WACK AV.WAZA CN.ATLI CN.BRWY CN.CROWY CN.DAWY CN.HYT CN.INK CN.PLBC CN.WHY CN.YUK3 CN.YUK6 CN.YUK7 IU.COLA NY.MAYO NY.WTLY PQ.NOWN PQ.OGILY PQ.TSIIG PQ.TUKN Filtering commands used: cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3 Best Fitting Double Couple Mo = 2.92e+23 dyne-cm Mw = 4.91 Z = 10 km Plane Strike Dip Rake NP1 270 75 70 NP2 145 25 142 Principal Axes: Axis Value Plunge Azimuth T 2.92e+23 56 155 N 0.00e+00 19 275 P -2.92e+23 27 16 Moment Tensor: (dyne-cm) Component Value Mxx -1.37e+23 Mxy -9.64e+22 Mxz -2.37e+23 Myy -2.30e+15 Myz 2.58e+22 Mzz 1.37e+23 -------------- -------------- ----- #---------------- P -------- #----------------- --------- ##-------------------------------- ##---------------------------------- ###----------------------------------- ###------------------------------------- ###------------------------------------- ####-----########################--------- ##--####################################-- ----###################################### -----##################################### -----################################### -----################# ############### ------############### T ############## ------############## ############# -------########################### -------####################### --------#################### ----------###########- -------------- Global CMT Convention Moment Tensor: R T P 1.37e+23 -2.37e+23 -2.58e+22 -2.37e+23 -1.37e+23 9.64e+22 -2.58e+22 9.64e+22 -2.30e+15 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20241108200605/index.html |
W-phase Moment Tensor (Mww) Moment 3.083e+16 N-m Magnitude 4.93 Mww Depth 17.5 km Percent DC 92% Half Duration 0.50 s Catalog US Data Source US 1 Contributor US 1 Nodal Planes Plane Strike Dip Rake NP1 252 81 60 NP2 147 31 162 Principal Axes Axis Value Plunge Azimuth T 3.019e+16 46 132 N 0.125e+16 30 258 P -3.144e+16 29 6 |
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 255 65 45 4.81 0.4734 WVFGRD96 2.0 260 50 50 4.87 0.4511 WVFGRD96 3.0 260 80 70 4.93 0.4379 WVFGRD96 4.0 265 80 70 4.90 0.4583 WVFGRD96 5.0 270 75 75 4.90 0.4769 WVFGRD96 6.0 270 75 70 4.89 0.4934 WVFGRD96 7.0 270 75 70 4.88 0.5040 WVFGRD96 8.0 270 75 70 4.88 0.5115 WVFGRD96 9.0 270 75 70 4.88 0.5159 WVFGRD96 10.0 270 75 70 4.91 0.5194 WVFGRD96 11.0 270 75 70 4.91 0.5184 WVFGRD96 12.0 270 75 70 4.91 0.5164 WVFGRD96 13.0 270 75 70 4.91 0.5126 WVFGRD96 14.0 265 80 65 4.91 0.5079 WVFGRD96 15.0 265 80 65 4.92 0.5027 WVFGRD96 16.0 265 80 65 4.92 0.4961 WVFGRD96 17.0 265 80 70 4.93 0.4884 WVFGRD96 18.0 265 80 70 4.93 0.4802 WVFGRD96 19.0 265 80 70 4.94 0.4709 WVFGRD96 20.0 260 85 70 4.97 0.4625 WVFGRD96 21.0 260 85 70 4.98 0.4515 WVFGRD96 22.0 80 90 -70 4.98 0.4385 WVFGRD96 23.0 80 90 -70 4.99 0.4273 WVFGRD96 24.0 80 90 -75 5.00 0.4159 WVFGRD96 25.0 260 85 75 5.00 0.4047 WVFGRD96 26.0 260 85 75 5.01 0.3927 WVFGRD96 27.0 80 90 -75 5.02 0.3806 WVFGRD96 28.0 80 90 -75 5.02 0.3684 WVFGRD96 29.0 80 90 -75 5.03 0.3561
The best solution is
WVFGRD96 10.0 270 75 70 4.91 0.5194
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -40 o DIST/3.3 +60 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.08 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00