Location

Location ANSS

The ANSS event ID is uw62050041 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/uw62050041/executive.

2024/09/26 11:05:20 48.574 -123.250 52.0 4.o BC, Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/09/26 11:05:20:0  48.57 -123.25  52.0 4.0 BC, Canada
 
 Stations used:
   CN.CLRS CN.PGC CN.PTRF CN.QEPB CN.SYMB CN.VDEB CN.VGZ 
   PQ.ALBHB PQ.DAOB UW.BHAM UW.BHW UW.CHIMA UW.DONK UW.DOSE 
   UW.EQUIL UW.GUEM UW.HILL UW.LOPEZ UW.LRIV UW.LUMI UW.MBW2 
   UW.MULN UW.OLGA UW.OSQM UW.PASS UW.RNWY UW.SAXON UW.TURTL 
 
 Filtering commands used:
   cut o DIST/3.3 -40 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 8.61e+21 dyne-cm
  Mw = 3.89 
  Z  = 53 km
  Plane   Strike  Dip  Rake
   NP1      340    75   -80
   NP2      126    18   -123
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.61e+21     29      62
    N   0.00e+00     10     157
    P  -8.61e+21     59     264

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.42e+21
       Mxy     2.47e+21
       Mxz     2.15e+21
       Myy     2.82e+21
       Myz     7.03e+21
       Mzz    -4.24e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ------################              
              ----------##################           
             -------------#################          
           ----------------##################        
          ------------------##################       
         #-------------------###########   ####      
        #---------------------########## T #####     
        #---------------------##########   #####     
       ##----------------------##################    
       ##----------   ----------#################    
       ##---------- P ----------#################    
       ###---------   -----------################    
        ###----------------------###############     
        ###-----------------------##############     
         ###----------------------#############      
          ####---------------------###########       
           #####-------------------##########        
             #####-----------------########          
              #######--------------#####--           
                 #########-------------              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.24e+21   2.15e+21  -7.03e+21 
  2.15e+21   1.42e+21  -2.47e+21 
 -7.03e+21  -2.47e+21   2.82e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240926110520/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 340
      DIP = 75
     RAKE = -80
       MW = 3.89
       HS = 53.0

The NDK file is 20240926110520.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   140    70    15   2.97 0.1854
WVFGRD96    2.0   330    45    95   3.20 0.3187
WVFGRD96    3.0   320    80     5   3.23 0.3243
WVFGRD96    4.0   190    75    35   3.26 0.3342
WVFGRD96    5.0   190    70    50   3.32 0.3850
WVFGRD96    6.0   190    75    55   3.33 0.4248
WVFGRD96    7.0   195    70    55   3.34 0.4505
WVFGRD96    8.0   195    70    60   3.41 0.4658
WVFGRD96    9.0   190    75    55   3.39 0.4763
WVFGRD96   10.0   345    65   -55   3.43 0.4960
WVFGRD96   11.0   345    60   -60   3.46 0.5120
WVFGRD96   12.0   345    60   -60   3.47 0.5236
WVFGRD96   13.0   345    65   -55   3.46 0.5301
WVFGRD96   14.0   350    55   -55   3.51 0.5369
WVFGRD96   15.0   350    55   -55   3.52 0.5438
WVFGRD96   16.0   350    55   -55   3.53 0.5479
WVFGRD96   17.0   350    55   -55   3.53 0.5494
WVFGRD96   18.0   350    55   -55   3.54 0.5487
WVFGRD96   19.0   355    60   -50   3.54 0.5460
WVFGRD96   20.0   350    60   -50   3.55 0.5436
WVFGRD96   21.0   180    85    45   3.52 0.5462
WVFGRD96   22.0   180    85    50   3.52 0.5511
WVFGRD96   23.0   350    90   -50   3.53 0.5556
WVFGRD96   24.0   350    90   -50   3.54 0.5607
WVFGRD96   25.0   345    90   -55   3.55 0.5653
WVFGRD96   26.0   345    90   -55   3.56 0.5703
WVFGRD96   27.0   170    85    55   3.58 0.5778
WVFGRD96   28.0   345    90   -55   3.59 0.5792
WVFGRD96   29.0   170    85    55   3.60 0.5841
WVFGRD96   30.0   345    90   -60   3.61 0.5839
WVFGRD96   31.0   170    85    60   3.62 0.5928
WVFGRD96   32.0   345    90   -60   3.63 0.5974
WVFGRD96   33.0   345    90   -60   3.64 0.6038
WVFGRD96   34.0   165    90    60   3.65 0.6101
WVFGRD96   35.0   165    90    65   3.65 0.6162
WVFGRD96   36.0   340    85   -65   3.66 0.6267
WVFGRD96   37.0   345    85   -65   3.66 0.6329
WVFGRD96   38.0   340    80   -65   3.67 0.6392
WVFGRD96   39.0   340    80   -65   3.67 0.6456
WVFGRD96   40.0   340    80   -75   3.81 0.6526
WVFGRD96   41.0   340    80   -75   3.82 0.6668
WVFGRD96   42.0   340    80   -75   3.82 0.6787
WVFGRD96   43.0   340    80   -75   3.83 0.6887
WVFGRD96   44.0   340    80   -75   3.84 0.6969
WVFGRD96   45.0   340    80   -75   3.85 0.7038
WVFGRD96   46.0   335    75   -75   3.85 0.7104
WVFGRD96   47.0   335    75   -75   3.85 0.7150
WVFGRD96   48.0   335    75   -75   3.86 0.7192
WVFGRD96   49.0   335    75   -80   3.87 0.7228
WVFGRD96   50.0   335    75   -80   3.87 0.7254
WVFGRD96   51.0   335    75   -80   3.88 0.7269
WVFGRD96   52.0   335    75   -80   3.88 0.7280
WVFGRD96   53.0   340    75   -80   3.89 0.7290
WVFGRD96   54.0   340    75   -80   3.89 0.7287
WVFGRD96   55.0   340    75   -80   3.89 0.7279
WVFGRD96   56.0   340    75   -80   3.90 0.7271
WVFGRD96   57.0   335    70   -80   3.90 0.7263
WVFGRD96   58.0   330    70   -85   3.90 0.7261
WVFGRD96   59.0   135    20  -110   3.91 0.7258
WVFGRD96   60.0   330    70   -85   3.91 0.7241
WVFGRD96   61.0   330    70   -90   3.92 0.7226
WVFGRD96   62.0   145    20   -95   3.92 0.7221
WVFGRD96   63.0   330    70   -90   3.92 0.7203
WVFGRD96   64.0   150    20   -95   3.93 0.7188
WVFGRD96   65.0   150    20   -95   3.93 0.7166
WVFGRD96   66.0   155    20   -90   3.93 0.7150
WVFGRD96   67.0   155    20   -90   3.94 0.7128
WVFGRD96   68.0   160    20   -85   3.94 0.7107
WVFGRD96   69.0   335    70   -90   3.94 0.7070

The best solution is

WVFGRD96   53.0   340    75   -80   3.89 0.7290

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -40 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Thu Sep 26 09:23:02 CDT 2024