Location

Location ANSS

The ANSS event ID is ak024c4o9vb2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024c4o9vb2/executive.

2024/09/20 04:02:41 63.166 -150.538 119.1 3.9 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2024/09/20 04:02:41:0  63.17 -150.54 119.1 3.9 Alaska
 
 Stations used:
   AK.BPAW AK.CAST AK.CCB AK.CUT AK.GHO AK.H24K AK.HDA AK.J19K 
   AK.J20K AK.J25K AK.K24K AK.KNK AK.L19K AK.L22K AK.MCK 
   AK.MLY AK.PAX AK.POKR AK.PPD AK.PWL AK.RC01 AK.RND AK.SAW 
   AK.SCM AK.SLK AK.WAT6 AK.WRH AV.STLK IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut o DIST/3.5 -40 o DIST/3.5 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.26e+22 dyne-cm
  Mw = 4.00 
  Z  = 124 km
  Plane   Strike  Dip  Rake
   NP1       45    75    45
   NP2      300    47   159
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.26e+22     42     273
    N   0.00e+00     43      60
    P  -1.26e+22     17     167

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+22
       Mxy     2.23e+21
       Mxz     3.82e+21
       Myy     6.37e+21
       Myz    -7.08e+21
       Mzz     4.45e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             -----------------------------#          
           --##############---------------###        
          ######################---------#####       
         ##########################-----#######      
        #############################-##########     
        #############################--#########     
       #######   ###################-----########    
       ####### T #################--------#######    
       #######   ###############------------#####    
       ########################-------------#####    
        #####################----------------###     
        ###################-------------------##     
         ###############----------------------#      
          ############------------------------       
           ########--------------------------        
             ###---------------------------          
              -----------------   --------           
                 -------------- P -----              
                     ----------   -                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  4.45e+21   3.82e+21   7.08e+21 
  3.82e+21  -1.08e+22  -2.23e+21 
  7.08e+21  -2.23e+21   6.37e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240920040241/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 45
      DIP = 75
     RAKE = 45
       MW = 4.00
       HS = 124.0

The NDK file is 20240920040241.ndk The waveform inversion is preferred.

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   300    50   -60   3.11 0.1598
WVFGRD96    4.0   330    50     5   3.12 0.1641
WVFGRD96    6.0   155    60    15   3.18 0.1851
WVFGRD96    8.0   155    55    15   3.26 0.2041
WVFGRD96   10.0   155    60    20   3.31 0.2146
WVFGRD96   12.0   155    60    20   3.34 0.2177
WVFGRD96   14.0    60    90    35   3.37 0.2171
WVFGRD96   16.0   240    90   -35   3.41 0.2224
WVFGRD96   18.0    60    85    35   3.44 0.2258
WVFGRD96   20.0    60    85    30   3.47 0.2300
WVFGRD96   22.0    60    85    35   3.50 0.2367
WVFGRD96   24.0    60    85    35   3.52 0.2448
WVFGRD96   26.0    60    90    35   3.55 0.2527
WVFGRD96   28.0    60    90    35   3.57 0.2608
WVFGRD96   30.0   235    85   -30   3.58 0.2716
WVFGRD96   32.0   235    85   -30   3.60 0.2830
WVFGRD96   34.0   235    85   -30   3.62 0.2903
WVFGRD96   36.0    55    90    30   3.64 0.2942
WVFGRD96   38.0    55    90    25   3.66 0.2985
WVFGRD96   40.0    50    80    15   3.71 0.3035
WVFGRD96   42.0    50    80    15   3.74 0.3086
WVFGRD96   44.0    55    90    30   3.77 0.3134
WVFGRD96   46.0    55    85    30   3.79 0.3210
WVFGRD96   48.0    55    85    30   3.80 0.3294
WVFGRD96   50.0    55    85    30   3.81 0.3378
WVFGRD96   52.0    60    75    35   3.83 0.3478
WVFGRD96   54.0    60    70    35   3.85 0.3579
WVFGRD96   56.0    60    70    35   3.86 0.3692
WVFGRD96   58.0    60    65    35   3.88 0.3837
WVFGRD96   60.0    60    65    35   3.88 0.3969
WVFGRD96   62.0    60    65    35   3.89 0.4089
WVFGRD96   64.0    55    65    30   3.91 0.4216
WVFGRD96   66.0    55    65    30   3.91 0.4335
WVFGRD96   68.0    55    65    30   3.92 0.4428
WVFGRD96   70.0    55    65    30   3.92 0.4516
WVFGRD96   72.0    55    65    30   3.93 0.4613
WVFGRD96   74.0    55    65    30   3.93 0.4710
WVFGRD96   76.0    55    65    30   3.94 0.4793
WVFGRD96   78.0    55    65    30   3.94 0.4865
WVFGRD96   80.0    55    65    30   3.94 0.4932
WVFGRD96   82.0    55    65    30   3.95 0.4997
WVFGRD96   84.0    55    65    30   3.95 0.5048
WVFGRD96   86.0    55    65    30   3.95 0.5086
WVFGRD96   88.0    50    70    40   3.95 0.5124
WVFGRD96   90.0    50    70    40   3.96 0.5169
WVFGRD96   92.0    50    70    40   3.96 0.5222
WVFGRD96   94.0    50    70    40   3.96 0.5263
WVFGRD96   96.0    50    70    45   3.96 0.5302
WVFGRD96   98.0    50    70    45   3.97 0.5340
WVFGRD96  100.0    50    70    45   3.97 0.5364
WVFGRD96  102.0    50    70    45   3.97 0.5401
WVFGRD96  104.0    50    70    45   3.97 0.5435
WVFGRD96  106.0    45    75    45   3.98 0.5458
WVFGRD96  108.0    45    75    45   3.98 0.5474
WVFGRD96  110.0    45    75    45   3.98 0.5487
WVFGRD96  112.0    45    75    45   3.99 0.5494
WVFGRD96  114.0    45    75    45   3.99 0.5511
WVFGRD96  116.0    45    75    45   3.99 0.5528
WVFGRD96  118.0    45    75    45   3.99 0.5530
WVFGRD96  120.0    45    75    45   3.99 0.5524
WVFGRD96  122.0    45    75    45   3.99 0.5533
WVFGRD96  124.0    45    75    45   4.00 0.5536
WVFGRD96  126.0    45    75    45   4.00 0.5529
WVFGRD96  128.0    45    75    45   4.00 0.5524
WVFGRD96  130.0    45    75    45   4.00 0.5521
WVFGRD96  132.0    45    75    45   4.00 0.5510
WVFGRD96  134.0    50    70    45   4.00 0.5491
WVFGRD96  136.0    50    70    45   4.00 0.5492
WVFGRD96  138.0    50    70    45   4.00 0.5483
WVFGRD96  140.0    50    70    45   4.00 0.5463
WVFGRD96  142.0    50    70    45   4.00 0.5460
WVFGRD96  144.0    50    70    45   4.01 0.5435
WVFGRD96  146.0    50    70    45   4.01 0.5426
WVFGRD96  148.0    50    70    45   4.01 0.5408

The best solution is

WVFGRD96  124.0    45    75    45   4.00 0.5536

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.5 -40 o DIST/3.5 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Sep 20 06:09:29 CDT 2024