The ANSS event ID is ak024c4o9vb2 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024c4o9vb2/executive.
2024/09/20 04:02:41 63.166 -150.538 119.1 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/09/20 04:02:41:0 63.17 -150.54 119.1 3.9 Alaska Stations used: AK.BPAW AK.CAST AK.CCB AK.CUT AK.GHO AK.H24K AK.HDA AK.J19K AK.J20K AK.J25K AK.K24K AK.KNK AK.L19K AK.L22K AK.MCK AK.MLY AK.PAX AK.POKR AK.PPD AK.PWL AK.RC01 AK.RND AK.SAW AK.SCM AK.SLK AK.WAT6 AK.WRH AV.STLK IM.IL31 IU.COLA Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 124 km Plane Strike Dip Rake NP1 45 75 45 NP2 300 47 159 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 42 273 N 0.00e+00 43 60 P -1.26e+22 17 167 Moment Tensor: (dyne-cm) Component Value Mxx -1.08e+22 Mxy 2.23e+21 Mxz 3.82e+21 Myy 6.37e+21 Myz -7.08e+21 Mzz 4.45e+21 -------------- ---------------------- ---------------------------- -----------------------------# --##############---------------### ######################---------##### ##########################-----####### #############################-########## #############################--######### ####### ###################-----######## ####### T #################--------####### ####### ###############------------##### ########################-------------##### #####################----------------### ###################-------------------## ###############----------------------# ############------------------------ ########-------------------------- ###--------------------------- ----------------- -------- -------------- P ----- ---------- - Global CMT Convention Moment Tensor: R T P 4.45e+21 3.82e+21 7.08e+21 3.82e+21 -1.08e+22 -2.23e+21 7.08e+21 -2.23e+21 6.37e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240920040241/index.html |
STK = 45 DIP = 75 RAKE = 45 MW = 4.00 HS = 124.0
The NDK file is 20240920040241.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 300 50 -60 3.11 0.1598 WVFGRD96 4.0 330 50 5 3.12 0.1641 WVFGRD96 6.0 155 60 15 3.18 0.1851 WVFGRD96 8.0 155 55 15 3.26 0.2041 WVFGRD96 10.0 155 60 20 3.31 0.2146 WVFGRD96 12.0 155 60 20 3.34 0.2177 WVFGRD96 14.0 60 90 35 3.37 0.2171 WVFGRD96 16.0 240 90 -35 3.41 0.2224 WVFGRD96 18.0 60 85 35 3.44 0.2258 WVFGRD96 20.0 60 85 30 3.47 0.2300 WVFGRD96 22.0 60 85 35 3.50 0.2367 WVFGRD96 24.0 60 85 35 3.52 0.2448 WVFGRD96 26.0 60 90 35 3.55 0.2527 WVFGRD96 28.0 60 90 35 3.57 0.2608 WVFGRD96 30.0 235 85 -30 3.58 0.2716 WVFGRD96 32.0 235 85 -30 3.60 0.2830 WVFGRD96 34.0 235 85 -30 3.62 0.2903 WVFGRD96 36.0 55 90 30 3.64 0.2942 WVFGRD96 38.0 55 90 25 3.66 0.2985 WVFGRD96 40.0 50 80 15 3.71 0.3035 WVFGRD96 42.0 50 80 15 3.74 0.3086 WVFGRD96 44.0 55 90 30 3.77 0.3134 WVFGRD96 46.0 55 85 30 3.79 0.3210 WVFGRD96 48.0 55 85 30 3.80 0.3294 WVFGRD96 50.0 55 85 30 3.81 0.3378 WVFGRD96 52.0 60 75 35 3.83 0.3478 WVFGRD96 54.0 60 70 35 3.85 0.3579 WVFGRD96 56.0 60 70 35 3.86 0.3692 WVFGRD96 58.0 60 65 35 3.88 0.3837 WVFGRD96 60.0 60 65 35 3.88 0.3969 WVFGRD96 62.0 60 65 35 3.89 0.4089 WVFGRD96 64.0 55 65 30 3.91 0.4216 WVFGRD96 66.0 55 65 30 3.91 0.4335 WVFGRD96 68.0 55 65 30 3.92 0.4428 WVFGRD96 70.0 55 65 30 3.92 0.4516 WVFGRD96 72.0 55 65 30 3.93 0.4613 WVFGRD96 74.0 55 65 30 3.93 0.4710 WVFGRD96 76.0 55 65 30 3.94 0.4793 WVFGRD96 78.0 55 65 30 3.94 0.4865 WVFGRD96 80.0 55 65 30 3.94 0.4932 WVFGRD96 82.0 55 65 30 3.95 0.4997 WVFGRD96 84.0 55 65 30 3.95 0.5048 WVFGRD96 86.0 55 65 30 3.95 0.5086 WVFGRD96 88.0 50 70 40 3.95 0.5124 WVFGRD96 90.0 50 70 40 3.96 0.5169 WVFGRD96 92.0 50 70 40 3.96 0.5222 WVFGRD96 94.0 50 70 40 3.96 0.5263 WVFGRD96 96.0 50 70 45 3.96 0.5302 WVFGRD96 98.0 50 70 45 3.97 0.5340 WVFGRD96 100.0 50 70 45 3.97 0.5364 WVFGRD96 102.0 50 70 45 3.97 0.5401 WVFGRD96 104.0 50 70 45 3.97 0.5435 WVFGRD96 106.0 45 75 45 3.98 0.5458 WVFGRD96 108.0 45 75 45 3.98 0.5474 WVFGRD96 110.0 45 75 45 3.98 0.5487 WVFGRD96 112.0 45 75 45 3.99 0.5494 WVFGRD96 114.0 45 75 45 3.99 0.5511 WVFGRD96 116.0 45 75 45 3.99 0.5528 WVFGRD96 118.0 45 75 45 3.99 0.5530 WVFGRD96 120.0 45 75 45 3.99 0.5524 WVFGRD96 122.0 45 75 45 3.99 0.5533 WVFGRD96 124.0 45 75 45 4.00 0.5536 WVFGRD96 126.0 45 75 45 4.00 0.5529 WVFGRD96 128.0 45 75 45 4.00 0.5524 WVFGRD96 130.0 45 75 45 4.00 0.5521 WVFGRD96 132.0 45 75 45 4.00 0.5510 WVFGRD96 134.0 50 70 45 4.00 0.5491 WVFGRD96 136.0 50 70 45 4.00 0.5492 WVFGRD96 138.0 50 70 45 4.00 0.5483 WVFGRD96 140.0 50 70 45 4.00 0.5463 WVFGRD96 142.0 50 70 45 4.00 0.5460 WVFGRD96 144.0 50 70 45 4.01 0.5435 WVFGRD96 146.0 50 70 45 4.01 0.5426 WVFGRD96 148.0 50 70 45 4.01 0.5408
The best solution is
WVFGRD96 124.0 45 75 45 4.00 0.5536
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00