The ANSS event ID is ak024bpxi37y and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024bpxi37y/executive.
2024/09/11 12:53:14 59.825 -153.323 126.3 3.9 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/09/11 12:53:14:0 59.83 -153.32 126.3 3.9 Alaska Stations used: AK.HOM AK.L19K AK.M20K AK.N18K AK.O18K AK.O19K AK.P17K AK.PWL AK.SWD AV.ACH AV.PLBL AV.RED AV.STLK II.KDAK Filtering commands used: cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 9.55e+21 dyne-cm Mw = 3.92 Z = 136 km Plane Strike Dip Rake NP1 286 84 114 NP2 30 25 15 Principal Axes: Axis Value Plunge Azimuth T 9.55e+21 46 221 N 0.00e+00 24 104 P -9.55e+21 34 356 Moment Tensor: (dyne-cm) Component Value Mxx -3.85e+21 Mxy 2.77e+21 Mxz -8.03e+21 Myy 1.96e+21 Myz -2.80e+21 Mzz 1.89e+21 -------------- ---------------------- ------------ -----------## ------------- P -------------# --------------- --------------## ---------------------------------### -----------------------------------### ------------------------------------#### ########-----------------------------### #################---------------------#### ########################--------------#### #############################--------##### ##################################---##### ###################################---## ########### ####################------ ########## T ###################------ ######### ##################------ ############################------ ########################------ ####################-------- #############--------- -------------- Global CMT Convention Moment Tensor: R T P 1.89e+21 -8.03e+21 2.80e+21 -8.03e+21 -3.85e+21 -2.77e+21 2.80e+21 -2.77e+21 1.96e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240911125314/index.html |
STK = 30 DIP = 25 RAKE = 15 MW = 3.92 HS = 136.0
The NDK file is 20240911125314.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 2.0 90 65 -15 2.90 0.1918 WVFGRD96 4.0 10 70 -5 2.97 0.2361 WVFGRD96 6.0 10 75 0 3.05 0.2737 WVFGRD96 8.0 10 75 5 3.14 0.3011 WVFGRD96 10.0 10 75 10 3.20 0.3110 WVFGRD96 12.0 10 85 10 3.23 0.3113 WVFGRD96 14.0 190 90 -10 3.26 0.3058 WVFGRD96 16.0 190 75 -5 3.29 0.2988 WVFGRD96 18.0 185 70 -10 3.33 0.2894 WVFGRD96 20.0 185 65 -5 3.35 0.2823 WVFGRD96 22.0 185 65 -5 3.37 0.2778 WVFGRD96 24.0 185 60 -5 3.39 0.2764 WVFGRD96 26.0 185 60 0 3.41 0.2770 WVFGRD96 28.0 185 65 15 3.43 0.2782 WVFGRD96 30.0 190 65 30 3.46 0.2795 WVFGRD96 32.0 190 65 35 3.49 0.2814 WVFGRD96 34.0 190 65 40 3.51 0.2785 WVFGRD96 36.0 190 70 45 3.54 0.2776 WVFGRD96 38.0 165 85 -25 3.58 0.2819 WVFGRD96 40.0 160 80 -45 3.69 0.3008 WVFGRD96 42.0 340 50 -15 3.71 0.3004 WVFGRD96 44.0 340 45 -15 3.74 0.3112 WVFGRD96 46.0 340 45 -15 3.77 0.3265 WVFGRD96 48.0 340 40 -20 3.79 0.3465 WVFGRD96 50.0 340 35 -20 3.82 0.3702 WVFGRD96 52.0 340 35 -20 3.84 0.3955 WVFGRD96 54.0 340 30 -25 3.86 0.4179 WVFGRD96 56.0 340 30 -25 3.87 0.4363 WVFGRD96 58.0 345 30 -20 3.87 0.4545 WVFGRD96 60.0 345 30 -15 3.87 0.4644 WVFGRD96 62.0 350 30 -15 3.87 0.4781 WVFGRD96 64.0 350 30 -15 3.87 0.4844 WVFGRD96 66.0 355 30 -5 3.87 0.4921 WVFGRD96 68.0 360 15 -15 3.88 0.5107 WVFGRD96 70.0 5 15 -10 3.88 0.5262 WVFGRD96 72.0 10 15 -5 3.88 0.5377 WVFGRD96 74.0 15 15 0 3.88 0.5527 WVFGRD96 76.0 20 15 5 3.89 0.5662 WVFGRD96 78.0 20 15 5 3.89 0.5769 WVFGRD96 80.0 25 15 10 3.89 0.5864 WVFGRD96 82.0 25 15 10 3.89 0.5940 WVFGRD96 84.0 30 15 15 3.89 0.6002 WVFGRD96 86.0 30 15 15 3.89 0.6056 WVFGRD96 88.0 30 15 15 3.89 0.6110 WVFGRD96 90.0 35 15 20 3.89 0.6172 WVFGRD96 92.0 35 15 20 3.89 0.6218 WVFGRD96 94.0 35 15 20 3.89 0.6248 WVFGRD96 96.0 35 15 20 3.89 0.6291 WVFGRD96 98.0 40 15 25 3.89 0.6321 WVFGRD96 100.0 40 15 25 3.89 0.6329 WVFGRD96 102.0 35 20 20 3.89 0.6345 WVFGRD96 104.0 35 20 20 3.89 0.6382 WVFGRD96 106.0 35 20 20 3.90 0.6419 WVFGRD96 108.0 40 20 25 3.90 0.6463 WVFGRD96 110.0 40 20 25 3.90 0.6474 WVFGRD96 112.0 35 20 20 3.90 0.6465 WVFGRD96 114.0 35 20 20 3.90 0.6488 WVFGRD96 116.0 35 20 20 3.90 0.6516 WVFGRD96 118.0 35 20 20 3.90 0.6541 WVFGRD96 120.0 35 20 20 3.90 0.6514 WVFGRD96 122.0 35 20 20 3.90 0.6537 WVFGRD96 124.0 35 20 20 3.90 0.6559 WVFGRD96 126.0 35 20 20 3.90 0.6551 WVFGRD96 128.0 35 20 20 3.91 0.6545 WVFGRD96 130.0 35 20 20 3.91 0.6561 WVFGRD96 132.0 35 20 20 3.91 0.6551 WVFGRD96 134.0 30 25 15 3.91 0.6545 WVFGRD96 136.0 30 25 15 3.92 0.6566 WVFGRD96 138.0 30 25 15 3.92 0.6537 WVFGRD96 140.0 30 25 15 3.92 0.6551 WVFGRD96 142.0 30 25 15 3.92 0.6551 WVFGRD96 144.0 30 25 15 3.92 0.6506 WVFGRD96 146.0 30 25 15 3.92 0.6544 WVFGRD96 148.0 30 25 15 3.92 0.6510
The best solution is
WVFGRD96 136.0 30 25 15 3.92 0.6566
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.5 -40 o DIST/3.5 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00