The ANSS event ID is ak024b9eizri and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ak024b9eizri/executive.
2024/09/01 13:20:21 59.665 -151.522 48.2 4.6 Alaska
USGS/SLU Moment Tensor Solution ENS 2024/09/01 13:20:21:0 59.67 -151.52 48.2 4.6 Alaska Stations used: AK.BAE AK.BRLK AK.CUT AK.DIV AK.FID AK.GLI AK.KLU AK.L22K AK.N18K AK.O18K AK.O19K AK.P23K AK.PWL AK.SLK AK.SWD AV.ACH AV.RED AV.STLK II.KDAK Filtering commands used: cut o DIST/3.4 -30 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3 Best Fitting Double Couple Mo = 5.96e+22 dyne-cm Mw = 4.45 Z = 49 km Plane Strike Dip Rake NP1 190 75 -70 NP2 315 25 -142 Principal Axes: Axis Value Plunge Azimuth T 5.96e+22 27 264 N 0.00e+00 19 5 P -5.96e+22 56 125 Moment Tensor: (dyne-cm) Component Value Mxx -5.89e+21 Mxy 1.37e+22 Mxz 1.36e+22 Myy 3.39e+22 Myz -4.68e+22 Mzz -2.80e+22 ----------#### -----####----######### -##############----######### ###############--------####### ################-----------####### #################-------------###### #################----------------##### #################------------------##### #################-------------------#### ##################-------------------##### #### ##########---------------------#### #### T ##########---------------------#### #### ##########--------- ----------### ###############---------- P ----------## ###############---------- ----------## ##############----------------------## #############----------------------# ############---------------------# ##########-------------------- #########------------------- #######--------------- ###----------- Global CMT Convention Moment Tensor: R T P -2.80e+22 1.36e+22 4.68e+22 1.36e+22 -5.89e+21 -1.37e+22 4.68e+22 -1.37e+22 3.39e+22 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20240901132021/index.html |
STK = 190 DIP = 75 RAKE = -70 MW = 4.45 HS = 49.0
The NDK file is 20240901132021.ndk The waveform inversion is preferred.
Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.
Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
Right: Residuals from new relation as a function of distance and azimuth.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.4 -30 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 0 45 -90 3.63 0.1622 WVFGRD96 2.0 0 45 -90 3.74 0.2098 WVFGRD96 3.0 175 40 80 3.80 0.2041 WVFGRD96 4.0 5 45 -85 3.82 0.1910 WVFGRD96 5.0 185 65 -30 3.78 0.1853 WVFGRD96 6.0 185 65 -30 3.80 0.1853 WVFGRD96 7.0 175 90 -50 3.79 0.1960 WVFGRD96 8.0 0 80 60 3.86 0.2079 WVFGRD96 9.0 0 80 60 3.87 0.2227 WVFGRD96 10.0 0 80 60 3.88 0.2360 WVFGRD96 11.0 0 80 60 3.89 0.2477 WVFGRD96 12.0 0 80 60 3.90 0.2582 WVFGRD96 13.0 0 80 55 3.91 0.2678 WVFGRD96 14.0 0 80 60 3.92 0.2766 WVFGRD96 15.0 -5 80 55 3.93 0.2846 WVFGRD96 16.0 -5 80 55 3.94 0.2919 WVFGRD96 17.0 -5 80 55 3.95 0.3000 WVFGRD96 18.0 -5 80 60 3.96 0.3075 WVFGRD96 19.0 -5 80 60 3.97 0.3148 WVFGRD96 20.0 -5 80 60 3.98 0.3217 WVFGRD96 21.0 -5 80 60 4.00 0.3283 WVFGRD96 22.0 -5 80 60 4.01 0.3346 WVFGRD96 23.0 -5 80 60 4.02 0.3401 WVFGRD96 24.0 80 35 -10 4.06 0.3446 WVFGRD96 25.0 45 45 -40 4.08 0.3532 WVFGRD96 26.0 45 45 -35 4.09 0.3604 WVFGRD96 27.0 45 45 -35 4.10 0.3671 WVFGRD96 28.0 45 45 -35 4.11 0.3735 WVFGRD96 29.0 205 80 -60 4.13 0.3870 WVFGRD96 30.0 205 80 -60 4.14 0.3995 WVFGRD96 31.0 205 80 -60 4.16 0.4129 WVFGRD96 32.0 205 80 -60 4.17 0.4257 WVFGRD96 33.0 200 80 -60 4.18 0.4386 WVFGRD96 34.0 200 80 -60 4.19 0.4512 WVFGRD96 35.0 200 80 -60 4.20 0.4633 WVFGRD96 36.0 200 80 -60 4.21 0.4742 WVFGRD96 37.0 200 80 -60 4.22 0.4836 WVFGRD96 38.0 200 80 -60 4.23 0.4923 WVFGRD96 39.0 195 75 -60 4.25 0.5017 WVFGRD96 40.0 195 75 -70 4.37 0.5133 WVFGRD96 41.0 195 75 -70 4.38 0.5264 WVFGRD96 42.0 195 75 -70 4.39 0.5366 WVFGRD96 43.0 195 75 -70 4.40 0.5452 WVFGRD96 44.0 195 75 -70 4.41 0.5523 WVFGRD96 45.0 195 75 -70 4.42 0.5580 WVFGRD96 46.0 195 75 -70 4.43 0.5620 WVFGRD96 47.0 195 75 -70 4.43 0.5645 WVFGRD96 48.0 190 75 -70 4.44 0.5661 WVFGRD96 49.0 190 75 -70 4.45 0.5676 WVFGRD96 50.0 190 75 -70 4.45 0.5671 WVFGRD96 51.0 195 80 -65 4.46 0.5668 WVFGRD96 52.0 195 80 -65 4.46 0.5657 WVFGRD96 53.0 195 80 -65 4.47 0.5641 WVFGRD96 54.0 195 80 -65 4.47 0.5623 WVFGRD96 55.0 195 80 -65 4.48 0.5594 WVFGRD96 56.0 195 80 -65 4.48 0.5561 WVFGRD96 57.0 195 80 -65 4.48 0.5522 WVFGRD96 58.0 195 80 -65 4.49 0.5470 WVFGRD96 59.0 195 80 -65 4.49 0.5422
The best solution is
WVFGRD96 49.0 190 75 -70 4.45 0.5676
The mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.4 -30 o DIST/3.4 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.07 n 3
![]() |
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 Model after 8 iterations ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.9000 3.4065 2.0089 2.2150 0.302E-02 0.679E-02 0.00 0.00 1.00 1.00 6.1000 5.5445 3.2953 2.6089 0.349E-02 0.784E-02 0.00 0.00 1.00 1.00 13.0000 6.2708 3.7396 2.7812 0.212E-02 0.476E-02 0.00 0.00 1.00 1.00 19.0000 6.4075 3.7680 2.8223 0.111E-02 0.249E-02 0.00 0.00 1.00 1.00 0.0000 7.9000 4.6200 3.2760 0.164E-10 0.370E-10 0.00 0.00 1.00 1.00